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Abstract—Many index advisors have recently been proposed
to build indexes automatically to improve query performance.
However, they mainly consider performance improvement in
static scenarios. Their robustness, i.e., stable performance in
dynamic scenarios (e.g., with minor workload changes), has
not been well investigated. This paper addresses the challenges
of assessing the index advisor’s robustness from the following
aspects. First, we introduce perturbation-based workloads for
robustness assessment and identify three typical perturbation
constraints that occur in real scenarios. Second, with the per-
turbation constraints, we formulate the generation of perturbed
queries as a sequence-to-sequence problem and propose TRAP
(Tailored Robustness assessment via Adversarial Perturbation)
to pinpoint the performance loopholes of index advisors. Third,
to generalize to various index advisors, we place TRAP in
an opaque-box setting (i.e., with little knowledge of the index
advisors’ internal design), and we propose a two-phase training
paradigm to efficiently train TRAP without elaborately annotated
data. Fourth, we conduct comprehensive robustness assessments
on standard benchmarks and real workloads for ten existing
index advisors. Our findings reveal that these index advisors are
vulnerable to the workloads generated by TRAP. Finally, based
on the assessment results, we shed light on insights to enhance
the robustness of different index advisors. For example, learning-
based index advisors can benefit from adopting a fine-grained
state representation and a candidate pruning strategy.

Index Terms—AI4DB, Index Advisors, Robustness Assessment

I. INTRODUCTION

Indexes are crucial in database optimization [1]. Tradi-

tionally, indexes are built by expert database administrators

(DBAs) [2] who analyze the workload characteristics and

create indexes that are likely to accelerate workload execution.

This procedure is labor-intensive. To reduce the manual effort

and automate the selection process, index advisors have been

extensively studied [3]–[10].
Early index advisors are mostly heuristic-based [3]–[6],

[11], [12], where indexes that maximize predefined criteria

(e.g., the relative cost reduction) are greedily added or re-

moved. However, they have two limitations. First, they cannot
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well capture the correlations between the query patterns and

data distributions. Second, they use heuristics to select indexes

from a large set of candidates and are often stuck in a sub-

optimal solution. To address these limitations, learning-based

index advisors [7]–[10], [13], [14] have been proposed. They

capture the syntactic query patterns associated with the index

(e.g., columns in the predicates) based on the training work-

loads. They mostly adopt a reinforcement learning framework

and take actions to select indexes based on the current state

(e.g., the workload characteristics).

Although existing index advisors attempt to achieve high

accuracy in selecting appropriate indexes to reduce the cost of

a static workload [2], they neglect an important factor – ro-
bustness. The robustness of an index advisor is whether it can

adapt to dynamic workloads and maintain stable performance

without expensive model re-training [15], [16]. The robustness

of existing index advisors has not been fully investigated.

Overall, when assessing the robustness of an index advisor,

a pivotal consideration lies in devising appropriate testing

workloads that satisfy two critical criteria. (1) Real-world
Relevance: the workloads should reflect real-world production

systems with a high probability of occurrence; (2) Efficacy
in Loophole Detection: the workloads must pinpoint the per-

formance loopholes of index advisors being assessed. These

two criteria are of paramount importance in measuring index

advisors’ robustness.

To reflect the robustness of index advisors in practice, the

testing workloads should mimic workload drifts [17]–[20]

resulting from query changes in daily life, i.e., to generate

workloads that might occur in real-world scenarios. Our key

observation is that most queries in real production systems

and open-source benchmarks are perturbed variants of a small

set of templates. These templates undergo changes due to

shifts in user behavior and business demands [21], [22]. As

shown in Figure 1, 1.7 billion queries executed in the industry

(e.g., the Fortune 500 and the Global 2000 companies) are

based on 31 million query templates with different parameter

bindings [23] (Figure 1(a)); the queries of eight open-source

benchmarks [19], [24]–[27] are generated from a small number

of well-crafted templates (Figure 1(b)).
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Fig. 1: Most queries in real-world workloads (a) and open-source benchmarks
(b) are variants perturbed from a limited number of templates (∞ denotes the
number is unlimited).

Furthermore, perturbations lead to “variants” of the “orig-

inal” workloads that the index advisors are “supposed to

be competent” to select appropriate indexes, both from an

algorithm point of view (e.g., a learning-based index advi-

sor is well-trained on similar workloads [28]) and from an

application point of view (e.g., index advisors are required to

adapt to minor workload changes in practice). Therefore, we

propose to adopt queries generated based on perturbations over

the original workloads and conduct a robustness assessment

based on these workloads.

To comprehensively assess index advisors’ robustness, the

testing workloads should be tailored to reveal the performance

loopholes of each index advisor. However, it presents the

following challenges when designing a framework to generate

such workloads. First, because of the wide-ranging diversity of

SQL queries in terms of literal patterns (e.g., various database

schemas and multiple clauses), a great number of operations

can be performed to perturb the SQL (e.g., adding a specific

column in the SELECT clause). Defining a distinct action rule

for each operation becomes impractical due to the excessive

action space (C1). Second, given the significant disparities in

the internal architecture of index advisors (e.g., the adopted

strategies and learning paradigms), it becomes imperative to

design a unified generation framework, which involves mini-

mal knowledge and generalizes to various index advisors (C2).

Third, the generation process should be efficient, i.e, produce

executable queries and reduce the number of invalid queries

(e.g., violate the given perturbation constraints), precisely

target the performance loopholes of the index advisors (C3).

To address C1, we formulate perturbation over queries in

the original workloads as a sequence-to-sequence problem.

Given the input SQL, the perturbed query is synthesized

by generating each SQL token based on an encoder-decoder

network. Therefore, all the operations (e.g., add or replace a

specific token) can be implemented in a unified manner, and

the size of the action space is independent of the number of

operations. To address C2, we propose a tailored workload

generation framework TRAP based on a two-phase training

paradigm. It generates a workload that intends to degrade the

performance of the index advisors by exploring perturbation

combinations via reinforcement learning without any prior

knowledge of their internal designs. Moreover, to enhance the

sample efficiency in reinforcement learning, TRAP performs

index advisor independent pretraining, effectively initializing

the agent with an understanding of the SQL semantics. To

address C3, we design a novel tree-based structure to further

restrict the action space of the permissible SQL tokens. This

structure ensures that each generated query satisfies the pertur-

bation constraints and strictly adheres to the SQL grammar.

Furthermore, a reward function based on the learned index

utility is adopted to provide more accurate rewards associated

with the performance drops of index advisors.

To the best of our knowledge, this paper is the first attempt

to thoroughly study the robustness of index advisors. The main

contributions of this paper are summarized below.

• We introduce the concept of perturbation-based adversarial

workloads based on the observations from typical workload

drifts to measure the robustness of index advisors (Sec-

tion III).

• We formulate the generation of the perturbed queries as

a sequence-to-sequence problem and propose a generation

framework TRAP based on an encoder-decoder architecture

to implement multiple perturbations in a unified manner

(Section IV-A).

• We adopt a two-phase training paradigm to generate effec-

tive adversarial workloads over various index advisors with

little knowledge about their internal designs (Section IV-B

/ IV-C).

