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Abstract
Motivation: Numerous high-accuracy drug–target affinity (DTA) prediction models, whose performance is heavily reliant on the drug and target
feature information, are developed at the expense of complexity and interpretability. Feature extraction and optimization constitute a critical step
that significantly influences the enhancement of model performance, robustness, and interpretability. Many existing studies aim to comprehen-
sively characterize drugs and targets by extracting features from multiple perspectives; however, this approach has drawbacks: (i) an abundance
of redundant or noisy features; and (ii) the feature sets often suffer from high dimensionality.

Results: In this study, to obtain a model with high accuracy and strong interpretability, we utilize various traditional and cutting-edge feature se-
lection and dimensionality reduction techniques to process self-associated features and adjacent associated features. These optimized features
are then fed into learning to rank to achieve efficient DTA prediction. Extensive experimental results on two commonly used datasets indicate
that, among various feature optimization methods, the regression tree-based feature selection method is most beneficial for constructing models
with good performance and strong robustness. Then, by utilizing Shapley Additive Explanations values and the incremental feature selection ap-
proach, we obtain that the high-quality feature subset consists of the top 150D features and the top 20D features have a breakthrough impact on
the DTA prediction. In conclusion, our study thoroughly validates the importance of feature optimization in DTA prediction and serves as inspira-
tion for constructing high-performance and high-interpretable models.

Availability and implementation: https://github.com/RUXIAOQING964914140/FS_DTA.

1 Introduction

In drug–target interaction research, wet experiments have
been complemented by computational methods due to time
and resource constraints (Chen et al. 2016). A variety of com-
putational concepts and methods have been applied to drug–
target affinity (DTA) prediction and have achieved progres-
sive results (Yamanishi et al. 2010, Chen et al. 2018, Huang
et al. 2021, Chen et al. 2023a). Upon summarizing the char-
acteristics of existing methods, we find that suboptimal per-
formance can be attributed to two main factors: (i) the
sparsity of samples, an inherent obstacle that cannot be imme-
diately overcome or resolved in the short term within this re-
search topic; and (ii) inappropriate design of various steps
during the model construction. Consequently, most studies
concentrate on aspects of design and model construction that
can be improved through human intervention (Mei et al.
2013, Pahikkala et al. 2015, Luo et al. 2017, Wang and Zou
2021, Zeng et al. 2021, Ru et al. 2022, Yuan et al. 2022,
Chen et al. 2023b).

The process of building a machine-learning model for DTA
prediction can be divided into four steps: data collection and
processing, feature extraction and optimization, learner selec-
tion, and model training and testing. Feature extraction and

optimization is an important step that has a significant impact
on improving model performance, enhancing robustness, and
increasing interpretability. Many existing studies aim to com-
prehensively characterize drugs and targets by extracting fea-
tures from multiple perspectives, but this approach has its
drawbacks: (i) inevitable information overlap between differ-
ing perspectives may lead to an abundance of redundant or
noisy features; and (ii) feature sets extracted from multiple
perspectives tend to have high dimensionality, which requires
more storage space and potentially leads to the curse of di-
mensionality or overfitting of the training data.

In this study, we first extract self-associated features (SAFs)
and adjacent-associated features (AAFs) of drugs and targets
based on their similarity and sharing properties. Then, SAFs
and AAFs are optimized by eliminating low-variance features
and employing methods, such as Principal Component
Analysis (PCA), Least Absolute Shrinkage and Selection
Operator (Lasso), ivis, XGBoost, LightGBM, and Catboost.
Subsequently, the optimized feature sets are input into a learn-
ing to rank (LTR) algorithm—multiple Additive Regression
Tree (MART) for DTA prediction. The overall architecture of
this study is illustrated in Fig. 1. Extensive experiments on
two widely used datasets show that XGBoost, LightGBM,
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and Catboost are most effective methods for achieving good
performance and strong robustness.

