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Abstract

Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many
analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used
methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating
datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper
methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool
developers.
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INTRODUCTION
As a fast-growing technology, single-cell RNA sequencing
(scRNA-seq) offers the detection of gene expression at the single-
cell level, which allows researchers to perform research at the
single-cell level instead of at the organism level [1–3]. Over the
last decade, scRNA-seq technology has shown great power in
uncovering unexpected biological discoveries, revealing new cell
types and investigating disease development [4–10]. However,
due to the low amount of mRNA in a single cell and the technical
noise introduced during different protocols, scRNA-seq data are
generally noisy [11, 12]. Therefore, scRNA-seq data usually have
the characteristic of ‘high-dimensional’ and ‘large numbers of
zeros’ [13]. Staring from a sparse and noisy counts or unique
molecular identifiers (UMIs) matrix, distinguishing the technical
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noise from true biological difference is crucial for revealing
interesting information [14, 15]. To better utilize this powerful
technology, several user-friendly analysis pipelines (e.g. Seurat
[16, 17] and SCANPY [18]) have been developed for analysis
and achieve relatively good performance; however, due to the
complexity of scRNA-seq data, alternative tools may help us
obtain interesting findings. Moreover, the explosion in data
analysis tools developed for scRNA-seq data has made it hard
for users to choose the proper workflow for their study [19–21].

In our previous work, we reviewed the goals and approaches
for processing scRNA-seq data from raw data [22]. In this review,
we summarize popular methods for critical steps of downstream
analyses (i.e. clustering, trajectory inference, cell-type annota-
tion and integrating datasets) for scRNA-seq data. Specifically,
we focus on the methods that are either most widely used or
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show great performance, as demonstrated in related benchmark
papers. In each following section, we first discuss the goals and
precautions for each step overall and then elaborate on the
advantages and limitations of different popular methods. Finally,
we provide suggestions for how to choose proper methods in
different situations.

PIPELINE FOR ANALYSING scRNA-seq
TECHNOLOGY
The whole pipeline of scRNA-seq technology analysis is shown
in Figure 1. Owing to the noisy character of scRNA-seq data,
data processing steps are generally important; however, elabo-
ration for this part of the analysis is beyond the scope of this
review, and we recommend that readers refer to these articles
for further information [22–25]. In this review, we focus on down-
stream analysis, including clustering, trajectory inference, cell-
type annotation and dataset integration. As shown in Figure 1,
we divide popular methods into several categories for better
discussion. In each section, we provide our perspectives for
choosing proper tools in different situations.

QUALITY CONTROL AND DIFFERENTIAL GENE
EXPRESSION ANALYSIS
Single-cell RNA sequencing data are well-known for their char-
acteristic of sparse and noisy. Generally, this may lead to two
problems for downstream analysis. Firstly, as most of the low-
quality cells have extremely low expression values across all
genes, they have a high chance to form a cluster during down-
stream analysis due to their similar expression pattern. There-
fore, this can give us an erroneous indication that they belong to
a new cell type or subtype. Secondly, cells with low expression
values across all genes are very sensitive to noise, which can
lead to substantial impacts on dimension reduction [22]. Conse-
quently, performing quality control before downstream analysis
is essential for analysing single-cell data, and we recommend
the readers to refer to the cited references at the end of this
sentence for more details [23, 25, 26].

Differential gene expression analysis is a common task for
scRNA-seq data. Although approaches developed for bulk-cell,
such as DESeq2 [27], edgeR [28] and limma [29], are still in current
use, scRNA-seq data have many different characteristics (e.g.
higher level of noise and larger amount of zero counts) requiring
new developed methods. The most popular tool Seurat utilizes
a popular nonparametric test named Wilcoxon rank sum test
as default method to perform differential expression tests by
‘FindMarkers’ function [16, 30]. As the first differential expres-
sion analysis designed for single-cell data, single-cell differential
expression uses a mixture probabilistic model for expression
gene values, specifically, a negative binomial distribution for
normal genes and a passion distribution for dropout genes [31].
Taking dropouts and binodal expression patterns into account,
model-based analysis of single-cell transcriptomic proposed a
two-part generalized linear model while modelling changes of
gene expression upon technical noise [32]. Another popular
tool named beta-Poisson model for the single-cell gene expres-
sion data utilizes beta-Poisson mixture model for capturing the
bimodality of single-cell data [33]. Although many approaches
exit for differential expression analysis, a comprehensive bench-
mark conducted by Soneson et al. [34] found that most of these
popular methods showed similar results, and even the bulk
RNA-seq analysis approaches generally perform well.