• We design a novel structure to ensure the validity of the

perturbed SQL and utilize a learned index utility model to

provide more accurate feedback (Section IV-D).

• We conduct a thorough robustness assessment on ten exist-

ing index advisors over both open-source benchmarks and

real-world datasets (Section V).

• We reveal insightful findings and discoveries from the

assessments, which can facilitate the design of more robust

index advisors (Section VI).

II. RELATED WORK

A. Index Advisor

Heuristic-based index advisors incrementally add [3]–[5]

or decrementally [6], [29] remove candidate indexes (i.e.,

single-column indexes [6] or multi-column indexes [3]–[5],

[29]) according to the predefined criteria (e.g., the relative

cost reduction [5], [6], [11], [12] or the benefit-per-storage

ratio [3], [4], [29]). Learning-based index advisors apply

machine learning techniques, primarily based on Reinforce-

ment Learning (RL) [30], where an agent (typically a neural

network [31]) outputs an action (i.e., the selected indexes)

based on the current state to maximize a reward function (e.g.,

the estimated cost reduction [8]–[10], [13], [32], the benefit-

per-storage ratio [7] or the actual runtime [1], [14]). There

are various choices of the state representations to incorporate

features of the workloads at different levels (more details in

Section VI-A).

Difference with our work. Most index advisors, especially the

learning-based ones, are only assessed on static workloads. Al-

though a few recent attempts have proposed different strategies

to make their methods more robust [33], [34] or considered

dynamic workloads [1], [7], the assessments are conducted
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on the testing workloads split from a predefined set of work-

loads, which only contain limited query variants and fails to

reflect typical workload drifts. Therefore, the robustness of

both heuristic-based and learning-based index advisors over

workload drifts has never been thoroughly assessed.

B. SQL Generation

Heuristic-based SQL generation methods use various rules.

For example, SQLsmith [35] randomly synthesizes queries by

walking through the parse tree. TLP [36] derives multiple

queries by partitioning the results from the original query.

Recently, learning-based SQL generation methods adopt Gen-

erative Adversarial Network (GAN) [37] or the reinforcement

learning framework [38]. Instead of generating queries from

scratch, some studies perform a series of rewrite transforma-

tions to optimize the original query. Sia [39] replaces the

predicates in a query with valid but weaker ones learned by

a classifier over the columns. LearnedRewrite [40] adopts the

Monte Carlo Tree Search (MCTS) algorithm to find a near-

optimal rewrite order from a set of query rewrite rules.

Difference with our work. First, our work aims to generate

perturbed queries due to typical workload drifts. Existing

studies, such as heuristic-based methods or generating from

scratch, will produce many queries that might never occur in

the real world. Second, the generation process is instructed to

degrade the index advisor’s performance intentionally. Existing

methods need a large volume of queries to find the perfor-

mance loopholes due to the mismatch among the generation

goals (refer to the results in Section V-B).

C. Adversarial Attack

Adversarial attacks have received much attention in the

Computer Vision (CV) and Natural Language Processing

(NLP) fields. There are two categories of adversarial attack:

(1) the evasion attack [41], where a testing sample similar

to the original input sample is constructed to deteriorate the

effectiveness of a well-trained or deployed model, and (2) the

data poisoning attack [42], where samples are injected into the

training set to mislead the model’s training procedure.

Difference with our work. Recently, data poisoning attacks

have been explored on learned index structure [43]. Our work

belongs to evasion attacks that aim to assess the robustness of

index advisors. The opaque-box setting (i.e., the design details

are not exposed) requires the assessment procedure to be

less intrusive and more generalized. The similarity constraint

adopted in this work differs from existing evasion attacks [41],

i.e., the proposed perturbations over the SQL queries reflect the

typical workload drifts so that the robustness of index advisors

can be more accurately and practically measured.

III. PROBLEM DEFINITION

DEFINITION 3.1 (Index Advisor): Given a dataset d, a

workload W which contains a set of queries and the as-

sociated weights (e.g., the frequency of query q is e), i.e.,

W = {(q, e)}, |W| ≥ 1, an index advisor f returns a set of

indexes I = f(W,d) based on its internal mechanism.

DEFINITION 3.2 (Index Utility): The index advisor f ’s
utility u(W,d, f) for a workload W on a dataset d is the
relative cost reduction with the selected indexes I = f(W,d),
compared with a baseline index configuration Ib,

u(W,d, f) = 1− c
(W,d, I)

c
(W,d, Ib

) (1)

where c(W,d, I) is a cost metric of running workload W on

dataset d given the selected indexes I.

The index utility u measures the optimization ability of the

indexes based on the workload cost, similar to the primary

focus of previous studies [1], [2], [7]–[9]. The baseline Ib

allows more flexibility in measuring the index’s quality. For

example, if the baseline Ib is the default indexes, we require

the index advisor to select indexes that outperform the default

indexes (i.e., u > 0) [44] (More details about Ib are in

Section V).

In real production systems and open-source benchmarks,

workloads are rarely static [21]–[23]. The robustness of an

index advisor over dynamic workloads can be measured by

the fluctuation of index utility on different workloads. Next,

we define the robustness of an index advisor.
DEFINITION 3.3 (Index Advisor’s Robustness): Given a

dataset d, an original workload W (e.g., the current workload
or the training workload for a learning-based index advisor),
another workload W ′ (e.g., generated by the robustness assess-
ment process for performance comparison with W), and an
index advisor f with u(W,d, f) > θ (θ ≥ 0), the robustness
is defined as the Index Utility Decrease Ratio (IUDR) on W ′,

IUDR = 1− u(W ′,d, f)
u(W,d, f)

(2)

Robustness is the ability of index advisors to provide

high and stable performance over dynamic workloads without

updating the index advisor. Thus, Definition 3.3 requires the

index advisor f to be properly operating on the original

workload W with u(W,d, f) > θ, where the threshold

θ is user-defined. A larger value of θ indicates the index

advisor should provide higher performance. Note that we also

require the generated workload W ′ to be sargable [45], [46]

(i.e., can be optimized by a set of indexes). Specifically, we

summarize the categories of query changes that make a query

non-sargable (more details in Section VI-C). Then, these non-

sargable workloads are detected, verified, and filtered out from

the robustness assessment process. According to Equation 2,

a smaller IUDR indicates a smaller performance gap between

W and W ′, i.e., more stable and robust performance.

Intuitively, W ′ must (1) simulate workloads under workload
drifts to more accurately measure robustness in practice and

(2) target the weakness of index advisors so that the per-

formance gap between W and W ′ can detect whether the

performance of the index advisor is truly stable. These two

assumptions motivate us to give the following definition.

DEFINITION 3.4 (Perturbation-based Adversarial Work-
load): Given an original workload W , a dataset d, a

perturbation-based adversarial workload W ′ is generated to

assess the robustness of an index advisor f , W ′ = {(q′, e′)}
consists of a set of queries and their weights (e.g., the
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occurring frequency). Each unseen query (i.e., a query that

has not been included in the original workload) is generated

by adding slight perturbations with an adversarial intent to

the original workload, i.e., ∀q′ ∈ W ′ \ W, |q′| ≥ 1, ∃q ∈
W, k(q,q′) < ε, e′ = e, s.t., u(W ′,d, f) < u(W,d, f),
where k(·, ·) is a distance metric, e.g., the edit distance.

