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Abstract
The development of Large Language Models (LLMs) has revolution-
ized QA across various industries, including the database domain.
However, there lacks a thorough evaluation regarding the capabil-
ities of different LLMs in database QA. To this end, we introduce
DQABench, the first comprehensive database QA benchmark for
LLMs. DQABench features an innovative LLM-based method to au-
tomate the generation, cleaning, and rewriting of evaluation dataset,
resulting in over 200,000 QA pairs in English and Chinese. These QA
pairs cover a wide range of database-specific knowledge extracted
from manuals, online communities, and DB instances, allowing
for assessment of LLMs’ Retrieval-Augmented Generation (RAG)
and Tool Invocation Generation (TIG) capabilities in the database
QA task. Furthermore, we propose a highly modular and scalable
testbed DQATestbed, with basic and advanced components such as
Fine-tuning, Question Classification Routing (QCR), RAG, TIG, and
Prompt Template Engineering (PTE). Finally, we provide an evalua-
tion pipeline that computes various metrics throughout a standard-
ized evaluation process to ensure the accuracy and fairness. Our
evaluation reveals the strengths and limitations of nine open-source
and commercial LLMs, and the impact of various service compo-
nents (e.g., fine-tuning, QCR, RAG, TIG). The proposed benchmark
dataset is available at https://github.com/XMUDM/DQABench.
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1 Introduction
Large language models (LLMs) have emerged as one of the most
promising artificial intelligence technologies in recent years. LLMs
have achieved remarkable progress in answering diverse questions
from vast domains, such as medicine [55, 58], finance [22], earth
science [6], law [9], and so on.

Question-answering (QA) systems are pivotal copilots for data-
base systems. Traditionally, extensive IT knowledge, such as SQL,
storage, hardware, and network, is necessary for database deploy-
ment and usage. This demand for expertise highlights the necessity
for Database Question Answering (DBQA), which allows DB users
to pose questions freely and receive technical support whenever
and wherever needed.

People expect LLMs to excel in DBQA, yet their potential re-
mains under-explored due to the lack of high-quality bench-
marks. Existing QA benchmarks fall short in two key aspects:
(1) DB Expertise: As shown in Figure 1(a), database expertise en-
compasses a broad and diverse range of categories, including gen-
eral, product-specific (e.g., deployment and execution), as well as
instance-level knowledge (e.g., monitoring, diagnostics, and opti-
mization). While some existing QA benchmarks [16, 17] contain
IT-related questions, their coverage for DBQA is limited and may
exclude advanced or modern concepts such as "serverless" or "object
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(a)

GPT-4 AnswerVision Bot AnswerQuestion Type
“Serverless” refers to a cloud computing 

model …
“Serverless” refers to a cloud 

computing model …
General DB

What does the Severless mean ?

PG does NOT support JSON_TABLE. No.17 version (newest) of PG docs 
show that PG support ...

Product-specific
Does PG support JSON_TABLE ?

The reason may: (1) Query (2)CPU (3) 
IO…

Query_Analyasis Tool shows that query 
need to be rewritten...

Instance-specific
Why do SQL queries execute slow ?

(c)

Ours BenchAgent BenchNL2SQL BenchRAG BenchCommon Bench
Full Coverage×SQL×A few topicsDB Knowledge

Professional DB Docs××Most News/Wiki×Retrieval

Comprehensive DB ToolsCommon ToolsSQL Execute××Tool Invocation

Multi-turn Interaction×*××*×Planning

(b)

Figure 1: (a) Percentage of various questions in online DB communities. (b) Existing benchmarks comparison. Note: x* means a
few bench have limited implementation (c) GPT-4 DBQA examples.

storage." (2) Multi-Dimensional Evaluation:DBQA requires assessing
LLMs across various capabilities, including auxiliary information
usage, tool application, reasoning, etc. However, as shown in Fig-
ure 1 (b), most of the benchmarks focus on only a few dimensions
and often overlook the core needs of DBQA. For instance, most
QA benchmarks [27] focus only on a standalone LLM, RAG bench-
marks [17, 21, 30] mainly evaluate retrieval from news orWikipedia.
In contrast, database documentation poses a more complex retrieval
challenge with its long contexts, technical terms, and structured
code. Likewise, Text2SQL benchmarks [11, 23, 54] focus solely on
SQL generation, and LLM-based agent benchmarks [5, 37, 47, 48]
only test basic tool use. In contrast, DBQA places a deeper demand
on multi-turn interactions and tool-planning capabilities.

Furthermore, existing LLMs currently perform poorly in DBQA.
As shown in Figure 1(c), even GPT-4 struggles with advanced con-
cepts from technical documentation and tool-invocation DBQA.
Our experiments confirm that, even with RAG and tool-calling
modules, most LLMs can only correctly answer less than 40% of
simple DBQA questions.