To enhance the model’s interpretability and inspire future
research, we assess feature importance based on Shapley
Additive Explanations (SHAP) values, and find that the top
150D features constitute the high-quality feature set and the
top 20D features have a breakthrough impact on the DTA
prediction for two datasets through the incremental feature
selection (IFS) approach. Furthermore, we observe the com-
mon features appearing in the top 20 features ranked by
XGBoost, LightGBM, and Catboost, and analyze the type of
these features. It can be concluded that different types of fea-
tures exhibit distinct performances under different circum-
stances, but both AAFs and SAFs positively influence model
performance.

2 Materials and methods

2.1 Feature extraction

AAFs and SAFs are extracted according to the drug–drug sim-
ilarity, drug–drug sharing, protein–protein similarity, pro-
tein–protein sharing, and drug–protein binding affinity
information. Drug–drug similarity is the 2D chemical struc-
ture similarity calculated with the structure clustering server
at PubChem. Protein–protein similarity is the sequence simi-
larity represented by the normalized Smith–Waterman [16]
value. Drug–drug sharing is the number of shared targets be-
tween two drugs. Protein–protein sharing is the number of
shared drugs between proteins.

The representation and source of SAFs are as follows:

SAF ¼ @i�bi�c1f g: (1)

And,

@1; @2; @3; @4; @5j@i 2 fi½S�
� �

; (2)

b1;b2; b3; b4; b5; b6; b7�11; b12�16jbi 2 fi½A��
� �

; (3)

c1jc1 ¼
Pm

n¼1
a1n

.
m
; a1n 2 A

� �
: (4)

Where S represents the similarity matrix between drugs or
between targets, A represents the affinity matrix between
drugs and targets, A� represents the matrix obtained after re-
moving unknown affinity elements from A. fi represents a
function that obtains special values of a set. @1–@5 represent
the mean, 50th percentile, 75th percentile, 85th percentile,
and 95th percentile of the elements in the S, respectively.
b1–b6 represent the mean, count, mode, 25th percentile, 50th
percentile, and 75th percentile of the elements in the A�, re-
spectively. b7�11 represent the higher five affinity values, re-
spectively. b12�16 represent the lower five affinity values,
respectively.

AAFs are features of the target object that are derived from
the SAFs of its neighbors. There are two ways to obtain neigh-
bors: (i) drugs or targets that exhibit a level of similarity or
sharing with the target object that exceeds a predefined
threshold. (ii) The top 5 drugs or targets with the utmost simi-
larity to the target object, as well as the top 5 drugs or targets
most similar to each of these five drugs or targets.

2.2 Feature optimization

In this study, various feature selection and dimensionality re-
duction techniques are employed to optimize the initially
obtained feature set, including commonly used technique like
PCA, a deep learning-based tool like ivis, and several
regression-based methods, such as LASSO, XGBoost,
LightGBM, and Catboost. Notably, XGBoost, LightGBM,
and Catboost are GBDT variants that adopt an underlying
principle: a strong learner is formed by integrating multiple
weak learners.

Figure 1. The overall architecture of this study.
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2.2.1 GBDT
GBDT, a classic version of the gradient boosting algorithm,
operates on iteratively enhancing predictive accuracy by inte-
grating multiple decision trees. Each constituent tree is con-
structed in response to the residuals produced by its
immediate predecessor, with the ultimate prediction being the
cumulative sum of predictions made by all regression trees
(Ye et al. 2009, Rao et al. 2019).

The CART algorithm is the base learner in GBDT. A regres-
sion CART tree Tðx; hÞ can be defined as follows (Rao et al.
2019, Liang et al. 2020)

T x; hð Þ ¼
XJ

j¼1
cjI x 2 Rj
� �

; (5)

where J represents the leaf node tree, cj denotes the predicted
value output by the regression tree, I stands for the event
function, and Rj represents the set of predicted values of the
leaf nodes.