We now explain the key concepts in Definition 3.4.

• Perturbation-based Workload. Definition 3.4 uses per-
turbed queries to simulate common query changes under

workload drifts. Perturbed queries are widely observed in

open-source benchmarks [24], [26], [27], [47]–[50], where

queries are variants of templates with different (1) query

payloads (e.g., columns in the SELECT clause), (2) pa-

rameter values, and (3) filter predicates. Perturbation can

be considered a meaningful template augmentation, e.g.,

additional predicates correspond to more fine-grained data

slicing over the tuples without changing the original queries’

semantics greatly [26]. Thus, for robustness assessment, it is

better to use perturbed queries instead of generating queries

from scratch because the latter leads to meaningless queries

that never occur in real scenarios. Furthermore, perturbed

queries are more appropriate for assessing the learning-

based index advisors. By restricting a small perturbation,

we generate workloads that a well-trained index advisor

is “supposed” to perform well but fails to, exposing the

vulnerability of the learning-based index advisors. On the

contrary, generating from scratch might incur an inevitable

performance drop for learning-based index advisors since

workloads contain irrelevant query patterns to the original

ones [17]–[20].

• Distance Metric. Definition 3.4 uses SQL-level differences

(i.e., edit distance) to quantify the degree of perturbation

because changes in user behavior and business demands can

be uniformly implemented by a series of edit operations. We

do not use plan-level difference because the transformation

from a SQL to a query plan is more pertinent to the

optimizer [49] and is more appropriate to assess their

robustness. The user-defined parameter ε controls the degree

of the perturbation and indicates the maximal number of

tokens that can be changed. For example, if ε = 5,

queries changed within five tokens are considered slight

perturbations without strict amplitude ordering.

• Adversarial Intent. Definition 3.4 uses u(W ′,d, f) <
u(W,d, f) to indicate that W ′ is generated with an ad-

versarial intent and targets the weakness of the given index

advisor, i.e., leading to their performance drops.

Considering the common query changes due to typical

workload drifts [17]–[20], we present three types of pertur-

bation constraints. These perturbation constraints differ in the

types of tokens that can be modified (Table I)1.

• Value Only Perturbation [18], [20] reflects the

most common template-based workload drifts where queries

are variants of the same set of pre-defined templates (e.g.,

1Note that the join predicates over columns, i.e., the join graph are not
allowed to be modified considering the semantic meaningfulness of the query.

TABLE I: Legal token types that can be modified (colored in black) under
different constraints. The original query is a simplified SQL in JOB [24].

Original Query q
SELECT t.title, n.name FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id AND t.kind id = 1
ORDER BY t.production year, t.series years

Perturbation Column Value Conjunction Operator Aggregator
Value Only - � - - -

Example Query q′
for Value Only

SELECT t.title, n.name FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id AND t.kind id = 3
ORDER BY t.production year, t.series years

Column Consistent � � - - -

Example Query q′
for Column Consistent

SELECT t.title, n.name FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id AND t.kind id = 1
ORDER BY t.series years, t.production year

Shared Table � � � � �

Example Query q′
for Shared Table

SELECT t.title, n.name, ci.note FROM title AS t, cast info AS ci, name AS n
WHERE t.id = ci.movie id AND ci.person id = n.id
AND t.kind id = 3 AND n.gender = ’f’
ORDER BY t.production year, t.series years

TPC-H, TPC-DS, DSB [26]). For example, an online retailer

may issue a series of queries to compare the sales figures

of the same product in different seasons, pricing strategies,

or marketing campaigns. This perturbation constraint only

allows modifications on the predicate values, which cor-

respond to the templates with placeholders. An example is

displayed in Table I, the value in the predicate t.kind_id
= 1 is replaced with 3 to retrieve a different kind of movie.

• Column Consistent Perturbation [19], [27]

mimics the workload drift when users operate on the

same set of columns in daily transactions (e.g., CEB [19],

STATS [27]). For example, a customer changes the order

of columns in the search results of an E-commerce website

to display products according to different preferences.

This perturbation constraint allows modifications on

columns and values, but the modified columns can only

be chosen from the original column set. As shown in

Table I, the arrangement of columns in the ORDER BY

clause is changed to obtain results in different time order,

i.e., “t.production_year, t.series_years” →
“t.series_years, t.production_year”.

• Shared Table Perturbation [17], [19], [24], [25]

simulates the scenario when users in an exploratory analysis

change the payloads or add new predicates to the orig-

inal queries (e.g., JOB [24], CEB [19]). For instance, a

sales analyst may execute analysis workloads with differ-

ent filter predicates for the date range, product category,

or customer demographics to uncover trends or patterns

and assist inventory management decisions. The Shared
Table Perturbation restricts the perturbed queries q′

to be operated on the same table schema as q, and allows

modifications on other token types. An example is shown

in Table I, where the query variant contains a new payload

(ci.note) and a new predicate (n.gender = ’f’) to

obtain additional movie cast information of the actress.

IV. ADVERSARIAL WORKLOAD GENERATION

In this section, we introduce the details of TRAP. As shown

in Figure 2, TRAP contains several modules to generate effec-

tive adversarial workloads. First, to cope with the difficulty of

integrating various perturbations in a unified manner, TRAP for-

mulates the generation of perturbed queries as a sequence-

to-sequence problem based on an Encoder Decoder Network.
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Fig. 2: Overview of the Adversarial Workload Generation Framework TRAP.

Nevertheless, sequence models have shown catastrophic for-

getting issues that lead to the information loss of previous

input. To address this problem, TRAP adopts a SQL context

attention mechanism to capture the characters of SQL (e.g.,

the overall query structure) (Section IV-A). Second, to tailor

adversarial workloads for each index advisor, TRAP adopts a

two-phase training paradigm. Given the limited knowledge and

requirement of the generalization ability to index advisors with

diverse internal designs, TRAP resorts to Reinforced Perturba-
tion Policy Learning, where the encoder-decoder model acts

as the agent. However, reinforcement learning typically suffers

from time-consuming training procedures due to the sample

inefficiency problem in obtaining a good policy. To enhance

the training efficiency, TRAP employs an Index Advisor In-
dependent Pretraining, where the agent is bootstrapped with

SQL-related knowledge (e.g., the semantics of the queries).

This phase is an offline one-time effort, independent of any

index advisor, and transfers the knowledge to RL. Moreover,

since the reward might be inaccurate as it is calculated by

the estimated statistics from the optimizer, a Learned Index
Utility model is adopted. This model enables more accurate

quantification of performance drops of index advisors and

provides more explicit guidance for TRAP to effectively target

the performance loopholes (Section IV-B / IV-C). Finally, a

vanilla sequence model fails to guarantee the output queries

meet the perturbation constraints. Therefore, a novel structure,

i.e., Constraint-Aware Reference Tree is integrated into the

agent. This structure restricts the permissible tokens at each

step and enables TRAP to seamlessly accommodate various

perturbations constraints (Section IV-D).