Therefore, it is essential to propose a comprehensive DBQA
benchmark to advance both the efficiency of DBMS and the de-
velopment of LLMs. However, such evaluation faces three major
challenges: (1) DBQA Dataset, as data collected from the Web [15,
17, 35, 36] often exhibits low question quality, factually incorrect or
subjective answers, and limited diversity; (2) DBQA Testbed, since a
complete DBQA system must integrate multiple components (e.g.,
pre-training, fine-tuning, routing, retrieving, and tool invocation);
and (3) Multi-Dimensional DBQA Evaluation, DBQA need various
fine-grained metrics and assessment of both intermediate compo-
nents and end-to-end performance.

We make the following contributions.
(1) To address C1, we propose the first benchmark DQABench to

evaluate question-answering performance in the database domain.
DQABench simulates real-world DB scenarios, covers a wide range
of DB topics, and contains complex questions that demand assis-
tance from external manuals and DB tools. The dataset contains
200,000 QA pairs, larger than existing instruction datasets in the IT
field [27]. We propose novel strategies to enrich online resources
for high-quality questions, answers, and annotations. (Section 3)

(2) To address C2, we propose a plug-and-play testbed to ex-
periment with different LLM application strategies. The testbed
assembles all components potentially involved in DBQA, such as
Question-Category Routing (QCR), Prompt-Template Engineering
(PTE), Retrieval-AugmentedGeneration (RAG), and Tool-Invocation
Generation (TIG). (Section 4)

(3) To address C3, we conduct an in-depth evaluation of the end-
to-end performance of nine LLMs (Section 5) and their modular
performance using various components. We discover several in-
sights, including but not limited to the following four key aspects.
(Section 6)
I1: Necessity of DBQA Research. We find that even the most
powerful GPT-4 achieves less than 60% accuracy on the simple
questions in DQABench, underscoring the need for further DBQA
research.
I2: End-to-End DBQA Ability. We observe significant perfor-
mance variations across different LLMs. Smaller models, in particu-
lar, struggle with advanced questions that require tool usage and
extensive knowledge sources.
I3: Impact of Intermediate Components. We showcase that
a complete pipeline with various intermediate components (such
as pre-training, fine-tuning, QCR, RAG, and TIG) is important to
DBQA performance.
I4: Development Directions for Intermediate Components.
We compare various current implementations of intermediate com-
ponents to identify performance bottlenecks and future directions.
For example, the QCR module benefits from a well-trained classifier
rather than relying on LLM responses, and the improvement from
the RAG module is more constrained by recall rate rather than the
interaction method between the LLM and the retrieval module, etc.

2 Related Work
Researchers have shown that scaling model size and training data
improves question-answering performance. Large-scale LLMs such
as GPT-3.5 [31], LLaMa [42], and PaLM [1] demonstrate capabilities
far beyond traditional models—with GPT-4 [32] achieving human-
level performance on many benchmarks. Medium- and small-scale
models (e.g., Llama3-7B [42], Mistral-7B [19], Baichuan2-13B [51],
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Table 1: DQABench dataset statistics

Type Source # Q. English Chinese Label|Q| |A| |Q| |A|

General Exam 2,152 224.19 458.61 85.44 124.59 N/AForum 74,893 1205.75 1273.16 354.15 790.24
Product
Specific

OpenGauss 21,689 78.19 666.26 31.34 267.42 Retrieval
LabelGaussDB 4,950 84.84 885.67 34.62 394.60

Instance
Specific

Common 1,080 86.07 1070.21 29.76 757.23 Tool
LabelExpand 2,707 127.18 1019.28 34.81 515.92

Qwen-14B [3], and Yuan-2B [46]) have been developed for deploy-
ment on resource-constrained devices, though their performance is
typically limited to simpler tasks. Moreover, external knowledge has
been incorporated to further enhance answer quality by retrieving
documents [12] or guidelines [28], leveraging structured knowl-
edge bases (e.g., knowledge graphs) for reliable reasoning [40], or
using LLMs as agents to invoke external tools [5, 44, 47, 48].

In vertical domains such as medicine [55, 58], finance [22], earth
science [6] and law [9], specialized LLMs are created by perform-
ing domain-specific pre-training and fine-tuning. This process
adapts a general-purpose model to capture the unique language
styles, terminologies, and deep expertise of a field. For example,
in medicine [25, 55, 56, 58] the models integrate clinical terminol-
ogy and evidence-based guidelines, while in finance [22, 49] they
incorporate industry jargon and regulatory context; similarly, in
earth science [6] and law [9], models are fine-tuned with data that
reflect complex scientific measurements or legal reasoning. Various
benchmarks are proposed to evaluate LLM performances in vertical
domains [13, 14, 25, 49, 56].

