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Abstract

Drug–target interaction prediction is important for drug development and drug repurposing. Many computational methods
have been proposed for drug–target interaction prediction due to their potential to the time and cost reduction. In this
review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to
drug–target interaction prediction. Particularly, machine learning-based methods are divided into different types according
to the data processing form and task type. For each type of method, we provide a specific description and propose some
solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in
this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous
network and learning to rank in the drug–target interaction prediction. Moreover, we propose three aspects that can be
explored in depth for future research.
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Introduction

Significance and current status of drug development

Drugs are compounds that can cause changes in the physio-
logical functions of organs and cellular metabolic activities of
living organisms after consumption, injection or absorption, and
are important for maintaining human health [1, 2]. For various
reasons, some drugs go through a process from flourishing to
declining, i.e. a drug is no longer available for the prevention,
treatment or diagnosis of a particular disease [3]. New drugs
must be available to replace them. In addition,many diseases are
still incurable or have no available drugs [4], and many new and
complex diseases emerge every year. The development of drugs
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directly affects the quality and process of disease prevention and
treatment [5], at present, it cannot catch up with the progress of
diseases. Therefore, the development of effective drugs is urgent.

In general, the development of a new drug takes approxi-
mately 12–16 years and 1–2 billion dollars [6]. There are four
phases of drug development: early drug discovery, preclinical
trials, clinical trials and approval for marketing [7], with clinical
trials divided into Phases I–III, which require consideration of
how well the drug is tolerated by the organism, evaluation of
the drug’s efficacy and safety, and determination of therapeutic
efficacy [8, 9]. Each of these phases takes a lot of time and
money, which explains why drug development is characterized
by high cost, high risk and long cycle. Currently, a lot of efforts
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have been invested in drug development; the results are still
not satisfactory [10]. According to Tufts CSDD impact Reports
(https://csdd.tufts.edu/impact-reports), the US Food and Drug
Administration approved only 126 cancer drugs for solid and
blood tumors from 1980 to 2018. At Grakn Cosmos (https://www.
grakncosmos.com/), the first global user conference organized
by Grakn Labs in February 2020, Paul Agapow, the Director of
Health Informatics at AstraZeneca, compared the drug devel-
opment process to gambling—both have high investment and
high risk. It is of great importance to reduce the high risk and
investment of the ‘gamble’ of drug development by improving
the efficiency at each stage.

Definition and significance of drug repurposing

Drug compounds may interact with other unexpected proteins
in addition to the disease-related target proteins. Although this
phenomenon is not expected by researchers, it has been proved
that off-target drugs can produce unexpected new therapeutic
effects [11]. For example, Imatinib Mesylate Capsules, which
interacts with the Bcr-Abl fusion gene and is used to treat
leukemia, has been shown to be effective in treating gastroin-
testinal stromal tumors [12]. Sildenafil, which is used to treat
angina pectoris, has been shown to be effective in treating sexual
dysfunction [13]. And Kinnings et al. [14] successfully applied
the drugs tolcapone and entacapone for Parkinson’s disease to
anti-tuberculosis treatment by improving the predictive scoring
of drug–target docking relationships. Finding new indications
for existing drugs, i.e. drug repurposing [15], has attracted great
attention from pharmaceutical companies, researchers, clini-
cians and even governments.

In recent decades, approximately 30% of new drug failures
have been attributed to safety issues identified in clinical trials.
COVID-19, which began at the end of 2019, has spread rapidly
worldwide and its high infectiousness and insidiousness poses a
serious threat to human health [16]. Obviously, it is not advisable
to develop drugs for the treatment of this disease in accor-
dancewith the traditional process of new drug development [17].
Rapidly resolving the mechanism and predicting effective drugs
are ways to deal with public health emergencies. At this point,
systematic, large-scale screening of drugs that are already on
the market and in clinical trials can be conducted. Most of the
existing approved drugs are already guaranteed safe and have
passed relevant pharmacological validation; repurposed drugs
can enter the clinical phase more quickly and at lower cost than
new drugs. Therefore, drug repurposing can significantly accel-
erate the drug development process and mitigate the impact of
emergent diseases to a certain extent.