A. Perturbation via Encoder-Decoder Network

First, we explain how to generate the perturbed queries

based on the encoder-decoder network equipped with an SQL

context attention mechanism and implement various perturba-

tions in a unified manner. As shown in Figure 3, the encoder of

TRAP is a Bi-directional Gated Recurrent Unit (Bi-GRU) [51]

layer, which consists of a forward GRU unit GRUf and a

backward GRU unit GRU b. The decoder is another GRU

layer. We leverage GRU since it is lightweight and effective

compared with the transformer-based models [52] (refer to

Fig. 3: Illustration of Encoder-Decoder Network in TRAP.

the results in Section V-C). For a SQL query2 of n tokens

q =< q1, ... ,qn >, TRAP proceeds as follows.

Step 1: The encoder reads the query sequentially and

returns a hidden vector for the token at position i, hi =
[[hf

i ], [h
b
i ]](i = 1, ... , n), where hf

i = GRUf (qi,h
f
i−1),

hb
i = GRU b(qi,h

b
i+1) and [, ] is the concatenation operation.

Step 2: Suppose the output query q′ =< q′1, ... ,q
′
m >

contains m tokens, the decoder outputs q′ in a token-by-token

manner. At each step t (t = 1, ... ,m), the decoder’s GRU cell

returns a hidden vector st = GRU(q′t−1, st−1) based on the

previously generated tokens.
Step 3: A context vector ct is computed to encapsulate

the significant information of the whole input SQL query.
Since sequence models have shown catastrophic forgetting
issues [53] in deriving st, we leverage the attention mech-
anism [54] to learn to attend to different parts of the SQL.

eti = vT tanh(Whhi +Wsst + b), (i = 1, ..., n),

at
i =

exp(eti)∑n
i=1 exp(e

t
j)
, (j = 1, ..., n),

ct =
∑

i

at
ihi,

(3)

where hi is the encoder’s hidden state for token i, st is the

decoder’s hidden at timestep t, eti computes the matching score

between hi and st, a
t
i is the attention weight that normalizes

the matching score et. The context vector ct aggregates over

all the encoder’s hidden states with the attention weights.

v,W,b are learnable parameters.

Step 4: The decoder forms a legitimate vocabulary Vt by

masking invalid tokens to guarantee the validity of the out-

put query based on the Constraint-Aware Reference
Tree (more details in Section IV-D).

Step 5: Given the context vector ct, previously generated
output q′<t, and the input query q, the decoder samples the
next token q′t from Vt based on the probability below.

P (q′t|q′<t,q,Vt) =
exp(W[ct; st;q

′
t−1] + b)i∑

q′
t∈Vt exp(W[ct; st;q′t−1] + b)

(4)

where [ct; st;q
′
t−1] denotes the concatenation of the context

ct, the decoder’s hidden state st and the previous output q′t−1.

B. Reinforced Perturbation Policy Learning

Since it is tricky to acquire sufficient effective labeled

perturbed workloads to conduct supervised learning [31],

2Note that we illustrate with a single SQL query. However, our framework
can support multi-query workloads by concatenating the queries.
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Hash Join

Seq Scan Hash

Seq Scan

· Cost (c1) = 231991.12;

· Cardinality (a1) = 436056;

· Height (h1) = 3.

· Cost (c2) = 150013.47; 

· Cardinality (a2) = 436056;

· Height (h2) = 1.

· Cost (c3) = 41095.0; 

· Cardinality (a3) = 1500000;

· Height (h3) = 3.

· Cost (c4) = 41095.0;

· Cardinality (a4) = 1500000;

· Height (h4) = 1.
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· g1 = h2 * g2 + h3 * g3.
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Fig. 4: Example of Feature Modelling on Query Plan.

we adopt Reinforcement Learning (RL) to train TRAP. The

benefit of RL is that it balances exploration and exploitation

among the numerous perturbation combinations, allowing it to

identify the effective ones. Specifically, the encoder-decoder

network in Section IV-A acts as an agent that takes action

(i.e., generates a SQL token) based on its policy, and the

agent receives a reward r to update its policy. The reward is

calculated considering the robustness in Definition 3.3, i.e.,

r = IUDR. If the generated workload effectively hinders

the index advisor, i.e., leading to the performance drop, then

r > 0. Otherwise, if the generated workload fails to detect the

index advisor’s performance loophole, then r < 0.

Note that to obtain r, we need a cost metric c(W,d, I)
to compute u(W ′,d, f). It is infeasible to use the actual

runtime due to the large overhead of index building and query

execution. We can turn to the estimated cost provided by

what-if calls. However, the reward is inaccurate due to the

estimation error [24]. Inspired by the successful applications of

the learned cost model, we utilize LightGBM [55] to estimate
the index utility c(W,d, I), which is both effective with high

estimation accuracy and efficient with fast inference [44], [56].

To train LightGBM, we collect a training dataset by randomly

generating and executing queries like [19], [38] (more details

in Section V), i.e., D =< f , y >, where f is a feature vector

extracted from the query plan and y is the actual runtime cost.
The feature vector f is derived as follows. As illustrated in

Figure 4, each node in a query plan has several properties:
the node type (e.g., “Seq Scan” and “Hash Join”), estimated
statistics (e.g., “Cost” and “Cardinality”), and its “Height”
in the query plan tree. We define the feature vector as the
concatenation of four field vectors, i.e., f ∈ R

4×L. Each
field vector has the same length, i.e., f l ∈ R

L(l = 1, ... , 4),
where L is the total number of the possible node types (i.e.,
operators) in the query plan. Node types absent in the query
plan will be assigned zero weight in their feature vectors. The
four field vectors are: Cost-Sum (f1), Cardinality-Sum (f2),
Cost-Weighted-Sum (f3) and Cardinality-Weighted-Sum (f4)
respectively. To obtain f , we first extract statistics “Cost” (cj),
“Cardinality” (aj), and “Height” (hj) for each node j. Then,
for each node j, we calculate the cost (g1j ), cardinality (g2j ),

weighted-cost (g3j ), and weighted-cardinality (g4j ) as follows.

g1j = cj , g2j = aj ,

g3j =
∑

k is j’s child

hk × g3k, g4j =
∑

k is j’s child

hk × g4k.
(5)

TABLE II: A simplified version of the BNF grammar rules.
SQL ::= SELECT FROM WHERE [GROUPBY] [HAVING] [ORDERBY]
SELECT ::= ”select” (term (”,” term)? | SQL)
FROM ::= ”from” (table ((”,” table)? | (”join” table)?) | SQL)
WHERE ::= ”where” predicate (conjunction predicate)?
predicate ::= column operator (value | SQL)
term ::= column | aggregator ”(” column ”)”
table ::= <table> column ::= <column> operator ::= <operator>
aggregator ::= <aggregator> value ::= <value> conjunction ::= <conjunction>

Finally, we aggregate the weights with the same node type

and obtain the feature vector, i.e., f li =
∑

j’s node type is i g
l
j .

We use the learned index utility y(f) to replace c(W,d, I)
in computing the reward. We adopt the self-critic (SC)
method [57] to alleviate the high variance problem by sub-
tracting r with rb, which is based on the output obtained by
greedy search, i.e., choose with the highest probability. We
sample a batch of trajectories B and then average over these
trajectories to calculate the policy loss.