Given fxi; yigN
i¼1 denotes the features xi and label yi of the

samples, where N represents the number of samples. The cal-
culation process of GBDT can be described as follows:

firstly, the initial tree f1ðxÞ, which is obtained by directly fit-
ting the target value using the regression tree, is defined as fol-
lows (Rao et al. 2019, Liang et al. 2020):

f1 xð Þ ¼ argmin
c

XN

i¼1
L yi; cð Þ; (6)

where L is the loss function, and c is the initial constant value.
Then, the second to m-th regression trees are obtained

through iterative training. The training objective for each tree
is computed during this process in the following manner (Rao
et al. 2019, Liang et al. 2020):

rmi ¼ yi � fm�1 xið Þ ¼ �
�
@L yi; f xið Þ
� �
@f xið Þ

	
f xð Þ¼fm�1 xð Þ

: (7)

The regression tree at the m-th iteration is defined as fol-
lows (Rao et al. 2019, Liang et al. 2020):

fm xð Þ ¼ fm�1 xð Þ þ Tm x; hmð Þ
¼ fm�1 xð Þ �

XJ

j¼1
cmjI x 2 Rmj

� �
; (8)

and Rao et al. (2019) and Liang et al. (2020),

cmj ¼ argmin
c

X
x2Rmj

ðrmi � Tmðxi; hmÞÞ2: (9)

Finally, the predicted result is the sum of these regression
trees (Rao et al. 2019, Liang et al. 2020):

F xð Þ ¼
XM

m¼1
fm xð Þ: (10)

2.2.2 XGBoost
XGBoost (Chen and Guestrin 2016) is an upgraded version of
GBDT. It introduces several optimizations in algorithm imple-
mentation, such as feature parallelization, cache awareness,
and approximate algorithms for splittable nodes, to accelerate
training and improve accuracy. Moreover, XGBoost applies

L1 and L2 regularization techniques along with penalties
based on feature importance to mitigate the propensity to-
ward overfitting.

The objective function within XGBoost can be formulated
as (Al Daoud 2019, Liang et al. 2020):

O ¼
XN

i¼1
L yi; y

�
i


 �
þ
XM

m¼1
XðfmÞ; (11)

and Liang et al. (2020),

y
�

i ¼
XM

m¼1
fmðxiÞ ¼ y

�m�1
i þ fM xið Þ; (12)

XM

m¼1
XðfmÞ ¼

XM�1

j¼1
X fj
� �
þ X fmð Þ; (13)

where L is the loss function, y
�

i represents the final predicted
value of the i-th sample, and XðfmÞ represents the regulariza-
tion term for m iterations.

The objective function, along with the regularization term,
is desired to be as small as possible. To find the fM that mini-
mizes the objective function, XGBoost performs Taylor ex-

pansion of the loss function at the point y
�m�1

i . Consequently,
the objective function is as follows (Al Daoud 2019, Liang
et al. 2020):

O ¼
XN

i¼1
gifM xið Þ þ hif 2

M xið Þ
h i

þ X fMð Þ

¼
XN

i¼1
giWqðxiÞ þ

1
2

hiW2
qðxiÞ

� 	
þ X fMð Þ; (14)

X fMð Þ ¼ cT þ 1
2

k
XT

t¼1
ðwtÞ2; (15)

where gi, hi are the first derivative and second derivative of
the loss function, respectively. WqðxiÞ represents the function
assigning sample qðxiÞ in the tree to its corresponding leaf
node. fmðxiÞ represents the prediction result of the m-th tree
for the sample xi.

2.2.3 LightGBM
LightGBM is an additional GBDT variant that builds upon
XGBoost and accomplishes three optimizations, as shown in
the following formula (Ke et al. 2017, Al Daoud 2019, Liang
et al. 2020):

LightGBM ¼ XGBoostþHistogramþGOSSþ EFB: (16)

Histogram, a bucketing algorithm, reduces the quantity of
candidate split points to decrease computational complexity
and memory consumption. Gradient-based One-Side
Sampling (GOSS) optimizes the feature sampling process by
selecting samples with a gradient absolute value below a cer-
tain threshold while preserving samples with large absolute
values. Exclusive Feature Bundling (EFB) improves efficiency
by re-encoding the values of certain features and bundling
multiple mutually exclusive features into a new feature.