CLUSTERING
Generally, downstream analysis of scRNA-seq data starts with
a clustering step. The main goal of clustering is to find discrete
cell types using similar expression patterns across different cells
(of note, the clusters are different from the cell types, and we
further discuss this question in the following chapter) [19]. This
is carried out computationally by unsupervised learning with-
out using any prior knowledge; however, the trickiest question
in this step is to decide the best number of clusters. Strictly
speaking, the answer would be ‘there is no best cluster number’,
and we can even say that ‘there is no best cell type number’ for
specific scRNA-seq data. The reason is that researchers may just
want to get to know the major cell types in some circumstances,
while they may be interested in the subtypes or even de novo
subtypes in other circumstances.

The most popular clustering methods for scRNA-seq data are
shown in Table 1. The clustering algorithm chosen by Seurat is
graph-based clustering. The greatest advantage of graph-based
clustering over other clustering methods is scalability, which
is significantly important for scRNA-seq data analysis due to
the growth of cell numbers in recent years. By treating each
cell as a node, a graph can be built by finding the k-nearest
neighbour for each node. The edges in the graph represent
the similarity relationships between the cells. The main draw-
back of this clustering algorithm used in Seurat is that the
result is relatively sensitive to the parameter (resolution), and
the default algorithm (Louvain method [35]) may generate false
clusters in some cases. Similarly, another popular R package,
scanpy [18], also utilizes the Louvain algorithm for clustering.
However, both Seurat and scanpy perform poorly when dealing
with small datasets. As a terrific graph-based denoising method,
MAGIC (Markov Affinity-based Graph Imputation of Cells) is
also often utilized for data visualization and clustering [36, 37].
MAGIC learns the manifold of high dimensional data and uses
graphs for smoothing. As the easiest and most popular clus-
tering method, k-means [38] clustering is famous for its fast
computational speed. However, determining the number of k
remains a challenge to reveal biologically meaningful clusters.
To overcome these drawbacks, SC3 [39] performs k-means clus-
tering several times with different initial values and obtains the
consensus as the final result. In addition, k-means clustering is
extremely sensitive to outlier cells. Therefore, low-quality data
and doublets should be thoroughly excluded before performing
k-means clustering. Based on this problem, by detecting outliers
first before performing k-means clustering, RaceID [9] shows
great performance in rare cell-type identification. Hierarchical
clustering tries to build a hierarchy of clusters using either a
‘bottom-up’ or a ‘top-down’ approach. One advantage of this
method compared with graph-based and k-means clustering
is that it is deterministic. Nevertheless, because of the high
computational complexity, hierarchical clustering could only be
used to analyse very small scRNA-seq datasets. CIDR [40] takes
dropout events into consideration and performs hierarchical
clustering after dimensionality reduction by principal coordi-
nates analysis (PCoA). TSCNA (Time reconstruction in Single-Cell
RNA-seq ANalysis) is a model-based clustering approach which
utilizes a mixture of multivariate normal distributions of single-
cell data, and the posterior probability is calculated for assigning
cells to clusters [41]. Another type of clustering is based on
regulation network, which is chosen by popular tool SCENIC [42].
SCENIC has shown its great performance for transcription factor
analysis, which is especially useful for facilitating researchers to
find key genes for diseases.
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Critical downstream analysis steps 3

Figure 1. General pipeline of single-cell RNA sequencing analysis. The analysis generally started from count or UMIs matrix. Due to the noisy characteristics of

single-cell data, the matrix firstly needs to be processed by quality control, normalization, feature selection and dimension reduction.