Of the 113 new drugs and biologics approved or released
in 2017, only seven were completely new drugs (approved and
released drugs with new mechanisms of action), whereas 36
were repurposed drugs [18]. Drug repurposing makes a drug
available to patients within 3–12 years at an estimated total
cost of 40–80 million dollars, a significant time and cost saving
comparedwith new drug development [19, 20]. Drug repurposing
promises to be an effective tool of treating diseases with high
efficiency and low cost.

Necessity and significance of drug–target
interaction prediction

The target of a drug is a biomolecule or biomolecular structure,
usually a protein that binds specifically with a drug to produce
a therapeutic effect on a disease [21, 22]. A protein that inhibits

or promotes the occurrence and development of a disease can
be considered as a candidate protein for the prevention and
treatment of the disease. On the basis of this information, a rel-
evant drug can be screened or developed for the prevention and
treatment of the disease. Drug therapy is achieved when drug
molecules bind to targets and regulate their biological activities,
and the identification of drug–target interaction is beneficial
to subsequent disease treatment. Therefore, investigating drug–
target interactions is important for drug development and drug
repurposing.

The purpose of predicting drug–target interactions is to iden-
tify the targets of new drugs and new targets of drugs [23–27].
With the development of molecular biology techniques and the
completion of the Human Genome Project, a large number of
proteins have been sequenced, but not all proteins are effective
targets related to diseases. Moreover, known drug targets are
only the tip of the iceberg compared with unknown drug targets
[28]. In addition, many compounds have been synthesized over
the past decades, such as the 109 million small molecules in the
PubChem database, but the drug effects and targets of most of
these compounds are unknown [29]. Among these compounds,
there may be good drugs for treating diseases. These status quo
make it urgent to explore drug–target interactions [30].

Two computational methods
and their applications

Traditional experimental methods not only require a lot
of human, material and financial resources, but also are
easily affected by objective conditions. The use of biomedical
experiments can also lead to many problems not being detected
or dealt with in time because of efficiency issues; the rapid
development of computer technology is an indispensable tool
to solve these problems. Identifying drug–target interactions
through computational methods can greatly reduce the broad
search space for candidate drugs for downstream experimental
verification, thereby significantly reducing the high cost
and long cycle of developing new drugs [31–33]. Molecular
docking, which has prevailed in the past few decades, is
briefly introduced in this section. Recent years, molecular
docking is arguably not considered generally as a mainstream
method anymore for drug–target interaction predictions in the
bioinformatics community, due to its well-known limitations.
Machine learning methods can be used to process large-
scale data, and with their rapid development, related machine
learningmethods have been applied in all stages of constructing
drug–target interaction prediction models.

Molecular docking

Molecular docking is an important technology for computer-
aided drug design [34–36]. Molecular docking places small
molecules at the active site of the target protein and identifies
the optimal conformation for the interaction of the small
molecule (ligand) with the target macromolecule by continu-
ously changing the ligand conformation, then predicts their
bindingmode and affinity.Dakshanamurthy et al. [37] performed
molecular docking calculations using the crystal structures of
human proteins and FDA-approved drugs, and identified an
antiparasitic drug, mebendazole, with the potential to inhibit
vascular endothelial growth factor receptor-2 (VEGFR-2).

At present, a number of easy-to-use and powerful docking
methods and software have been developed [38–40], and molec-
ular docking techniques allow a clear view of the binding of
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Drug–target interaction prediction 3

Figure 1. Example of molecular docking. Note that (A), (B), (C) are three presentation angles.