2.2.4 CatBoost
CatBoost (Hancock and Khoshgoftaar 2020) is an emerging
GBDT variant that utilizes symmetric tree regularization
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techniques to tackle overfitting problems arising from direct
calculations in multiple dataset permutations. Moreover,
CatBoost is specifically designed to adeptly manage categori-
cal features within GBDT, it effectively eliminates the impact
of low-frequency features and noise in categorical variables
on decision tree generation by creatively considering a prior
distribution term when calculating node gains
(Prokhorenkova et al. 2018), as demonstrated in the follow-
ing equation (Prokhorenkova et al. 2018, Al Daoud 2019):

x̂i
k ¼

Pp�1
j¼1 xrj;k ¼ xrp;k½ �Yrj þ aPPp�1

j¼1 ½xrj;k ¼ xrp;k� þ a
; (17)

where rj represents the j-th data point, x̂i
k denotes the k-th

discrete feature of the i-th row of data in the training set, a is
a prior weight, and p is the prior distribution term, and [] rep-
resents an indicator function.

2.2.5 Ivis
Ivis (Tian and Tao 2020) is a non-linear technique based on
Siamese Neural Networks (SNN). SNN consists of three iden-
tical networks, with each network composed of three dense
layers and an embedding layer. The embedding layer is con-
figured to a size of two, aiming to project high-dimensional
data into a 2D space. The weights of these layers are initial-
ized using the LeCun normal distribution.

For the embedding layer, a linear activation function is
used, and the weights are initialized using Glorot uniform dis-
tribution. To mitigate overfitting, each dense layer is accom-
panied by a dropout layer with a default dropout rate of 0.1.
The scaled Exponential Linear Units activation function is ap-
plied to the dense layers, defined as follows (Klambauer et al.
2017):

selu xð Þ ¼ k
x; if x > 0

aexp xð Þ � a; if x � 0
:

�
(18)

The triplet loss function is employed as the training loss
function for the model. K-nearest neighbors (Zhang 2016) are
used to generate data for the triplet loss function, with the
tuning parameter k set at 100. During each iteration, a point
from the dataset is chosen as the anchor. A positive point is
randomly selected from the k closest neighbors around the an-
chor, and a negative point is randomly chosen outside of these
neighbors. The objective of the triplet loss function is to mini-
mize the distance between the anchor and the positive point
while simultaneously maximizing the distance between the an-
chor and the negative point. The triplet loss function can be
obtained as follows (Tian and Tao 2020):

Ltru hð Þ ¼
X

a;p;n
Da;p �minðDa;n;Dp;nÞ þm

h i
; (19)

where a;p; and n represent the anchor, positive, and negative
points, respectively, D signifies the Euclidean distance and m
represents the margin.

2.3Feature importance calculation

SHAP (Lundberg and Lee 2017) is a method rooted in game
theory designed to improve machine-learning model interpret-
ability and performance assessment. SHAP assigns an impor-
tance value to each feature in relation to a specific prediction.

Aggregating these SHAP values across all instances provides a
global explanation of the model’s behavior.

For a given feature i, its corresponding Shapley value can
be expressed as follows (Lundberg and Lee 2017):

1i ¼
X jSj!ðn� Sj j � 1Þ

n!
f S [ if gð Þ � f Sð Þ
� 


; (20)

where n represents the number of features, S represents the
feature subset that does not include feature i, Sj j denotes the
size of the feature subset, f ðSÞ indicates the model prediction
value with the feature subset S, and f S [ if gð Þ represents the
prediction value after adding feature i to the subset S.

2.4 Learning to rank

LTR (Cao et al. 2007, Liu 2009) strives to sort a set of objects
based on relevance or priority. A typical application of this is
when a user inputs a query into a search engine; a series of re-
lated documents are returned and presented in descending or-
der of relevance to the query. In fact, the relationship between
the documents and the query fed into LTR is one-to-many, as
is the association between drugs and their targets. Therefore,
LTR is applicable to DTA prediction. The multiple Additive
Regression Tree (Burges et al. 2005) used in this study can be
considered an LTR algorithm with regression properties, as it
not only focuses on the relative order of objects but also
emphasizes the fit between predicted values and actual values.