As clustering is extremely important for the further analysis,
we conducted a benchmark work including the approaches men-
tioned above. We collected five high-quality single-cell datasets
containing both human and mouse samples (i.e. Darmanis data
[43], Kolodziejczyk data [44], Li data [45], Deng data [46] and
Goolam data [47]). Cell-type labels provided by the authors were
treated as ground truth, and then, we calculated the adjusted
rand index (ARI) between the clustering result from each method

and the ground truth [48]. ARI penalizes both false positive and
false negative decisions, where a larger ARI value means a higher
agreement between two clusters. The maximum ARI value is 1,
and the minimal value is 0 in the case of random clusters.

The comparison results were shown in Figure 2 and
Supplementary Table 1, see Supplementary Data available
online at http://bib.oxfordjournals.org/. Figure 2 showed that
overall SC3 showed highest score of ARI, followed by the widely

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/5/bbab105/6210064 by guest on 13 Septem

ber 2023

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab105#supplementary-data


4 Zhang et al.

Table 1. Clustering methods for single-cell RNA sequencing data

Method Category Description Availability Refs

Seurat Graph-based As the most popular R package for single-cell
sequencing data analysis pipeline, Seurat utilized
Louvain method for clustering.

https://satijalab.org/seurat/ [16, 17]

Scanpy Graph-based A python package also widely used for single-cell
data analysis, which utilizes Louvain algorithm for
clustering.

https://scanpy.readthedocs.io/e
n/stable/

[18]

SC3 k-means Performs k-means clustering several times with
different initial values and obtains the consensus
as the final result. In addition, k-means clustering
is extremely sensitive to outlier cells.

http://bioconductor.org/packa
ges/release/bioc/html/SC3.
html

[39]

RaceID k-means Shows great performance in rare cell-type
identification. Hierarchical clustering tries to build
a hierarchy of clusters using either a ‘bottom-up’
or a ‘top-down’ approach.

https://github.com/dgrun/Ra
ceID

[9]

TSCNA Model-based Utilizes a mixture of multivariate normal
distributions of single-cell data, and the posterior
probability is calculated for assigning cells to
clusters

https://github.com/zji90/TSCA
N

[41]

CIDR Hierarchical Takes dropout events into consideration and
performs hierarchical clustering after
dimensionality reduction by PCoA.

https://github.com/VCCRI/CIDR [40]

SCENIC Regulation network Has shown its great performance for transcription
factor analysis, which is especially useful for
facilitating researchers to find key genes for
diseases.

https://github.com/aertslab/
SCENIC

[42]

used package Seurat. We found that our results are consistent
with studies conducted by Duò et al. [37], who also got the
conclusion that SC3 and Seurat showed the most favorable
results.

In summary, as the first step for downstream analysis of
scRNA-seq data, clustering is significantly important for uncov-
ering biologically meaningful information from gene expression
data. Generally, no clustering method can perform well in all
circumstances [49]. We recommend that biological users employ
SC3 and the Louvain method integrated in Seurat or scanpy in
most situations while choosing hierarchical clustering methods
(e.g. CIDR and BackSPIN) for small datasets.

TRAJECTORY INFERENCE
Unlike the underlying discrete status assumed in clustering, in
some situations, the cellular state can be treated as a contin-
uum of dynamic changes [25]. Trajectory inference can provide
tremendous benefits for understanding the cell cycle, cell-type
differentiation and cell activation [50, 51]. The ‘pseudotime’ gen-
erally used for trajectory analysis is just a number that describes
the position of a cell thorough the trajectory, while branched
trajectories consist of multiple pseudotimes thorough different
trajectories. Ideally, the trajectory can be interpreted as cellu-
lar states one after another. Marker-based methods utilized in
conventional bulk RNA sequencing are insufficient for cell-level
resolution [52]; consequently, approaches tailored for single-cell
data are needed.

To date, more than 70 tools are available for trajectory anal-
ysis of scRNA-seq data [53]; hence, choosing the proper method
is challenging (Table 2). Many trajectory methods are designed
based on dimension reduction. Monocle [54] tries to build a
minimum spanning tree (MST) based on the reduced dimensions
(independent component analysis) of gene expression data and