compounds to proteins. Figure 1 shows an example of docking
(The docking process is completed by the swissdock (http://www.
swissdock.ch/)) of pirenzepine (ligand) and muscarinic acetyl-
choline receptor M2, where the ligand is well embedded in the
active pocket of the protein as observed from different angles.
Because of these advantages, themolecular docking has become
one of the common methods used to study interaction pat-
terns between small and large molecules in the past [41, 42].
However, it also has some shortcomings, mostly because it is
performed by computers to simulate the binding between ligand
and receptor molecules. The ligand–receptor binding process is
very complex and requires large and comprehensive sampling
of all possible conformations to obtain an actual (or almost
actual) binding conformation [7]. Conformational searching is
required to find the optimal binding position and the simultane-
ous calculation of multiple conformations leads to a very large
search space and computational effort [43], these processes can
take a long time and have high computational cost, even when
high-performance computers are used to screen individual tar-
gets. Current methods regard the docking as an independent
process, and each docking is completely restarted, resulting in
unnecessary waste of time and computational resources. In
addition, molecular docking methods require the 3D structure
of the protein is known, but there are many proteins whose 3D
structures are unknown and not easily accessible, such as the
GPCRs proteins [44, 45], which are important targets. Therefore,
machine learning-based approaches to predict drug–target inter-
actions are receiving much attention, and many studies have
considered the problem from different perspectives to obtain
high-performing drug–target interaction prediction models.

Machine learning

A common assumption in drug–target interaction prediction
is that similar drugs target similar targets, and vice versa
[46]. Sequences of the muscarinic acetylcholine receptors M1
(HSA:1128), M2 (HSA:1129), M3 (HSA:1131), M4 (HSA:1132) and
M5 (HSA: 1133), are the most similar sequences to each other
obtained by Blast comparison. And the parent components of
pirenzepine (D08389), pirenzepine hydrochloride (D01297) and
pirenzepine hydrochloride hydrate (D05276) are identical (note
that the entry names of drugs and targets come from KEGG
database (https://www.genome.jp/kegg/)). The relationship
between them clearly validates the above hypothesis. The

relationship between the five proteins and three compounds
is shown in Figure 2. Most current applications are based on this
assumption, and their performance is constantly improving.
The binary interaction data sets for enzymes, ion channels,
G-protein-coupled receptors (GPCRs) and nuclear receptors
constructed by Yamanishi et al. [47] have been widely used in
drug–target interaction studies. The existence of these ‘gold
standard’ data sets provides a good reference for different
methods and fully proves the progress of the methods. Many
studies are based on these data sets, such as [48–53], and their
methods have shown their respective advantages.

Existing applications can be divided into types from differ-
ent perspectives. As shown in Figure 3, according to the pro-
cessing form of drug and target data, these applications can
be divided into feature-based, similarity-based, and network-
based. According to the task type, applications can be divided
into classification, regression and ranking.

I Types of methods according to the form of data processing

(i) Similarity-based method: The similarity-based approach is
a direct manifestation of the hypothesis that ‘similar drugs
target similar targets and vice versa’ [54, 55]. Figure 4A
shows schematic diagram of the similarity-based method.
It predicts the drug–target interaction through a score func-
tion. The higher the calculated score, the more likely the
drug–target pair will interact. The similarity-based method
can be divided into two perspectives of drug and target to
calculate the score. For instance, in the drug perspective,
Nearest neighbor (NN) [50] combines the similarity between
the new drug and the known drug with the interaction
between the known drug and the target to predict the
interaction between the new drug and the target, and in the
target perspective,NNuses the same principle to predict the
interaction between the new target and the drug. And the
final result is a combination of these two perspectives. In
general, a large number of similarity-based methods have
been proposed one after another, and these methods have
their own characteristics. Bipartite local models (BLM) [50]
are also based on the two perspectives of drugs and targets,
but it turns the edge prediction problem into a well-known
binary classification problem. Weighted nearest neighbor
(WNN) [56] proposes a simple WNN algorithm, which uses
the chemical and interaction information of known com-
pounds to construct an interaction score profiles for a new
drug. Keiser et al. [57] used a statistical-based chemical
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4 Ru et al.

Figure 2. Explanation of the principle of similarity-based methods. Note that the entry names of drugs and targets come from KEGG database.