3 Experiments and results

3.1 Datasets and evaluation metrics

In this study, numerous experiments are conducted in two dif-
ferent scenarios across two commonly used datasets. The two
scenarios include S1—predicting the association between
known targets and new drugs with proteins as the queries,
and S2—predicting the association between known drugs and
new targets with drugs as the queries. We consider three eval-
uation metrics: concordance index (CI) (Gönen and Heller
2005), mean squared error (MSE), and r2

m (Öztürk et al.
2018, Nguyen et al. 2021).

The basic information of the datasets is shown in Table 1.

3.2 Parameter setting

In this study, we use grid search to determine the optimal
parameters for each feature optimization method within
specified ranges. Table 2 shows the hyperparameters and the
specified search range involved in each method.

Variance threshold (Fida et al. 2021) is employed to elimi-
nate features with low variance. It operates by calculating the
variance of each feature and subsequently removing features
with variance below a predetermined threshold. The
“threshold” is a user-defined parameter that dictates the crite-
ria for retaining or removing features.

PCA (Wold et al. 1987) is a widely used unsupervised linear
dimensionality reduction method, designed to decrease

Table 1. The basic information of the datasets.a

Dataset Protein/S1_qid Drug/S2_qid Training Testing

Davis 442 68 25 046 5010
KIBA 229 2111 98 545 19 709

a S1_qid represents the number of queries in S1. S2_qid represents the
number of queries in S2.
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feature dimensionality while preserving the maximum vari-
ance among the features. “n_components” is the main param-
eter used to determine the number of features, with “mle”
signifying the automatic determination of feature dimensions
based on the input data. “svd_solver” represents the ap-
proach for solving singular value decomposition (SVD), with
“full” indicating the employment of the standard SVD
method.

Lasso is a regularization method for linear regression that
facilitates feature selection and sparse representation of model
parameters by adding an L1 regularization term to the loss
function (Tibshirani 1996). The primary parameter, “alpha,”
signifies the weight of the L1 regularization term. In this
study, an appropriate alpha value is determined through 5-
fold cross-validation.

For XGBoost (https://xgboost.readthedocs.io/en/stable/),
“learning_rate” controls the contribution of each iteration
(i.e. each tree) to the final prediction result. “n_estimators”
represents the number of trees, while “max_depth” denotes
the maximum depth for each tree.

For LightGBM (https://lightgbm.readthedocs.io/en/latest/in
dex.html), “boosting_type” refers to the boosting type, with
“gbdt” being the default selection for this study. The mean-
ings of the other three parameters are consistent with those in
XGBoost.

For CatBoost (https://catboost.ai/en/docs/), it is imperative
to establish the loss function, with this study electing to em-
ploy the Root Mean Square Error (RMSE). “iterations” refers
to the number of trees to be constructed. “eval_metric” serves
to delineate the performance metric during the training proce-
dure. “min_data_in_leaf” regulates the minimum number of
samples in each leaf node of the decision tree, helping to pre-
vent overfitting by ensuring the decision tree refrains from
formulating leaf nodes that comprise an insufficient number
of samples.

For Ivis (https://bering-ivis.readthedocs.io/en/latest/index.
html), “n_epochs_without_progress” refers to the number of
consecutive epochs without progress before training is termi-
nated in the early stopping strategy. “k” represents the num-
ber of neighbors and affects the preservation of local structure
in the low-dimensional space. Smaller values of “k” highlight
the local structure, while larger values emphasize the global
structure. “model” dictates the neural network architecture.
“embedding_dims” is the dimension of the processed data.
“supervision_metric” determines how to measure the differ-
ence between the processed data and the target (label) after di-
mensionality reduction.