LRL =
1

|B|
∑

q′∈B

∑

t

logP (q′t|q′<t,q,Vt)× (r − rb), (6)

where r is calculated based on the learned index utility

y
(
f(q)

)
provided by LightGBM using query q’s feature vector

extracted by the above procedure and rb is calculated based

on qg , which is the query obtained by the greedy search.

C. Index Advisor Independent Pretraining

RL training in Section IV-B explores and exploits the space

of possible perturbation combinations but is typically time-

consuming due to the large trajectories for a good policy [58].

We propose to pre-train TRAP prior to RL to enhance the

training efficiency. This stage is irrelevant to any index advisor,

and its goal is to initialize TRAP with a better understanding

of the SQL (e.g., the overall syntactic structure) before RL.
Specifically, we pre-train TRAP based on a synthetic dataset

Q = {q,q′}. For each original query q, we randomly sample
and replace tokens to obtain the perturbed query q′ (more
details in Section V). Then, the parameters of TRAP are
updated to optimize the likelihood of generating q′ from q.

Lp = −
∑

(q,q′)∈Q

∑

t<|q|
logP (q′t|q′t−1,q,Vt). (7)

Note that although both the encoder and decoder of TRAP are

pre-trained, we only transfer the parameters of the encoder to

the RL stage [59]. The intuition is to enhance TRAP’s ability

to capture the overall context of the input SQL query. The

decoder is refreshed at the beginning of RL to explore various

perturbations and receive index-relevant signals directly.

D. Constraint-Aware Reference Tree

Although encoder-decoder structure [53] has been widely

applied in many NLP tasks, it fails to generate a valid

perturbed query that meets the perturbation constraints (Note

that the constrained decoding technique adopted in SQL gen-

eration tasks, e.g., the NL2SQL [60] only guarantees the SQL

grammar). Intuitively, since SQL is well-structured and each

token can be chosen from a limited set of tokens in the vo-

cabulary, our solution is to construct a Constraint-Aware
Reference Tree for each SQL query and locate the legit-
imate vocabulary at each step by traversing the tree.
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Fig. 5: Illustration of Constraint-Aware Reference Tree.

Construction of Constraint-Aware Reference Tree. Given

an input query q, we initialize G based on the Backus–Naur

Form (BNF) grammars [61]. Each BNF rule defines a non-

terminal symbol recursively by a set of terminals (i.e., query

tokens) or other non-terminals. A simplified version of BNF

rules is illustrated in Table II. Consequently, as shown in

Figure 5, G’s root node r corresponds to the SQL statement,

a leaf node l corresponds to an actual SQL token in q, and a

non-leaf node n corresponds to a non-terminal symbol in the

BNF rules. Such a tree structure can support complex queries

when a sub-query is represented as a sub-tree of G.

For each node i ∈ G, a node type pi is assigned. (1) For a

non-leaf node n, its node type pn is equivalent to the non-

terminal symbol in the BNF rule; (2) Each leaf node l is

assigned a node type based on the clause and its token type.

For example, in Figure 5, select and T1.COL1 are the

two leaf nodes under the node SELECT and their node types

are reserved and select#column respectively. The node

with a special type, i.e., (.*)? serves as the last child node

in each clause, i.e., the node SELECT and WHERE.

We maintain a global vocabulary V for G, segmented into

several regions to reduce the storage cost. We use the leaf

node l’s node type pl to locate a region Vpl

of the legitimate

tokens for l. Each region in the vocabulary is instantiated based

on the node type’s legitimate tokens. As shown in Figure 5,

the vocabulary contains a set of reserved SQL keywords for

node type reserverd. For from#table, tables in the

current dataset, d are included. Legitimate tokens for predicate

values are sampled from the current dataset and workloads.

For example, for T1.COL2#value, we sample the values of

column COL2 in table T1 or extract values from the predicates

in the workloads in Section V-A.

Masking Invalid Tokens Based on Constraint-Aware
Reference Tree. After G is initialized and V is instantiated,

while generating q′, we dynamically mask invalid tokens in

V and update G. Algorithm 1 depicts the overall process.

Starting from the first token (line 1), the perturbed query q′ is

generated in a token-by-token manner (line 2). At step t, we

Algorithm 1: Generation of q′ based on G

Input: Original queries q, Constraint-Aware Reference

Tree G, Perturbation constraint, Edit distance ε
Output: Perturbed queries q′

1 t = 1
2 while do
3 if current edit distance k(q,q′) < ε and (token

type can be modified or node t is (.*)?) ) then
4 Obtain the legitimate vocabulary Vpt

5 Sample q′t from Vpt

by P (q′t|q′<t,q,Vt)
6 if qt �= q′t then
7 Update current edit distance k(q,q′)
8 for each leaf node i behind t in G affected

by q′t do
9 Update pi and Vpi

10 t++

first check if the edit distance has not been exceeded and the

modification is allowed in the perturbation constraints, then

a new token can be appended (line 3). Figure 5 presents an

example under the Shared Table Perturbation with

ε = 3, “T1.COL1” can be altered and a new column, i.e.,

T1.COL4 can be added to (.*?). Then we traverse to

the leaf node t and locate the legitimate vocabulary Vpt

of its node type (line 4). We sample a token q′t from the

legitimate vocabulary Vpt

based on the probability calculated

in Equation 4 (line 5). If the sampled token q′t is different from

the original token, then we update the edit distance (line 6).
We also look ahead to all the nodes that will be affected by

the current token and update their node types and legitimate

vocabulary (line 8). For instance, “T1.COL1” in Figure 5

is replaced by “T1.COL2”, then “T1.COL2” is masked in

Vselect#column to avoid the repetitive occurrence of columns

in the same clause. The node type T1.COL2#value for

node “0.02” will be updated by ?#value, where ? is a

placeholder for a column in the predicate and is instantiated

by “T1.COL2” since “T1.COL2” remains unchanged.

V. EXPERIMENTS

In this section, we conduct experiments to answer two

research questions. (1) Can current index advisors deliver high

and stable performance over the perturbation-based workloads

(Section V-B)? (2) Are the components of TRAP effective

in generating perturbation-based adversarial workloads that

successfully incur performance drops of the index advisors

(Section V-C)? Furthermore, we present an in-depth analysis
and discoveries about these index advisors in Section VI.

A. Experimental Setup

Index Advisors. As shown in Table III, we assess the ro-

bustness of ten index advisors, including heuristic-based index

advisors, i.e., Extend [3], DB2Advis [4], AutoAdmin [5],

Drop [6], Relaxation [29] and DTA [11]; learning-based index

advisors, i.e., SWIRL [7], DRLindex [9], [13], DQN [8]
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TABLE III: Index advisors include heuristic-based and learning-based meth-
ods that select single-column (S) and multi-column (M) indexes within the
storage and #index constraints, using different selection criteria, strategies etc.