Figure 3. Types of specific applications. Note: DTI is an acronym for drug–target interaction.

method to predict new targets for small molecule drugs
and drug compounds, and applied similarity coefficients
to evaluate the 2D structural similarity of each drug and
each target to identify new drug–target interactions. Zheng
et al. [58] inferred drug–target relationships by synergisti-
cally processing drug similarity matrices, target similarity
matrices and known interactions between the two.Hao et al.
[59] improved the prediction performance by fusing drug
and target similarity matrices and adding constraints on
drug and target similarity matrices to calculate association
relationships for drug–target pairs in the objective function.

(ii) Network-based method: In the network-based method,
the nodes can represent drugs, targets, diseases, side
effects, etc., and the edges can represent the relationship
between them [60]. These networks are based on knowledge
or use a variety of data resources for calculation and
inference, and have various representations, such as drug–
drug, target–target, drug–disease, disease–protein and
so on. Figure 4B shows associations of heterogeneous
networks. Network-based methods can be subdivided
into two types: simple network-based and heterogeneous
network-based.
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Figure 4. Schematic diagram of the similarity-based method (A) and associations of heterogeneous networks (B)

Simple network-based methods have relatively simple data
sources.Most of them integrate drug structure, protein sequence
and drug–target interaction network information, and only
use one network topology. Such as Net Laplacian regularized
least squares (NetLapRLS) [61], bipartite graph model [47] and
Gaussian interaction profile (GIP). Many studies have shown
that network-based methods are indeed effective methods
for predicting drug–target interactions. GIP [49] defines the
Gaussian interaction profile kernel based on the drug–target
interaction profile, and through comparative experiments, it
is verified that the performance of the GIP kernel is better
than the kernel based on chemical and genomic information.
Cheng et al. [48] applied drug-based similarity inference (DBSI),
target-based similarity inference (TBSI) and network-based
inference (NBI) to predict drug–target interaction, found that
NBI performed best. In actuality, chemical structure, protein
sequence information and other properties of them can be
characterized by their various functional roles in biological
systems, e.g. protein–protein interactions and drug–disease
interactions, etc. For example, Campillos et al. [11] proposed to
identify drug–target interactions based on the similarity of drug
structure information and the similarity of drug side effects.
Heterogeneous networks have high flexibility in modeling
heterogeneous data, they have attracted widespread focus.
NRWRH [62] integrated a chemical structure similarity network,
a protein sequence similarity network, and the known drug–
target interaction network into heterogeneous networks, and
inferred potential drug–target relationship using a random
walk with restart approach. DASPfind [63] also formed a
heterogeneous network by combining a drug similarity network,
a target protein similarity network, and a known drug–target
protein bipartite graph network. It introduced an exponential
decay function to fuse all pathways connecting a drug–target
pair and finally predicted the drug–target interaction by
traversing all simple pathways. DTINet [64] integrated diverse
information from heterogeneous data sources (e.g. drugs,
proteins, diseases and side-effects) by combining random walk
with restart and diffusion component analysis, it found the best
projection from drug space onto protein space, predicted the
new drug–target interaction based on the geometric proximity
of the mapping vector in the unified space and shown that

incorporating additional network information can significantly
improve the prediction accuracy. Some studies combined deep
learning with heterogeneous networks, NeoDTI [60] integrated
diverse information from heterogeneous network data and
automatically learned topology-preserving representations of
drugs and targets to facilitate drug–target interaction prediction.
DeepDTnet [65] is a deep learning method based on a heteroge-
neous network embedded with 15 types of chemical, genomic,
phenotypic and cellular network profiles to predict drug–target
association relationships. Compared with other latest drug–
target interaction prediction methods in the same period,
NeoDTI and DeepDTnet both show superior identification
capabilities. This phenomenon indicates that the combination of
deep learning andheterogeneous networks for drug–target inter-
action prediction is an effective means to improve prediction
performance.