then finds the longest path as ‘pseudotime’ (i.e. the relative posi-
tion of a cell in the trajectory). Partition-based graph abstraction
(PAGA) [55] is a tree-based algorithm that estimates the connec-
tivity between clusters by generating a graph-like map where
each node represents one cluster and each edge represents a
neighbourhood relation. PAGA showed great performance on
dealing with the so-called ‘short circuiting’ with a relatively fast
running speed [53]. Slingshot [56] is also a tree-based method
such as Monocle; besides utilizing a cluster-based MST like
other tree-based methods, Slingshot then fits smooth branching
curves to global lineages to obtain cell-level pseudotime. Similar
to Slingshot, pseudotime reconstruction in single-cell RNA-seq
ANalysis (TSCAN) [41] employs a cluster-based MST approach
for ordering, while the MST is built on cluster centroids instead
of individual cells. Monocle 3 [57] uses the dimension reduction
method UMAP [58] to initialize trajectory inference and then
utilizes graph theory to learn a principal in a dynamic process
to refine the trajectory inference result. SCOEPIUS [59] iteratively
refines the shortest path through cluster centroids for the low-
dimensionality data (the dimensions are reduced by multidi-
mensional scaling) and then identifies the key genes using the
prediction score of ordering by the random forest algorithm
[60]. Tempora [61] is a newly presented method for novel cell
trajectory inference that shows great performance, while prior
information for time-series data is available. PHATE (Potential
of Heat-diffusion for Affinity-based Trajectory Embedding) uses
an affinity-preserving embedding method for visualizing high-
dimensional biological data, which is famous for both keeping
the global and local information of the input data [62]. Another
interesting method using RNA abundance as an indicator needs
to be mentioned is RNA velocity [63]. By calculating the propor-
tion of unspliced mRNA and spliced mRNA in each single cell,
the state of mRNA change (i.e. the time derivative of the gene
expression state) for each cell could be estimated. The advantage
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Figure 2. Boxplot of ARI score for different clustering methods.

of RNA velocity is that it treats the state of each single cell
differentiation as a vector, which is theoretically more accurate
than just estimating the starting point and ending point of cell
differentiation [64].

Trajectory inference has shown great power in taking full
advantage of single-cell RNA-seq technology to uncover gradual
changes in cell differential processes and could also be used to
reveal the mechanisms of the cell cycle and the immune activa-
tion system [12, 65, 66]. A comprehensive benchmark presented
by Saelens et al. [53] has been treated as a guideline for choosing
trajectory inference tools for scRNA-seq data. According to their
work, although Monocle is the most classical and most widely
used, the overall best performance (considering accuracy, scala-
bility, stability and usability) is provided by PAGA, Slingshot and
SCOEPIUS.

CELL-TYPE ANNOTATION
Clustering can group cells into different clusters based on
computational algorithms; yet, the clusters have no biological
insights. Identifying cell types for each cluster is one of the most
challenging and time-consuming steps in the pipeline of scRNA-
seq data analysis. As we mentioned earlier, even the concept of
‘cell type’ is controversial since many cell types can be further
divided into more subtypes. Hence, the correct answer to cell-
type annotation also changes, as researchers want to interpret
their data. The current most widely used method for cell-type
annotation is annotating manually by finding the marker genes
in the dataset and then matching them to canonical cell-type
markers. Obviously, this method is time-consuming and relies
heavily on prior biological knowledge.

To overcome these inconveniences, various automatic anno-
tation tools have been developed (Table 3). Generally, these tools

can be grouped into two categories: reference-based and marker-
based. SingleR [67] is one of the most widely used reference-
based tools for annotation. Essentially, SingleR conducts the
labelling process in three steps. First, SingleR downloads a ref-
erence scRNA-seq dataset with cell-type labels and identifies
marker genes based on the fold change. Then, it calculates
Spearman’s correlation coefficient between cells to be iden-
tified and cells with labels. Last, SingleR eliminates the cell
type with the least correlation score and iteratively repeats the
previous steps until only one cell type remains. scMAP [68]
first utilizes the feature selection M3Drop [69] method to find
highly variable genes (HVGs) and then calculates the similarities
between new cells and reference cells. scPred [70] leverages
orthogonalization and dimensionality reduction of expression
values to generate a support-vector machine (SVM) model for
prediction [71]. Another reference-based method, scMatch [72],
instead of annotating after clustering, directly annotates single
cells by identifying the best match in the reference datasets.
SingleCellNet is another reference-based method, which utilizes
multi-class random forest algorithm for cell-type annotation
[73]. In addition, the classical classification method SVM also
showed great performance for cell identification according to
the terrific benchmark study by Abdelaal et al. [74, 75]. The
other category of automatic tools is proposed based on prior
knowledge of marker genes. Cellassign [76] utilizes prior cell-
type marker genes to build a probabilistic model for annotation.
Similarly, SCSA [77] combines the prior knowledge of marker
genes and user-defined information to annotate cell types based
on an annotation model.