Heuristic-based Index Advisors
Victim Constraint Type Criterion Strategy

Extend [3] Storage S/M Cost
Storage

Incremental

DB2Advis [4] Storage S/M Cost
Storage

Incremental

AutoAdmin [5] #index S/M Cost Incremental
Drop [6] #index S Cost Decremental

Relaxation [29] Storage S/M Cost
Storage

Decremental

DTA [11] Storage S/M Cost Incremental
Learning-based Index Advisors

Victim Constraint Type Learning Ib

SWIRL [7] Storage S/M PPO Extend
DRLindex [9] #index S DQN Drop

DQN [8] #index S/M DQN AutoAdmin
MCTS [10], [62] #index S/M MCTS AutoAdmin

and MCTS [10], [62]. According to Table III, these index

advisors cover a wide range of variety, including different

tuning constraints (i.e., storage budget or #index), index types

(i.e., single and multi-column indexes), selection criteria and

strategies, and the underlying reinforcement learning methods.

Datasets. (1) TPC-H is an open-source OLAP benchmark

that contains 8 tables and 61 columns; (2) TPC-DS is an

open-source OLAP benchmark that contains 25 tables and 429

columns; (3) TRANSACTION is a real-world OLTP bench-

mark of banking that contains 10 tables and 189 columns.

Queries. For TRANSACTION, we adopt the queries from

real-world transactions. For TPC-H and TPC-DS, we follow

the method in [19], [38] to enrich the diversity of queries,

which synthesizes additional Select-Project-Aggregate-Join

(SPAJ) queries according to a meaningful join graph.

Workloads. We randomly sample from the queries and con-

struct workloads with random sizes in [1, 50]. Since not all the

index advisors have explicitly considered the query frequency,

we assign a unit frequency (i.e., 1) to each query in the

workload for a fair assessment. However, the frequency is

implicitly considered if multiple identical queries appear in

the workload. Besides, our framework can support different

frequencies with little effort by multiplying the reward with the

frequency in Equation 6. We do not model the arrival timing

of queries because the index advisors assessed cope with

queries in a batch manner. Modeling the explicit arrival timing

is beyond their capabilities. Nevertheless, TRAP is general

and can be adapted to investigate the impact of periodic

templates. For example, given the possible variants in the next

period, we can modify the legitimate tokens in the perturbation

constraints.

We construct 20,000 workloads and randomly perturb them

to pre-train TRAP (Note that this process is an offline one-

time effort without the interaction with specific index advisor.

The comparison among other pre-trained models are presented

in Section V-C). We construct another 5,000 workloads to

train the learning-based index advisors and the learned cost

model, i.e., LightGBM in Section IV-B. Then, we split the

5,000 workloads into the training/testing/validation sets (8:1:1)

to train and evaluate TRAP. According to Definition 3.3, if

the utility of an index advisor u(W,d, f) > θ, i.e., high

performance for a workload W in the set, then we generate

W ′ by TRAP or other competitors and compute IUDR based

on u(W,d, f) and u(W ′,d, f). Note that we detect and

exclude all the potential non-sargable workloads from W ′,
i.e., u(W ′,d, f) < θ for all the index advisors (Definition 3.3),

which are not in the region of the assessment, and the analysis

over these workloads is in Section VI-C.

Evaluation Metric. We strictly adopt the same tuning con-

straints (i.e., the storage budget) in the assessment process.

For index advisors with cardinality constraints (e.g., Drop [6]),

they are allowed to build indexes that don’t exceed the same

storage budget given. We identify a moderate value of the

storage budget (e.g., half of the dataset size) to ensure that

index advisors can cope with the given workloads without

significantly impacting the results. The evaluation metric is

IUDR. Similar to the focus of previous studies, it measures

the relative cost reduction, and a higher IUDR means a larger

performance drop (i.e., less robust). We get the final indexes

returned by each index advisor and observe that the time

budget does not exhibit variations spanning several orders of

magnitude under the same tuning constraint.

In computing the index utility u in Definition 3.2, the

relative cost reduction of the index advisor is compared with a

baseline configuration Ib. For heuristic-based index advisors,

Ib is the null set, i.e., using no index at all. For learning-based

index advisors, Ib is given by a heuristic-based index advisor

since learning-based index advisors are claimed to outperform

heuristic-based index advisors [7], [8] and we intend to verify

their superiority [8], [62], identify workloads they fail to do

well and give improvement insights specifically. In particular,

because the performance is affected by the tuning constraints

and the index type, a fair baseline configuration is chosen with

the same constraint and index type to exclude the influence of

these external factors. For example, as shown in Table III, the

baseline for SWIRL is Extend because they meet the same

storage tuning constraint and support multi-column indexes.

Moreover, their IUDR with the null set can be acquired when

also considering the corresponding IUDR of heuristic-based

index advisors referred. We repeat the overall process three

times and report the average IUDR.

Implementation. All the experiments are conducted with

Python 3.7 PostgreSQL 12.5 on a workstation with two

Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main

memory, and a GeForce RTX 2080 Ti graphics card. We

leverage the open-source implementation of heuristic-based

index advisors [2], SWIRL [7], and DQN [8]. We implement

DRLindex [9] and the UCT version of MCTS [62] and train

all the learning-based index advisors according to the details

illustrated in the original paper. Unless stated, the default

initial index utility is θ = 0.1, and the maximum edit distance

allowed is ε = 5. For TRAP, the embedding size of GRU is set

to be 128, the learning rate is 0.001, and it is trained for 200

and 100 epochs in pre-training and reinforcement learning. We

use feature normalization, implement log-transformation [63]

and minimize the Mean Square Error to train LightGBM.

Codes of TRAP, implementation details, and more experimental
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Fig. 6: IUDR of index advisors on workloads generated by different methods (A higher IUDR means a larger performance drop, i.e., less robust).

results are publicly available3.

B. Robustness Assessment of Index Advisors

We generate perturbation-based adversarial workloads W ′

with four different methods. (1) Random: Randomly replace

tokens of the queries in the original workload to synthesize

perturbed queries. (2) GRU: Generate the perturbed queries in

a token-by-token manner using a GRU layer. (3) Seq2Seq:

Generate the perturbed queries by a vanilla Seq2Seq model,

where the encoder is the Bi-GRU layer and the decoder is the

GRU layer. (4) TRAP: The method described in Section IV. All

the above methods are equipped with the same tree structure

to guarantee the validity of queries, and Random is allowed

to generate 5× more perturbed queries to verify its capability.

From Figure 6, we observe that both heuristic-based
and learning-based index advisors are vulnerable to the
perturbation-based adversarial workloads generated by
TRAP. Specifically, the average IUDR is 0.4946 on TPC-H,

0.3893 on TPC-DS, and 0.5177 on TRANSACTION under the

three perturbation constraints. Among heuristic-based index

advisors, DB2Advis exhibits high performance oscillation,

which might due to limited index interaction [64] considered.

Specifically, it only invokes a one-time what-if call from the

3https://github.com/XMUDM/TRAP

optimizer to acquire the index utility with all the indexes built,

and the utility of various index combinations is not accurately

measured. SWIRL is generally the most robust learning-based

index advisor. This might be attributed to the most fine-grained

state representation adopted in the workload modeling and

the invalid action masking strategy over the action space of

candidate indexes (More details in Section VI-A).

