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ABSTRACT
Index advisors have become an essential tool to optimize index
selection and accelerate query processing. Various index advisors
have been developed in recent years, and comprehensively assess-
ing their performance from multiple aspects is necessary. In this
demonstration, we introduce ViTA, a user-friendly and informative
tool for interactively Visualizing, Testing, and Analyzing index
advisors. For a user-given workload, ViTA can visualize the main
steps of the index selection procedure in ten existing index advisors
to facilitate the management of index advisors. Moreover, ViTA can
assess the index advisor’s robustness w.r.t. workload drift by gen-
erating testing workloads, i.e., potentially future workloads that
may damage the index advisor’s performance. Finally, ViTA pro-
vides a comparative analysis across index advisors on four aspects,
including the index advisor’s utility (i.e., the ratio of the reduced
workload cost), robustness (i.e., the performance under dynamic
workload), overhead (i.e., the time to acquire the final configu-
ration), and scalability (i.e., the volume of the enumerated index
candidates). Therefore, ViTA can thoroughly compare existing in-
dex advisors to help users determine the most suitable index advisor
that meets their requirements. ViTA is now being integrated into
the openGauss platform as a plug-in1.

CCS CONCEPTS
• Information systems → Database utilities and tools.

KEYWORDS
Index Tuning; AI4DB; Database Performance Assessment

∗Chen Lin is the corresponding author. The project was sponsored by CCF-Huawei
Populus Grove Fund (CCF-HuaweiDB2022002), and the Natural Science Foundation of
China (No. 61972328).
1https://gitee.com/opengauss/openGauss-DBMind

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3614738

ACM Reference Format:
Wei Zhou, Chen Lin, Xuanhe Zhou, Guoliang Li, and Tianqing Wang. 2023.
Demonstration of ViTA: Visualizing, Testing and Analyzing Index Advisors.
In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management (CIKM ’23), October 21–25, 2023, Birmingham,
United Kingdom. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3583780.3614738

1 INTRODUCTION
Indexing is crucial to optimize workload performance. Traditionally,
expert database administrators analyze the workload characteristics
and manually create indexes. To automate this labor-intensive pro-
cess, index advisors, which automatically select a set of indexes for
a given workload, have been extensively studied in both academia
and industry [2–4, 7–9, 11, 12, 14–17].

Conventionally, index advisors are evaluated using synthetic
workloads, and their performance is measured by the reduced work-
load cost achieved under the recommended indexes [7]. Neverthe-
less, this evaluation scheme is neither effective nor comprehensive,
as users require interactive analysis to understand the index ad-
visor’s performance across multiple aspects. Specifically, conven-
tional evaluation methods are limited in the following ways.
• Little Knowledge of the Index Advisor’s Selection Procedure. In a
quantitative evaluation, all index advisors are treated as opaque
boxes, and only the final output, i.e., index configuration, is pre-
sented. It might be difficult even for expert DBAs to analyze the
reasons when sub-optimal index configurations are presented.

• Limited Diversity of Assessment Workloads. In the literature, most
evaluations are conducted on workloads generated from a set of
fixed templates. The index advisor’s robustness is not well cap-
tured, i.e., whether the index advisor will maintain high perfor-
mance on a future workload slightly different from the original
ones due to workload drift [10].

• Lack of Multi-Aspect Analysis. Previous evaluations have focused
primarily on the reduced workload cost while overlooking other
desirable aspects [5], such as the robustness of index advisors
under dynamic workloads, the overhead involved in selecting
the final index configurations, and the scalability in handling
workloads with many index candidates.
In this demonstration, we propose ViTA, a system towardsVisual-