Due to the significant roles of canonical marker genes play
in cell annotation, it is worth summarizing useful marker genes
resources. CellMarker database was developed by Zhang et al.
in 2019, which has become the most popular marker gene
database for cell annotation [78]. Another famous single-cell
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Table 2. Trajectory inference methods for single-cell RNA sequencing data

Method Category Description Availability Refs

Monocle Tree-based Tries to build a MST based on the reduced dimensions
(independent component analysis) of gene expression
data and then finds the longest path as ‘pseudotime’.

http://cole-trapnell-lab.githu
b.io/monocle-release/

[54, 57]

PAGA Tree-based A graph-based algorithm that estimates the
connectivity between clusters by generating a
graph-like map where each node represents one
cluster and each edge represents a neighbourhood
relation.

https://github.com/theislab/pa
ga

[55]

Slingshot Tree-based Besides utilizing a cluster-based MST like other
tree-based methods, Slingshot then fits smooth
branching curves to global lineages to obtain cell-level
pseudotime.

https://github.com/kstreet13/
slingshot

[56]

TSCAN Linear-based Employs a cluster-based MST approach for ordering,
while the MST is built on cluster centroids instead of
individual cells.

https://github.com/zji90/TSCA
N

[41]

SCOEPIUS Linear-based Iteratively refines the shortest path through cluster
centroids for the low-dimensionality data and then
identifies the key genes using the prediction score of
ordering by the random forest algorithm

https://github.com/rcannood/
SCORPIUS

[59]

Tempora Biological
pathway-based

A newly presented method for novel cell trajectory
inference that shows great performance, while prior
information for time-series data is available.

https://github.com/BaderLab/
Tempora

[61]

PHATE Affinity-based Uses an affinity-preserving embedding method for
visualizing high-dimensional biological data, which is
famous for both keeping the global and local
information of the input data.

https://github.com/Krishnaswa
myLab/PHATE

[62]

Table 3. Cell-type annotation methods for single-cell RNA sequencing data

Method Category Description Availability Refs

SinlgeR Reference-based Downloads a reference scRNA-seq dataset with
cell-type labels and identifies marker genes based
on the fold change. Then, it calculates Spearman’s
correlation coefficient between cells to be identified
and cells with labels. Last, SingleR eliminates the cell
type with the least correlation score and iteratively
repeats the previous steps until only one cell type
remains.

https://github.com/dviraran/Si
ngleR

[67]

scMAP Reference-based Utilizes the feature selection M3Drop method to find
HVGs and then calculates the similarities between
new cells and reference cells.

https://github.com/hemberg-la
b/scmap

[68]

scPred Reference-based Leverages orthogonalization and dimensionality
reduction of expression values to generate an SVM
model for prediction.

https://github.com/powellgeno
micslab/scPred

[70]

scMatch Reference-based Directly annotates single cells by identifying the best
match in the reference datasets.

https://github.com/asrhou/
scMatch

[72]

SingleCellNet Reference-based Utilizes multi-class random forest algorithm for
cell-type annotation.

https://github.com/pcahan1/si
ngleCellNet

[73]

Cellassign Marker-based Utilizes prior cell-type marker genes to build a
probabilistic model for annotation.

https://github.com/Irrationo
ne/cellassign

[76]

SCSA Marker-based Combines the prior knowledge of marker genes and
user-defined information to annotate cell types
based on an annotation model.

https://github.com/bioinfo-i
bms-pumc/SCSA

[77]

sequencing database, PanglaoDB, also provides a large amount
of maker genes information in addition to single-cell dataset
[79]. Han et al. [80] constructed a comprehensive single-cell atlas
named human cell landscape (HCL) provided useful resource
including marker genes and data reference for human biology.
The well-known biological research institution, Broad Institute,

developed Single Cell Portal (SCP) which could be used for cell
annotation based on searching genes. Moreover, the European
Bioinformatics Institute (EMBL-EBI) also provided similar single
cell expression atlas like SCP for cell annotation. All the data
resources listed above and their official websites were shown in
Table 4.
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Table 4. Popular data resources for cell-type annotation