3.3 Performance of various features

We conduct comparative experiments using SAFs and AAFs
against two representative types of features to demonstrate
their superiority. The methods involved are detailed as
follows:

Gen: models that rely on features extracted from drug mo-
lecular descriptors (Cano et al. 2017) and basic protein se-
quence information (Bonidia et al. 2022).

Graph: models that utilize features obtained via the feature
extraction algorithm in GraphDTA (Nguyen et al. 2021).

It can be observed from Table 3 that our method achieves
excellent performance in both scenarios across the two data-
sets. Regarding accuracy and robustness, our features outper-
form both the Gen features, which are based on fundamental
sequence information, and the Graph features that are learned
by neural networks. Such a result implies that AAFs and SAFs
are more effective in capturing drug and target information.

3.4 Performance of various feature processing

methods

The performance of various feature processing methods on
two scenarios for two datasets are shown in Tables 4–7.
“All” represents models built on all features. “VT” represents
models built on the feature set after removing low-variance
features.

It can be observed from Tables 4 and 5 that low-variance
features have a minimal impact on model performance. For
Davis dataset, on S1, the model based on all features yields
CI, MSE, and r2

m values of 0.937, 0.149, and 0.818. On S2,
these values are 0.931, 0.162, and 0.798. After removing 54
low-variance features, the model performance decreases by
�0.1%, which can be considered negligible. For KIBA data-
set, which contains 552 low-variance features. On S1, the
model based on VT features shows CI, MSE, and r2

m values of
0.891, 0.133, and 0.809. On S2, these values are 0.890,
0.135, and 0.801. The model performance in both scenarios
is slightly inferior to that based on all features. However, pri-
oritizing computational speed over model accuracy in the
trade-off between the two is evidently a sensible approach.

Other feature processing methods optimize the feature set
based on VT. As evidenced in Tables 4 and 5, the perfor-
mance of the Ivis-based models is notably suboptimal, exhib-
iting limited robustness. This is particularly evident in both
scenarios for KIBA dataset, where the model’s CI value is
only around 75%, and r2

m falls below 0.5. The performance
of the PCA-based model is significantly inferior to those built
based on all features. Feature optimization techniques that
rely on regression concepts exhibit superior performance. The
LASSO-based model, which only uses 293D features can
achieve CI and MSE values almost equivalent to those built

Table 2. The hyperparameters and the specified search range involved in

each method.a

Method Parameter setting

VarianceThreshold Threshold: numpy.linspace (0.01,0.1,5)
PCA n_components: mle, svd_solver: full
Lasso alpha
XGBoost n_estimators: [200,400,600,800],

max_depth: [3,4,5,6],
learning_rate: [0.02,0.04,0.06,0.08]

LightGBM boosting_type: gbdt,
n_estimators: [200,400,600,800],
max_depth: [3,4,5,6],
learning_rate: [0.02,0.04,0.06,0.08]

CatBoost iterations: [200,400,600,800],
depth: [3,4,5,6],
loss_function: RMSE,
eval_metric: RMSE,
min_data_in_leaf: [2,3,4,5],
learning_rate: [0.02,0.04,0.06,0.08]

Ivis embedding_dims: [128, 256, 512,1024,2048],
k: range(10,151,30),
n_epochs_without_progress: range(10,21,5),
model: maaten,
supervision_metric: mse

a range(start, stop[, step]) is a function that represents a sequence of
numbers starting from “start” and ending at “stop” with a step size of
“step.” numpy.linspace (start, stop, and num) represents a function that
returns “num” evenly spaced numbers between “start” and “stop.”

Optimization of DTA prediction methods through feature processing schemes 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/11/btad615/7301469 by guest on 21 D
ecem

ber 2023

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://catboost.ai/en/docs/
https://bering-ivis.readthedocs.io/en/latest/index.html
https://bering-ivis.readthedocs.io/en/latest/index.html


on all features. It can be concluded from Tables 6 and 7 that
the models utilizing the three feature optimization methods
based on regression trees yield promising results, showing su-
perior performance with low dimensions. Additionally, the
robustness of these models is evidenced by r2

m values.