(iii) Feature-based method: Feature-based method is widely
used in the drug–target interaction prediction studies.
This method needs to convert the drug and target data
information into feature vectors. It is possible to extract
drug and target features from various angles. E.g. Protein
features can be extracted based on amino acid composition,
pseudo-amino acid composition, amino acids physical
and chemical properties, protein sequences evolution
information and so on [66–70]. For drug–target interaction
prediction, researchers use different feature extraction and
processing methods to describe drug and target informa-
tion. Tabei et al. [71] combined 881 compound structures of
drugs and 876 Pfam domain structural information of target
proteins using a tensor product approach. LRF-DTIs [72]
used a pseudo position-specific scoring matrix to extract
target information and applies FP2 molecular fingerprints
to obtain drug information. iGPCR-Drug [73] performs
discrete Fourier transform on drug molecular fingerprint
to obtain drug features, and extracts GPCRs features based
on pseudo-amino acid composition. Ru et al. [44] extracted
protein features and drug features based on distance-
based Top-n-gram algorithm and general descriptors of
compounds. Each compound can be represented by a SMILE
sequence, the drug features can also be extracted based on
this sequence. For example, Hirohara et al. [74] converted
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6 Ru et al.

the SMILES string into a two-dimensional matrix and
used a convolutional neural network (CNN) to extract its
features.

II Types of methods according to the form of task type
Existing drug–target interaction prediction studies can be

divided into two types depending on the prediction form [75–
79]: one is to explore whether the drug can interact with
the target, and the other is to explore the degree of drug–
target interaction. Exploring whether the drug can interact
with the target is a binary classification task, and exploring
the degree of drug–target interaction can be regarded as a
regression or ranking task. Figure 5 shows processes of these
tasks.

(i) Classification task: Most current studies take drug–target
interaction prediction as a supervised binary classification
problem. Researchers have introduced a variety of classifi-
cation algorithms to obtain better performance. E.g. Pred-
binding [80] extracts the molecular structure and protein
sequence features, and uses support vector machines and
random forests to classify the docking of drugs and targets.
iDTI-ESBoost [81] uses the AdaBoost algorithm to classify
after extracting features based on the drug molecular fin-
gerprint information and the target evolution and structure
information. Binary classification lays a good foundation for
the initial stage of drug development, but in order to further
accelerate the process of drug development, it is far from
enough to explore whether the drug can interact with the
target.

(ii) Ranking task: Exploring the strength of drug–target inter-
actions, and finding a target (or drug) that has a strong
interaction with the drug (or target) can effectively reduce
the number of downstream biomedical verification experi-
ments, thereby achieving the effect of accelerating process
and saving cost.Drug–target interaction prediction has been
considered as a ranking task, and learning to rank, which
is widely used in information retrieval, is applied to solve
such task. Zhang et al. [82] represented the drug by general
descriptors, and represented the target information by the
amino acid composition, transformation, and distribution,
and then used learning to rank to simultaneously learn the
information under different experimental conditions and
across targets. In addition to extracting features according
to protein sequence information and compound descrip-
tors, DrugE-Rank [83] also extracted features according to
the prediction results of six classifiers, finally produced
drug ranking results by inputting these features into the
learning to rank algorithm. Ru et al. [44] used learning to
rank algorithm to explore the interaction between drugs
and GPCRs.

(iii) Regression task: Learning to rank algorithm outputs
relative relevance of query and document. Therefore, it
only can obtain approximate ranking of the target (or
drug) that interacts with the drug (or target). To get a
continuum of binding strength values, deep learning
approaches have been applied to protein–ligand interaction
scoring. E.g. DeepDTA [84] uses CNN to model protein
sequences and compound 1D representations, and uses
fully connected layers in affinity prediction task. GraphDTA
[85] represents drugs as graphs and uses graph neural
networks to predict drug–target affinity. The procedure of
using deep learning to solve the drug–target interaction
prediction problem can be summarized as shown in
Figure 5B.

Discussion

Compared with molecular docking, one obvious advantage of
machine learning-based approaches is that it does not require
protein 3D structural information. At present,machine learning-
basedmethods have beenwidely used in drug–target interaction
prediction. This review divides these methods according to the
data processing form and task type. Therefore, this chapter
analyzes and summarizes the characteristics of these methods
from different types, and proposes solutions to some existing
problems.