Comparison among different workload generation methods

verifies the necessity of designing a workload generation
framework for robustness assessment. A naive workload

generation method, e.g., the random method, cannot accu-

rately measure the index advisors’ robustness. Its IUDR is

barely noticeable (IUDR < 0.005) over many index advisors

on the TPC-DS benchmark. For example, it can not distin-

guish the performance of Extend, DB2Advis, AutoAdmin,

and Drop on TPC-DS benchmark. Furthermore, the values of

IUDR are inconsistent with other workload generation meth-

ods. For example, other methods achieve a larger IUDR un-

der Column Consistent Perturbation than Value
Only Perturbation, while random can not differen-

tiate the two perturbations, i.e., the resulting IUDR does

not show significant differences among these perturbations.

TRAP outperforms other workload generation competitors. The

reasons are two-fold: (1) the attention mechanism adopted in

50

Authorized licensed use limited to: Xiamen University. Downloaded on December 12,2024 at 09:43:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: Performance with different generation modules.
TABLE IV: Efficiency analysis over different generation modules.

Method GRU Bert Bart CodeBert StarEncoder TRAP
#params 1,774,176 110,850,144 140,788,320 126,013,536 125,554,272 2,815,584
Generation

Time (s) 14.5549 42.6194 57.1841 47.2636 47.0761 19.3845

TRAP better captures the overall SQL context and facilitates

the exploration over more effective perturbation combina-

tions; (2) the proposed pre-training step relieves TRAP from

learning a basic understanding about the SQL in RL and

therefore TRAP can focus on the index-sensitive parts (e.g.,

the critical predicates in the WHERE clause) and improves

the training effectiveness (more details in Section V-C). Index
advisors are less robust to perturbed queries with more flexible
perturbations. We can observe that all the workload gen-

eration methods under Shared Table Perturbation
and Column Consistent Perturbation achieve a

higher IUDR than under Value Only Perturbation.

For Shared Table Perturbation, TRAP, Seq2Seq
and GRU achieves 88.56%, 95.59% and 143.95% higher

IUDR than Value Only Perturbation on average.

For Column Consistent Perturbation, a 89.62%,

98.41% and 121.44% higher IUDR are obtained by TRAP,

Seq2Seq and GRU on average. The reason is that the first two

perturbation constraints are more flexible. Accordingly, the

generation methods can explore perturbations on more index-

sensitive parts and degrade the performance more severely.

We further evaluate the scalability of TRAP over larger

databases. Figure 10 presents results of real-world complex

databases over Extend, where the numbers of columns range

from 809 to 1265. We observe that TRAP still outperforms

other methods when databases are large and complex. The

masking mechanism of the Constraint-Aware Reference Tree

in TRAP significantly reduces the number of valid schema

tokens and improves its scalability in large databases.

C. Ablation Study and Impacts of Parameters

Ablation on Generation Module. To investigate the impact

of the generation module of TRAP, we consider the pre-trained

language model (PLM) [65], [66] and implement the following

variants: (1) GRU: The encoder is a GRU layer, and the decoder

is removed; (2) Bert: The encoder is equipped with the

transformer-based pre-trained model Bert [67]; (3) Bart: The

pre-trained bart [68] (transformer encoder-decoder model) is

adopted for the generation; (4) CodeBert: The bert-based

model pre-trained with the large bi-modal data (documents

& code) corpus [69]; (5) StarEncoder: The encoder is

equipped with a recent transformer-based model [70] trained

Fig. 8: Performance under different training paradigms.

Fig. 9: IUDR v.s. initial utility θ, edit distance ε and workload size |W|.
on 80+ programming languages. We report the IUDR and the

training trace of Extend and SWIRL on TPC-H benchmark.

From Figure 7, we can see that the proposed module in
TRAP does improve the effectiveness of the workload genera-
tion. Specifically, TRAP achieves a 41.04% higher IUDR with

less parameters (i.e., nearly the same as GRU) and lower

computation complexity (i.e., the time of Bart is 2.95× in

generating 1000 queries) over transformer-based models in

Table IV. Nevertheless, the pre-trained models, which adopt a

more advanced architecture, fail to achieve a higher IUDR.

The inferior performance of the pre-trained models might

be attributed to the following reasons: (1) The large-scale

transformer architecture needs to be further optimized when

applied to the RL paradigm [71], [72], which is sensitive to

the underlying model design [73] and typically requires a large

number of samples to learn a good policy; (2) These models

are typically pre-trained on a generic corpus deviating greatly

from the SQL, which needs a large effort to handle the domain

adaption issue [74] in the fine-tune process.

Ablation on Training Paradigm. We investigate the impact

of the presented training paradigms. Specifically, we imple-

ment two training paradigms: (1) w/o Cost Model: In the

RL training, use the what-if calls to acquire the estimated cost;

(2) w/o Pretrain: Train TRAP using only reinforcement

learning. As displayed in Figure 8 (a), without the learned

index utility model, the IUDR is 47.46% and 41.46% worse

on average. The cost estimation model provides a more

accurate estimation than the what-if optimizer [24] to guide

the perturbation procedure of TRAP. In Figure 8 (b), without

pre-training, it takes more than 2.72× and 2.37× more epochs

to reach a desired value of IUDR for SWIRL and Extend on

average. The underlying reason is that pre-training transfers

the understanding of SQL from supervised learning and boosts

the training efficiency of RL.

Impact of Hyper-parameters. We investigate the impacts

of parameters on the robustness assessment of index advi-

sors, i.e., (1) the initial index utility threshold θ, (2) the
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Fig. 10: Scalability analysis over large and complex real-world databases.

Fig. 11: The relation between IUDR and the storage budget.

maximal edit distance allowed ε, (3) the workload size |W|,
and (4) the value of the tuning constraint, i.e., the storage

budget. The experiment is conducted under Shared Table
Perturbation against Extend on the TPC-H benchmark.

Figure 9 (a) reports IUDR with respect to θ from 0.0 to 0.5.

For an index advisor, its robustness is positively correlated
with its performance on the original workload. The IUDR of

all the methods increases as θ increases. The underlying reason

is the difficulty of deteriorating a poorly performed algorithm.

random method fails to generate workloads that deteriorate

the performance of Extend (i.e., IUDR < 0). Next, we conduct

perturbation with different amplitudes. Figure 9 (b) reports

IUDR with different values of edit distance ε. We observe that

the robustness is dependent on the amplitude of perturbation.

A smaller ε produces workloads that are more similar to the

original workload, and thus the index advisor is more likely

to perform well. We finally generate workloads of a fixed size

ranging from 1 to 50 and report IUDR in Figure 9 (c). It

shows that TRAP outperforms other methods on the multi-query

workloads with different workload sizes. Figure 11 presents

the results over the varying storage budget. We observe that

the indexing utility stabilizes as the budget increases, and TRAP

still achieves comparable performance, i.e., nearly the same

IUDR when this value is large (i.e., 900MB). The underlying

reason might be attributed to the fact that a large budget only

allows index advisors to return more indexes. It fails to prevent

them from the selection of sub-optimal or useless indexes.

VI. ANALYSIS AND DISCOVERY

In this section, we analyze the robustness of index advi-

sors from the following aspects: (1) the impact of module

designs on the robustness of learning-based index advisors

(Section VI-A); (2) the impact of strategy choices on the

robustness of heuristic-based index advisors (Section VI-B);

(3) the effect of query changes (Section VI-C).