3.5 Performance of important features

As observed in Tables 4–7, the three feature selection meth-
ods—XGBoost, LightGBM, and CatBoost—all based on re-
gression trees, show distinct advantages. To enhance the
interpretability of the models, this study conducts a compre-
hensive analysis of the features selected by these three
methods.

In addition to calculating the feature importance using the
methods embedded in these three methods, this study ranks
features according to their SHAP values. It is revealed that in
Tables 6 and 7, the two feature importance calculation meth-
ods produce almost identical results, as they construct models
with equivalent performance based on optimal feature subsets
with the same dimensions.

In this study, we obtain the optimal feature set by examin-
ing their SHAP values and using the IFS. Figures 2 and 3 illus-
trate the feature increment process with a step size of five on
both scenarios for the two datasets, it is evident that the mod-
els’ performances tend to be stable when the feature dimen-
sion reaches 150. In other words, models built on the top 150
features perform almost as well as those built on all features,
yet their dimensions constitute only one-twentieth of the lat-
ter. On both scenarios for KIBA dataset, the models using the
three methods have CI values of �88.7%, MSE values below
14%, and r2

m around 79%. On both scenarios for Davis data-
set, the CI, MSE, and r2

m values for the three methods are
roughly 93%, 16%, and 80%, respectively.

3.6 Analysis of important features

As depicted in Figs 2 and 3, the first 20 features significantly
impact model performance. The top 20 features ranked by the
three feature optimization methods are displayed in Figs 4
and 5.

For Davis, 15 common features appear among the top 20
ranked features in both scenarios S1 and S2, as determined by
the three methods. Of these 15 features, 14 are AAFs—with 7
AAFs based on similarity and 7 AAFs based on sharing. The
remaining feature is a SAF, which is derived from the DTA in-
formation of the target itself.

For KIBA, on S1, 14 common features among the top 20
ranked features are shared by the three regression algorithms.
On S2, they share 15 common features. It is evident that
similarity-based AAFs play a crucial role in both scenarios.
On S1, 9 of the top 14 important features are AAFs, 8 of
which are similarity-based. On S2, 10 of the top 15 important
features are AAFs, 7 of which are similarity-based.
Additionally, it is noteworthy that both scenarios share five
SAFs derived from DTA information. This suggests that SAFs
also demonstrate competitiveness within the KIBA dataset.

As a result, it can be concluded that different types of
features exhibit varying performance under distinct

Table 3. Performance of various features.

Davis KIBA

S1 S2 S1 S2

CI MSE r2
m CI MSE r2

m CI MSE r2
m CI MSE r2

m

Gen 0.886 0.283 0.654 0.875 0.308 0.616 0.839 0.209 0.699 0.836 0.213 0.686
Graph 0.885 0.263 0.672 0.870 0.163 0.760
Our method 0.937 0.149 0.818 0.931 0.162 0.798 0.895 0.130 0.813 0.893 0.131 0.807

Table 4. Performance of various feature processing methods for Davis.

Davis (S1) Davis (S2)

CI MSE r2
m num CI MSE r2

m num

All 0.937 0.149 0.818 3208 0.931 0.162 0.798 3208
VT 0.937 0.151 0.816 3154 0.930 0.161 0.799 3154
PCA 0.915 0.182 0.777 620 0.903 0.204 0.746 620
Lasso 0.936 0.150 0.817 293 0.930 0.166 0.793 215
Ivis 0.877 0.307 0.625 128 0.856 0.348 0.566 128

Table 5. Performance of various feature processing methods for KIBA.

KIBA (S1) KIBA (S2)

CI MSE r2
m num CI MSE r2

m num

All 0.895 0.130 0.813 3177 0.893 0.131 0.807 3177
VT 0.891 0.133 0.809 2625 0.890 0.135 0.801 2625
PCA 0.827 0.260 0.626 1367 0.822 0.261 0.617 1367
Lasso 0.891 0.134 0.806 557 0.888 0.138 0.797 325
ivis 0.754 0.420 0.395 128 0.748 0.429 0.369 128

Table 6. Performance of regression tree-based feature selection methods

for Davis.