izing, Testing, and Analyzing index advisors. To address the afore-
mentioned limitations, ViTA provides three unique functions. (1)
For any user-given workload, ViTA visualizes the main steps of
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the index selection procedure in ten existing index advisors [4, 7–
9, 11, 12, 14, 17]. Thus, ViTA is a user-friendly tool to facilitate the
management of index advisors. (2) ViTA goes beyond evaluating
indexing performance on static workload to assess the index advi-
sor’s robustness w.r.t. workload drifts. For any user-input workload,
ViTA integrates a learned component to automatically generate test-
ing workloads, which are (a) potential future workloads according
to user-defined perturbation types, i.e., common patterns of daily
query changes and (b) aim to degrade the index advisor’s perfor-
mance with limited knowledge, i.e., no explicitly knowing the inher-
ent characteristics of the index advisors. The index performance on
the input workload and testing workloads are compared to measure
the index advisor’s robustness. (3) ViTA provides comprehensive
analysis across index advisors on multiple aspects, such as the in-
dex advisor’s utility (i.e., the ratio of the reduced workload cost),
robustness (i.e., the performance over dynamic workload), over-
head (i.e., the time to acquire the final configuration) and scalability
(i.e., the volume of the enumerated index candidates). Therefore,
ViTA can thoroughly compare existing index advisors to help users
determine which index advisor best meets their requirements.

2 SYSTEM OVERVIEW
As shown in Figure 1, ViTA consists of three modules.

GRU GRU GRU GRU GRU GRU

GRU GRU GRU Softmax

Figure 1: System Overview of ViTA

Module 1: Index Selection Visualization. In this module, ViTA
asks the user to input a workload and specify an index advisor.
Then, ViTA visualizes the general selection procedure in the index

advisors. (1) Candidate Generation. ViTA presents the initial index
candidates generated by the index advisor, which are promising
indexes considering the syntactic information. (2) Candidate Se-
lection. ViTA formulates the selection procedure as a hierarchical
tree, where each layer corresponds to a selection step, and nodes in
the layer represent the index candidates in this step. Note that for
index advisors based on reinforcement learning, we formulate the
selection procedure in the last episode. (3) Solution Output. ViTA dis-
plays the final index configuration and measures the index advisor’s
performance by the cost reduction ratio of the workload under the
recommended indexes.
Module 2: Testing Workload Generation. In this module, ViTA
accepts a workload and assesses the robustness of index advisors
under workload drift. ViTA integrates a learned component to au-
tomatically generate testing workloads to mimic representative
workload drifts. Then, ViTA compares the index advisor’s perfor-
mances on the original input workload and the generated testing
workload. More technical details will be presented in Section 3.
Module 3: Comprehensive Analysis. In this module, ViTA pro-
vides comprehensive analysis across index advisors. Four aspects
are considered and visualized, including indexing utility, indexing
robustness, indexing overhead, and indexing scalability. Specifically,
to reflect the indexing utility, ViTA computes the cost reduction
ratio under the recommended indexes. To reflect indexing robust-
ness, ViTA compares the cost reduction ratio on the original input
workload and generated testing workload. To reflect indexing over-
head, ViTA records the time budget on the overall index selection
procedure. To reflect indexing scalability (i.e., the effectiveness of
an index advisor on a large workload), ViTA counts the number of
index candidates enumerated during the index selection procedure.

3 TESTINGWORKLOAD GENERATION
Given the user’s input workload, ViTA generates the testing work-
loads with two properties. (1) Similarity: Firstly, the testing work-
loads are derived from the input workload by adding small pertur-
bations based on a user-defined perturbation type. Workload drifts
are observed in real-world production systems and open-source
benchmarks, where many queries are variants of a small number
of templates. For example, 1.7 billion queries are generated from 31
million templates based on an analysis over a real-world production
system [1]. To represent typical workload drifts, ViTA defines three
perturbation types (Section 3.1) and asks the user to choose the
perturbation constraint, i.e., the possible perturbation type and the
degree of perturbation that are likely to occur in future workloads.
(2) Adversary: Secondly, the testing workload is generated to steer
the index advisor to choose a sub-optimal solution and cause a
performance regression. The motivation is: guiding the generation
with an adversarial aim [6] can be more effective in revealing bad
cases and helping the user analyze index advisors. Towards this end,
ViTA proposes an encoder-decoder model (Section 3.2) to modify
queries in the input workload, which is trained in a reinforcement
learning framework with a novel reward function to degrade the
performance of index advisors. Furthermore, when ViTA invokes
the generation model, a Constraint-Aware Reference Tree is intro-
duced to ensure the output is syntactically correct and conforms to
the perturbation type. Thus, the generated testing workloads can
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effectively evaluate an index advisor’s robustness under workload
drifts.