A. Learning-based Index Advisors

Our first discovery is that the granularity of state repre-
sentation affects the robustness of learning-based index
advisors. From the study in Section II, we choose two

typical state representations: (1) fine-grained state
in SWIRL [7], which captures the workload characteris-

tics, including the operators and estimated cost extracted

from the query plans and the corresponding frequency; (2)

Fig. 12: IUDR vs. the adopted state representations.

Fig. 13: IUDR vs. the candidate pruning in the action space.

coarse-grained state in DRLindex [9], which adopts

a matrix to indicate the existence of columns in the workload

and an access vector to count the total occurrence of these

columns. Then we change the state representations on three

index advisor backbones. We only replace the state repre-

sentations with these two types while keeping the rest of

the backbones fixed. We use TRAP to generate adversarial

workloads and report IUDR in Figure 12. We can see that

index advisors with the coarse-grained state are more

vulnerable to adversarial workloads. For example, all index

advisors show significantly higher IUDR (14.41% and 22.20%
higher on average) under Shared Table Perturbation
and Column Consistent Perturbation respectively.

Our second discovery is that candidate pruning in action
space affects the robustness of learning-based index ad-
visors. Both SWIRL and DQN adopt the candidate pruning

techniques in the action space. SWIRL [7] adopts invalid

action masking [75] to remove invalid candidates that (1)

are syntactically irrelevant to the workload, (2) exceed the

storage budget, (3) are selected already, and (4) meet the

invalid precondition principle. DQN [8] classifies the columns

considering the syntactic structure and leverages five heuristic

rules to generate promising candidates. We report the IUDR of

index advisors with different pruning techniques in Figure 13.

We observe that both SWIRL and DQN are more vulnerable

without candidate pruning in the action space.

B. Heuristic-based Index Advisors

We divide the index advisors into two groups based on

tuning constraints (i.e., storage or #index) and compare the

number of sub-optimal solutions over all the adversarial work-

loads generated in Section V. We find that Extend [3] and

Drop [6] are the worst performers in each group.

Extend is inferior since it sometimes neglects the index in-

teraction due to the predefined heuristic (e.g., it only considers

independent, single-column indexes in the first step). Index

interaction [64] refers to the phenomenon that the benefit of

one index can be affected by the presence of another index.

We conduct the following experiment to verify that ne-
glecting the index interaction hurdles the robustness of
heuristic-based index advisors. Specifically, we modify the

implementation of heuristic-based index advisors and utilize

two methods to calculate the benefit of multiple indexes during

the selection process. (1) w/ interaction: calculate the

benefit with all the indexes built; (2) w/o interaction:
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Fig. 14: IUDR vs. the consideration of the index interaction.

Fig. 15: IUDR vs. the usage of the multi-column indexes.

calculate the benefit of every single index with them built

independently and then obtain the benefit of multiple indexes

by averaging the benefits over all the indexes. As shown in

Figure 14, a smaller IUDR is achieved if they consider the

index interaction when calculating the index benefits.

Apart from the index interaction, we notice that the index
type, i.e., the single-column and multi-column indexes,
also have an impact on the robustness. Compared with

AutoAdmin, Drop only recommends single-column indexes.

To verify the impact of the multi-column indexes, we modify

the implementation of different heuristic-based index advisors

and make them consider the index candidates with (1) only the

single-column indexes and (2) also the multi-column
indexes. As shown in Figure 15, all the index advisors exhibit

a smaller IUDR if multi-column indexes are considered.

C. Impact of Query Change

We study types of SQL changes that are considered to

be factors relevant to the performance of index4: (1) the

Resultset Size has been dramatically enlarged after per-

turbation; (2) an operator is changed to Unequal operator

“�=”; (3) change the operator “=” to a range (i.e., “≥,≤, <
,>”); (4) columns in the SELECT clause are uncovered in

the WHERE clause after perturbation; (5) the conjunction is

replaced by OR Conjunction; (6) change the columns in

ORDER BY and GROUP BY to enlarge the discrepancy.

We find these types of SQL changes can make a query
non-sargable. A sargable query [45], [46] means that the

DBMS engine can take advantage of an index to speed up

its execution. To verify our discovery, we first use causal

models [76] to determine whether there is a causal relationship

between the aforementioned types and IUDR. A causal model

computes a causation score between two random variables,

i.e., X and Y . If the causation score is positive, it means

that X is a cause that leads to the effect of Y . We collect

pairs of (x, y) from our experiments to compute the causation

score. If a perturbed workload W ′ has the following property:

all the index advisors have a small index utility on it, i.e.,

∀f, u(W ′,d, f) < θ, it means W ′ is non-sargable. Then we

construct the pair (x, y), where x is the occurrence of one of

six query change types in the perturbed workload W ′ and y is

the IUDR. We utilize three causal models in [77]. As shown

4https://docs.oracle.com/cd/B19306 01/server.102/b14211/data acc.htm

Fig. 16: Effect of six types of query changes.

Fig. 17: Visualization of SQL vectors before/after perturbation and the pro-
portion of outliers detected in perturbations with IUDR > 0 and IUDR < 0.

in Figure 16 (a), most causal models agree the changes above
cause the decrease of index utility, i.e., the causation scores are

positive. Figure 16 (b) shows the distribution of six categories

of changes in the non-sargable queries. We can see that a large

proportion (> 70%) of non-sargable queries are changing to

OR Conjunction or expanding the ResultSet Size.

Finally, we find that workloads W ′ generated by TRAP,

affecting robustness, are not Out-of-Distribution (OOD)
samples. We first visualize the representation vector of queries

obtained by TRAP’s encoder before and after perturbation with

t-SNE [78]. As shown in Figure 17 (a), the original and output

queries are indistinguishable and follow the same distribution.

Moreover, we mix the original and perturbed queries and

use anomaly detection algorithms [79]–[81] to detect outlier

queries. As shown in Figure 17 (b), the percentage of outlier

queries in effective perturbations (IUDR > 0) and ineffective

perturbations (IUDR < 0) are similar. The main fraction (i.e.,

97% ∼ 99%) of effective perturbed queries are “normal”.

VII. CONCLUSION

We propose a framework that generates perturbation-based

workloads to assess index advisors’ robustness. We conduct

comprehensive robustness assessments of ten index advisors

on various benchmarks. We provide insightful discoveries for

both heuristic-based and learning-based index advisors.

Summarized Findings. Our findings suggest that: (1)

Perturbation-based adversarial workloads are effective in as-

sessing the robustness of the index advisor because they do not

deviate too much from the original workloads but can identify

the performance loopholes due to the workload drifts in prac-

tice; (2) To design a more robust learning-based index advisor,

it is beneficial to adopt a fine-grained state representation to

capture the workload characteristics and a candidate pruning

strategy in the action space to prune syntactic irrelevant or

useless candidates; (3) To design a more robust heuristic-

based index advisor, it is vital to consider the index interaction

during the selection process and the usage of the multi-column

indexes. To increase applicability on more indexes advisors

and workloads, we have implemented TRAP in openGauss5.

5https://gitee.com/opengauss/openGauss-DBMind/
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