Database Websites

CellMarker http://biocc.hrbmu.edu.cn/CellMarker/
PanglaoDB https://panglaodb.se/
HCL http://bis.zju.edu.cn/HCL/
Single Cell
Portal

https://singlecell.broadinstitute.org/single_cell

EMBL-EBI https://www.ebi.ac.uk/gxa/sc/experiments

Taken together, although many automatic annotation tools
have already been developed, there is still an urgent need for
new tools to be developed with better accuracy. Manual cell-
type annotation has become the most time-consuming step
in single-cell data analysis. Although various automatic anno-
tation tools have been developed, the results obtained from
both reference- and marker-based methods are still not quite
accurate [74]. Therefore, to guarantee the accuracy of cell-type
annotation, manual assignment is still necessary. More impor-
tantly, no matter reference- and marker-based automatic anno-
tation tools require priori biological knowledge, which would
be impossible for identifying new cell types. Consequently, for
now, we would recommend that single-cell data analysts utilize
automatic tools, such as SingleR and Cellassign, as auxiliary
tools to save some time while checking the results by manual
confirmation.

INTEGRATING DATASETS
With the rapid development of scRNA-seq technology, a large
amount of scRNA-seq data has accumulated [81]. However, how
to integrate these data across different batches or different
experiments is a complex question due to batch effects [82, 83].
Batch effects generally refer to the gene expression values in
one batch differing systematically from gene expression val-
ues in another batch, which may be caused by several factors,
such as different cell dissociation protocols, reagent quality,
operators or technology platforms [84–86]. Linear computational
tools developed for bulk RNA sequencing and microarray data
such as sva [87] and limma [29] have been utilized for batch
correction of scRNA data; however, these tools are based on
the assumption that different batches have identical cell com-
positions, which is incorrect in most scRNA-seq data due to
‘dropout events’ or amplification bias [26]. In addition to defining
the transcriptome, single-cell sequencing technologies can also
define the epigenome [88–91], proteome [92–95] and genome [96–
98]. Integrative analysis of multimodal data (i.e. single-cell tran-
scriptomics, epigenomics, proteomics and genomics sequencing
data) enables a comprehensive understanding of cellular and
regulatory processes [81]. For example, CITE-seq [99] can simul-
taneously obtain transcriptional modules and surface protein
markers within a single cell. In this case, surface protein markers
could be complementary information for distinguishing com-
plex cell groups (e.g. memory and regulatory subsets of T cell
groups).

As such, many methods tailed for scRNA-seq have been
developed for integration (Table 5). Mutual nearest neighbours
(MNNs) correction [100] identifies MNN pairs between datasets
and uses this information to compute the batch effect. The MNN
algorithm assumes that the batch effect is orthogonal to the bio-
logical difference, which makes the MNN model more reasonable
than the linear model, as in high-dimension space, most random

vectors are orthogonal. However, finding the neighbours in such
high-dimension space requires huge computational resources.
Moreover, another limitation of this method is that it is hard
to identify MNNs with strong batch effects in the scRNA-seq
data. Consequently, FastMNN [101] is often used in practice due
to its shorter running time, which is achieved by performing
dimension reduction before finding neighbours. Another widely
known method, MultiCCA [16], which employs canonical correla-
tion analysis (CCA) [102], is implemented in the popular R toolkit
Seurat V2. Harmony [103] projects high-dimensional data into
a subspace by PCA and iteratively corrects the batch effect by
maximizing the diversity of batches of similar cells within each
cluster. Accompanied by the rapid development of multimodal
profiling technologies, there is an urgent need for computational
approaches to integrate these data. In Seurat V3 [17], CCA is
utilized to generate a subspace, and MNNs are then calculated
as ‘anchors’ to correct the batch effect. In the latest version
of Seurat (V4) [104], weighted nearest neighbour (WNN) was
proposed by utilizing unsupervised strategy to define cellular
state with the weighted combination of each modalities. LIGER
[105] employs integrative nonnegative matrix factorization to
obtain shared and dataset-specific factors, which are further
utilized for clustering and identifying cells by matching to a
reference dataset.