Davis (S1) Davis (S2)

CI MSE r2
m num CI MSE r2

m num

XGB SFM 0.938 0.150 0.816 1401 0.931 0.161 0.799 2235
SHAP 0.938 0.150 0.816 1401 0.931 0.161 0.799 2235

Light SFM 0.937 0.148 0.819 2108 0.931 0.161 0.800 2212
SHAP 0.937 0.148 0.819 2108 0.931 0.161 0.800 2212

Cat SFM 0.937 0.150 0.816 1278 0.930 0.162 0.798 1351
SHAP 0.937 0.150 0.816 1278 0.930 0.162 0.798 1351

Table 7. Performance of regression tree-based feature selection methods

for KIBA.

KIBA (S1) KIBA (S2)

CI MSE r2
m num CI MSE r2

m num

XGB SFM 0.891 0.133 0.809 2044 0.890 0.135 0.801 2256
SHAP 0.891 0.133 0.809 2044 0.890 0.135 0.801 2256

Light SFM 0.891 0.132 0.810 2127 0.890 0.135 0.801 1935
SHAP 0.891 0.132 0.809 2127 0.890 0.135 0.801 1935

Cat SFM 0.891 0.133 0.809 1105 0.890 0.135 0.802 1163
SHAP 0.891 0.133 0.809 1105 0.890 0.135 0.802 1163
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circumstances. Although SAFs may not exhibit comparable
efficiency as AAFs, it is undeniable that they share a comple-
mentary relationship, and each contributes positively to the
overall performance of the model.

Furthermore, we can also observe the following: (i) some
SAFs, such as the mean and quantile values of similarity

between proteins/drugs, have little or even no impact on
model performance. (ii) During SAFs extraction, overlapping
neighbors for objects are obtained based on a set of similarity
and sharing thresholds, which result in repetitive or redun-
dant proximity information. (iii) When identifying additional
neighbors that are most similar to the top 5 most similar

Figure 2. Performance of the model under each feature dimension on S1.

Figure 3. Performance of the model under each feature dimension on S2.
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Figure 4. The top 20 features of regression tree-based feature selection methods for Davis.

Figure 5. The top 20 features of regression tree-based feature selection methods for KIBA.

8 Ru et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/11/btad615/7301469 by guest on 21 D
ecem

ber 2023



neighbors, overlapping and intersecting information also oc-
cur. In summary, it is inevitable that the initially acquired fea-
tures contain redundant and duplicate information.
Consequently, feature optimization is a necessary process to
build models with fast calculation speed, strong generaliza-
tion ability, and high interpretability while maintaining con-
sistent performance.

4 Conclusion

In this study, our main contribution lies in applying various
feature processing techniques to optimize the extracted AAFs
and SAFs, and then build a DTA prediction model with high
accuracy and robust interpretability.

Extensive experimental results indicate that the three
GBDT variant methods—Xgboost, LightGBM, and
CatBoost—all exhibit superior feature selection capabilities.
Furthermore, we employ SHAP values and IFS to rank signifi-
cant features and determine the optimal feature subset.
Models built on the optimal feature subset perform almost as
well as those built on all features. In conclusion, feature opti-
mization is crucial for building models that offer strong gener-
alization ability and high interpretability while maintaining
consistent performance.

There are still several avenues for enhancing DTA predic-
tion methods, particularly with regard to feature engineering.
For instance, one could leverage additional relationships to
obtain more comprehensive feature information about drugs
or targets from various perspectives, such as through protein–
protein interactions or drug–disease associations.
Additionally, most existing studies simply concatenate the fea-
tures of drugs and targets. This approach may fail to fully ex-
plore and reflect deeper, underlying information and could
lead to the curse of dimensionality. Therefore, deriving fea-
tures from a range of perspectives and developing advanced
feature selection or feature fusion methods will be central to
our future endeavors.
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Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding
affinity prediction. Bioinformatics 2018;34:i821–9.
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