(i) The principle of similarity-based methods is simple and
easy to understand. In process, it does not involve com-
plex procedures of feature extraction and feature selec-
tion. In the future, similarity-based methods may be used
as the underlying technology to obtain useful informa-
tion and be combined with other types of methods to bet-
ter address drug–target interaction prediction problems.
E.g. DrugE-Rank [83] used six cutting-edge similarity-based
methods as component methods, and applied learning to
rank algorithm to predict drug–target interactions. It also
shown that each similarity method has its own unique-
ness and focuses on different points. Therefore, integration-
based models that combine multiple similarities may pro-
vide more accurate results. In principle, similarity-based
method is a direct manifestation of the hypothesis that
‘similar drugs target similar targets and vice versa’, but
in some special cases, this hypothesis is not convincing.
Yamanishi et al. [47] pointed out that some low similarity
target proteins in enzyme can bind to similar drugs.

(ii) Network is a simple data structure. The nodes in the net-
work have rich attribute information. There are complex
information networks among them, and different associa-
tions can be found through statistics and calculation meth-
ods [86, 87]. Compared with a homogeneous network that
only considers one kind of node and one topological rela-
tionship, a heterogeneous network can fuse more informa-
tion and effectively embed the rich structural and semantic
information into a low-dimensional representation [46, 88].
At present, network-based methods have not been widely
used in drug–target interaction prediction, because both
homogeneous and heterogeneous networks require a lot of
prior knowledge, which is difficult to obtain.

(iii) Feature engineering plays a decisive role in machine learn-
ing [89]. Extracting features from one angle cannot accu-
rately and comprehensively describe drug or target infor-
mation, and simple splicing cannot mine deeper informa-
tion. These two are common phenomena for extracting
and processing features in drug–target interaction predic-
tion research. To address the feature engineering problem,
studies should focus on different perspectives to extract
drug and target features. There may be some redundancy
among the features extracted by these different perspec-
tives; therefore, effective feature processing is required.
For example, Ru et al. [44] verified the positive impact of
principal component analysis (PCA) on their research. The
dimensionality of the feature set was reduced after PCA
processing, but the performance of the model built based
on this feature set was improved.This step is currently over-
looked in many drug–target interaction prediction studies.
In addition, it is also necessary to consider the relation-
ship between drug and target features, deep learning and
multi-view learning may be effective tools to explore these
relationships [90].
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Drug–target interaction prediction 7

Figure 5. Processes of classification task, ranking task (A) and regression task (B). In (B), 1©– 4© represent four forms of information input into the deep learning network.

Specifically, forms 1© and 2© both extract features based on protein sequence and drug SMILES, and then input these features into the neural network. The differences

between them are: 1© directly inputs information into the fully connected neural network (DNN) for prediction, and 2© uses the CNN to process the features and then

inputs them into DNN for prediction. Form 3© is to directly use the structural information of proteins and drugs as the input of the deep learning framework. Form 4©

is to directly use the protein sequence and drug SMILES information as the input. Note that the structure diagram of the compound in Part B comes from PubChem.

(iv) Building classification models require four procedures:
dataset acquisition, feature extraction, feature optimization
and optimal classification algorithm selection [91–96].
High-performing models can be obtained by continuously
optimizing these steps. These indicate that more progress
can still be made in classification models. It is important
to consider the credibility of the data when building
classification models. Predicting drug–target interactions
using supervised classification methods requires a certain
number of positive and negative samples, which have high
reliability through experimental validation. At present,
only a small number of experimentally verified samples
are disclosed, and some negative examples used in many
studies have not been experimentally verified, and it cannot
be determined whether they are true negative examples
or unverified potential positive examples. Moreover, the
number of unverified drug–target pairs is much larger
than the number of verified drug–target pairs, which leads
to data imbalance problem. Data credibility can only be
verified by the accumulation of time and experience, but
data imbalance problem can be alleviated with existing
technologies. E.g. Both Wang et al. [97] and Wang et al.

[98] randomly selected negative samples to ensure data
balance. Pdti-EssB [99] uses random under-sampling and
under-sampling clustering. iDTI-ESBoost [81] uses a novel
data balancing technology—cluster based under sampling.
NetLapRLS [61] and NormMulInf [100] directly treat drug–
target interaction prediction as a semi-supervised problem.
In general, data imbalance problem is a key issue that
requires continuous attention.