3.1 Perturbation Types
We summarize three perturbation types according to the observa-
tions from daily workload drifts. (1) Value Only Perturbation reflects
the most common template-based workload drift when queries are
variants of the same template with different values. For example,
an online retailer may issue a series of queries to compare the sales
figures of the same product in different seasons, pricing strategies,
or marketing campaigns. (2) Column Consistent Perturbation mim-
ics the workload change when users operate on the same set of
columns. For instance, a customer shopping on an e-commerce
website may change the order of columns in the search results to
display products according to their preferences and requirements.
(3) Shared Table Perturbation simulates the scenario when users
change the payload (i.e., columns in the SELECT clause) or add new
predicates to the original queries. For example, a sales analyst may
perform exploratory analysis with different filter predicates for the
date range, product category, or customer demographics to uncover
trends or patterns and assist inventory management decisions.

Since a SQL statement is composed of tokens, where tokens can
be roughly categorized into seven token types, i.e., Column, Table,
Value, Keyword, Conjunction, Operator, Aggregator, the
three perturbation types can be defined at the token level, and the
legitimate perturbation token types for each perturbation type are
shown in Table 1.

Table 1: Legitimate token types w.r.t. perturbation types

Perturbation Column Value Conjunction Operator Aggregator
Shared Table ✓ ✓ ✓ ✓ ✓

Column Consistent ✓ ✓ - - -
Value Only - ✓ - - -

3.2 The Generation Model
The generation model is an encoder-decoder framework [13]. The
encoder reads the original queries in the input workload, and the
decoder generates the perturbed queries based on the encoder’s
output and the previously generated tokens. As shown in Figure 2,
a novel Constraint-Aware Reference Tree is introduced in the genera-
tion process to preserve the perturbation constraints and syntactic
correctness of the output.

Initializing Constraint-Aware Reference Tree. ViTA parses
the queries in the inputworkload and initializes a CAR-tree (Constraint-
Aware Reference Tree) according to a set of predefined Backus–Naur
Form grammar rules (BNF rules). The root node of the CAR-tree
represents the SQL statement. Each non-leaf node corresponds to a
non-terminal symbol in a BNF rule (i.e., a clause or a token type).
And each leaf node corresponds to an actual token in the query.

As displayed in Figure 2, the input query is SELECT T1.a FROM
T1 WHERE T1.b > 0.02, according to one of the BNF rules defined
in ViTA SQL ::= SELECT FROM WHERE [GROUPBY] [HAVING]
[ORDERBY], the root node will be SQL, the three nodes in the first
layer will be SELECT, FROM, WHERE. According to another BNF
rule SELECT ::= "select" (column ("," column)? | SQL),

the children of SELECT will be “select”, column and the child
node of column will be T1.a, which is a leaf node.

Figure 2: Example of Constraint-Aware Reference Tree

After initializing the CAR-tree, a legitimate vocabulary is initial-
ized to include each non-leaf node’s legitimate tokens. For example,
the legitimate tokens for from#table include the tables in the cur-
rent database and the legitimate tokens for T1.b#value include
a set of sampled values from T1.b. The CAR-tree and its associ-
ated legitimate vocabulary will be dynamically updated during
generation.

Generating based on Constraint-Aware Reference Tree.
The decoder generates a token at a step and performs the following
operations in each step. Firstly, given the input query and previously
generated tokens, the decoder decides whether the current position
of the input query can be modified according to the perturbation
constraint. If the perturbation constraint forbids modification, the
decoder will directly copy the token from the input query’s current
position and proceed to the next position. Otherwise, the decoder
will traverse to the lowest ancestor of the current leaf node on the
CAR-tree based on the perturbation constraint. Then, the decoder
will fetch the legitimate vocabulary associated with the current
node and draw a token from the legitimate vocabulary2. Note that
the current token itself is also included in the vocabulary if legit-
imate. After generating the current token, the CAR-tree, and the
corresponding legitimate vocabulary will be updated, e.g., the leaf
node is replaced with the changed token.