In summary, with the rapid development of protocols and
lower cost, single-cell technology has been preferred in many
laboratories in multiomics studies. Consequently, integrating
these datasets seems promising. By gathering the results of
several benchmark works for single-cell data integration [81,
84, 106, 107], we conclude that, in addition to the popular R
package Seurat, the newly developed tools Harmony and LIGER
are also alterative choices that show great results during data
integration.

OUTLOOK
In addition to the maturity of scRNA-seq technology, sequencing
protocols for the epigenome, proteome and genome at single-
cell resolution are developing rapidly. Since obtaining multi-
omics information could provide us with a much more com-
prehensive view of the cell, further technological progress in
multimodal profiling simultaneously within a single cell is likely
to be made in the next few years. Correspondingly, computation
methods intended for analysing multiomics data are also likely
to appear.

Recently, single-nuclei RNA sequencing (snRNA-seq) has
become more and more popular. The advantage of snRNA-seq
is that it extracts nuclei instead of integrated cells, meaning
that it can be utilized to samples that are hard-to-dissociate or
frozen [108]. The main difference between processing snRNA-
seq data and scRNA-seq data may be the importance of using
mitochondrial proportion for quality control since nuclei should
not contain any mitochondrial [109]. As the computational
analysis of snRNA-seq data is very similar to scRNA-seq for
downstream analysis, tools mentioned above could be used for
snRNA-seq analysis directly [25].

Single-cell RNA sequencing has shown great effects in
revealing cell heterogeneity; however, positional information
is generally missing. To overcome this issue, combining spatial
transcriptomics with scRNA-seq seems extremely promising.
Although spatial methods have achieved several results, there
are still many limitations, such as throughput and spatial
resolution [110–112]. We believe that in the near feature, spatial
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Table 5. Integrating datasets methods for single-cell RNA sequencing data

Method Category Description Availability Refs

MNN cor-
rection

Between different
scRNA-seq datasets

Identifies MNN pairs between datasets and uses
this information to compute the batch effect. The
MNN algorithm assumes that the batch effect is
orthogonal to the biological difference, which
makes the MNN model more reasonable than the
linear model, as in high-dimension space, most
random vectors are orthogonal.

https://github.com/MarioniLa
b/MNN2017/

[100]

FastMNN Between different
scRNA-seq datasets

Is often used in practice due to its shorter running
time, which is achieved by performing dimension
reduction before finding neighbours.

https://marionilab.github.io/Fu
rtherMNN2018/theory/descri
ption.html

[101]

MutiCCA Between different
scRNA-seq datasets

Employs CCA, which is implemented in the
popular R toolkit Seurat V2.

https://satijalab.org/seurat/ [16]

Harmony Between different
scRNA-seq datasets

Projects the high dimensional data into a subspace
by PCA and iteratively correct batch effect by
maximizing the diversity of batches of similar cells
within each cluster.

https://github.com/immunoge
nomics/harmony

[103]

Seurat V3
and
Seurat V4

Between
multimodal datasets

Seurat V3 utilizes prior cell-type marker genes to
build a probabilistic model for annotation, while
Seurat V4 proposes WNN algorithm.

https://satijalab.org/seurat/ [17,
104]

LIGER Between
multimodal datasets

Employs integrative nonnegative matrix
factorization to obtain shared and dataset-specific
factors, which are further utilized for clustering
and identifying cells by matching to a reference
dataset.

https://github.com/welch-lab/li
ger

[105]

transcriptomics would play a more important role in better
utilizing single-cell sequencing technology.

Key Points
• This paper summarized popular approaches of crit-

ical steps (clustering, trajectory inference, cell-type
annotation and integrating datasets) for downstream
analysis of single-cell RNA sequencing data.

• All methods were grouped into several categories
for better discussion, and advantages and limitations
were further discussed.

• We provided our suggestions for how to choose proper
tools in different situations, and URLs for all the tools
mentioned in this paper are also given.

• This paper could also be beneficial for bioinformatic
tool developers who aim to develop new tools for
single-cell sequencing data.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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