(v) Learning to rank was originally applied in information
retrieval. Its principle is similar to the process of searching
information on the World Wide Web [101], that is, the
user enters a query, the search engine outputs related
documents, and these documents are ranked in descending
order of relevance. Using the uniqueness of learning to
rank can solve multiple problems in drug–target interaction
prediction: Considering drug–target interaction prediction
as a ranking task successfully circumvents the requirement
of negative samples in classification methods and also
enables to explore which targets have strong interaction
with a drug. As the number of complex diseases increases
year by year, it is imperative to develop effective multi-
target drugs. There is a one-to-many relationship between
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8 Ru et al.

query and document in learning to rank, which can be used
to predict multi-target drugs. Therefore, it is valuable to
apply learning to rank in drug–target interaction prediction.
It is also necessary to pay attention to data imbalance
problem when constructing ranking models, and try to
ensure that the number of documents corresponding to
each query is balanced. Finally, it should be noted that the
output of learning to rank is relative relevance, that is, this
method focuses on order, rather than specific and accurate
relevance.

(vi) Regression tasks can derive specific values, and most of
these tasks rely on deep learning frameworks. The advan-
tage of deep learning lies in the ability to learn complex
relationships between input features and output decisions
from large-scale data [102–110]. Deep learning for exploring
drug–target interactions is still in its infancy, it has already
shown great potential. But this does not mean that this
method is perfect. Deep learning frameworks usually have
many parameters and require multiple optimizations to
train these parameters. Moreover, these frameworks need a
long execution time, andmay also cause over-fitting results.

Conclusion and outlook

In this review, we focus on the applications of machine learning
in drug–target interaction prediction. According to the process-
ing form of drug and target data, the existing studies are divided
into three types: similarity-based, network-based and feature-
based. And according to the task type, they are divided into three
types: classification, regression and ranking. Then, we summa-
rize and analyze the characteristics, shortcomings and aspects
that can be further improved of each type of method. This
review will provide a good guide for future work on drug–target
interaction prediction.

The existing studies not only have achieved good perfor-
mances, but also have focused on in-depth and specific prob-
lems,which are beneficial for drug development and drug repur-
posing. For future work, we propose the following ideas.

(i) Few of the existing drug–target interaction prediction stud-
ies have considered drug–drug interactions. The number of
drug combinations per capita in conventional medical care
is approximately five [111]. Summarizing the experience in
clinical pharmacology, it concluded that drug combinations
may enhance or counteract the efficacy, or may produce
side effect that is detrimental to disease treatment [112].
Moreover, adverse reactions caused by drug–drug interac-
tions are an important reason for the withdrawal of drugs
from the market [113]. Therefore, more attention should be
paid to drug–drug interactions in future drug–target inter-
action prediction studies.

(ii) Although the vast majority of targets are proteins, the inter-
actions between drugs and small molecules [114, 115] (e.g.
miRNAs [116]) also should be considered in the drug devel-
opment process for better treatment of complex diseases.

(iii) Each method has its own advantages and disadvantages.
It is possible to improve prediction performance by com-
bining different methods. The drug and target information
obtained through similarity-based methods and network-
based methods can be input as features into classifica-
tion, ranking or regression algorithms, which may improve
the performance of the models. For example, NeoDTI and
DeepDTnetmodels constructed by combining deep learning

methods and network methods, and DrugE-Rank model
combining similarity methods and ranking methods, all
show excellent performance. Similarly, other different com-
binations of these methods may also lead to good perfor-
mance.

Key Points

• Computer technologies have been widely used in
the drug–target interaction prediction. Particularly,
machine learning has attracted intensive interest.

• The specific applications, which are predicting drug–
target interaction through machine learning, can be
divided into multiple types according to the data pro-
cessing form and task type.

• Different types of methods have their own character-
istics. These methods focus on different content and
have different steps to deal with problems.

• For future work, this review concludes that combining
differentmethods is an effectivemeans to improve the
prediction performance of drug–target interactions.
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