As shown in Figure 2, the input query is SELECT T1.a FROM T1
WHERE T1.b > 0.02, previously generated tokens are SELECT T1.a
FROM T1 WHERE T1.b >, the perturbation constraint is Value-Only
Perturbation which means that only tokens with the type Value
in the input query can be altered. In this case, the token from the

2Due to page limit, we omit details of the generation probability of drawing a token
from a vocabulary, which is standard in the encoder-decoder framework.
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Figure 3: The Index Selection Visualization and Testing Workload Generation Interface

current position should be drawn from the legitimate vocabulary
of T1.b#value.

Training the Generation Model. Reinforcement learning is
adopted to train the generation model. The decoder acts as an agent
that generates a testing workload in each episode based on the state,
i.e., the encoder’s output given the input workload and receives a
reward. To guide the generated queries to be an adversary of the
index advisor, we formulate the reward function, which calculates
the performance drop of the generated workload compared with
the input,

𝑟 = 1 − 𝑢 (W′, d, 𝑓 )
𝑢 (W, d, 𝑓 ) , (1)

whereW denotes the input workload,W′ denotes the generated
testing workload, d denotes the database, 𝑓 denotes the index advi-
sor and 𝑓 (W, d) is the set of index advisor’s recommended indexes,

the cost reduction ratio𝑢 (W, d, 𝑓 ) = 1− 𝑐
(
W,d,𝑓 (W,d)

)
𝑐
(
W,d,∅

) , ∅ denotes

null index, 𝑐 (W, d, 𝑓 (W, d)) is the cost of runningW on d with
𝑓 ’s recommended indexes. Thus, if the index advisor performs bet-
ter on the original workload W than on the testing workload W′,
i.e., the workload cost reduction ratio 𝑢 (W, d, 𝑓 ) is larger than
𝑢 (W′, d, 𝑓 ), then 𝑟 > 0.

4 DEMONSTRATION
The demonstration video is available at https://youtu.be/RfV4ylOxpcc.
In the demonstration, the user will use the web interface to assess
the performance of ten index advisors on the typical workloads,
e.g., TPC-H, TPC-DS, and JOB. The demonstration comprises three
steps, as shown in Figure 3 and Figure 4.

(1) Index Selection Visualization. Figure 3 (a) shows the result
page, which displays the Initial Candidates Pool (❶) in a forced
directed tree. The root node denotes the benchmark TPC-H, the
children nodes represent each table in the database, and the leaf
nodes correspond to the initial index candidates. The Selection
Procedure (❷) is shown in a hierarchical tree with each layer as a
selection step. All the nodes denote the index candidates at this step,
and the selected one corresponds to the red node. More detailed
information, e.g., the value of the workload cost, is presented when

the mouse hovered. The Solution Output (❸) is presented, and the
cost reduction ratio of queries over the workload is reported in a
bar plot.

(2) Testing Workload Generation. As shown in Figure 3 (b),
after the user specifies an input workload (❶), an index advisor and
a perturbation constraint (i.e., the perturbation type and degree of
perturbation), the user can click “Parse" to show the CAR Tree (❷)
of each query introduced in Section 3. Then they can click “Run” to
view the result, check the difference between the input and testing
workload (tokens highlighted in green and red in ❸), and analyze
the comparative workload cost on input and testing workloads with
and without the recommended indexes in a bar plot (❹).

Figure 4: The Comprehensive Analysis Interface

(3) Comprehensive Analysis. Finally, Figure 4 shows a com-
prehensive comparative analysis among different index advisors
on four aspects, i.e., indexing robustness (❶), indexing utility (❷),
indexing scalability (❸) and indexing overhead (❹) in the bar plots.
The overall performances are summarized in a radar chart (❺).
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