In the database domain, LLMs have been shown to ground data-
base tuples, schemas, and queries in novel ways [10], and some
proposals even suggest they could serve as Database Administra-
tors [60]. Other studies use LLMs for intelligent database diagnosis
(e.g., D-Bot [61]) and query rewriting [26]. LLMs also perform
strongly in converting natural language to SQL (NL2SQL); sys-
tems such as Binder-SQL [8], DIN-SQL [33], and BIRD [24] gener-
ate SQL directly from natural language, while DB-GPT [50] offers
complete visualized data analyses and reports. Established bench-
marks [11, 23] further support the evaluation of these capabilities.
Notably, our work goes beyond NL2SQL by considering tool in-
vocation and ensuring that LLM outputs meet varied formatting
requirements.

3 DQABench Dataset Generation
A dataset consisting of pairs of questions and answers is crucial
for evaluating the performance of a DataBase Question-Answering
(DBQA) bot. However, manually creating such pairs is labor-intensive.
This section introduces techniques for generating a dataset tailored
to the DBQA benchmark.

As shown in Figure 1 (a), the DB questions can be divided into
three subsets (general DB, product-specific and instance-specific
questions), corresponding to three key skill sets of an LLM-based
DBQA bot. The three question categories are different in (1) data
sources: general DB questions are publicly available, while product-
specific questions and instance-specific questions are almost im-
possible to obtain complete examples online. (2) problem back-
ground: the latter two categories (i.e., product-specific questions

and instance-specific questions) need supporting information, such
as the product manual and instance context. (3) ground-truth an-
swers: the latter two categories must provide retrieval results or
tool invocation results to demonstrate the reasoning and produce
trustworthy answers.

Accordingly, we propose methods to construct the dataset for
each category. (1) We tailor a prompt-chain for each DBQA subset
based on its characteristics, ensuring that generated QA pairs cover
a wide range of topics, present clearly defined questions, and yield
factually accurate answers. (2) We leverage LLMs to achieve align-
ment of the answer’s language style with a tone that is user-friendly,
logically clear, and specific, rewriting any answers that do not meet
this alignment—thereby enhancing the dataset’s training value. (3)
For each subset, we develop methods to extract complete support-
ing information for every QA pair, ensuring the dataset provides
the extra details necessary for multidimensional evaluation.

As shown in Table 1, we construct a dataset with bi-lingual QA
pairs on the three categories, translating English pairs into Chi-
nese and vice-versa, leading to a total of over 200,000 QA pairs.
According to our statistics, our QA covers, but is not limited to,
the following DB domains: Operation Diagnostics, Business Intelli-
gence, Performance Monitoring and Tuning, Data Analysis, System
Utilization Analysis, Deployment Issues, Operations Management,
question Optimization, Backup and Recovery, Permission Manage-
ment, Index Management, and Database Tuning.

3.1 General DB QA
Data Sources. We have two types of data sources. (1) Similar to
other domain-specific datasets, we collect 2, 000 unique multiple-
choice questions from four DB university textbooks, three on-
line courses, and 28 online course exams. (2) To ensure that the
DQABench dataset covers a wide range of questions asked by DB
users in daily usage, we collect QA entries from the largest English
and Chinese online DB communities.

Step 1: Question Filtering.We filter the collected content based
on online feedback. First, we compute the ROUGE-1 score, which
measures the overlap of unigrams between questions and then QA
with a large ROUGE-1 score (≥ 0.8) are merged. For each question,
we retain only the accepted answers and those with high upvotes
(≥ 50) to ensure the factual correctness of the responses.

Step 2: Answer Rewriting. The collected answers are insuffi-
cient as ground truth. For instance, exam questions only offer letter
options, leading LLMs to generate overly random responses. To
address this, we prompt GPT-4 to add detailed explanations for each
exam answer choice. We instruct GPT-4 to rephrase each accepted
online response into a detailed, professional, and friendly style,
resulting in more specific and user-friendly content.

3.2 Product-Specific QA
Constructing product-specific QA pairs from online sources is chal-
lenging because it’s hard to verify if online answers are based on
specific product documentation or to locate that documentation for
evaluation. Therefore, we build these QA pairs using the workflow
in Figure 2.

Step 1: Pre-processing Manuals. Most product manuals are
too long for LLMs to handle. We segment each manual into parts
that contain complete paragraphs and do not exceed 8,000 tokens.
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… (8000 tokens) 

Generated Answer
According to the 

documentation, the 
anomaly_ detection 
tool in OpenGauss … (1) 
os_exporter …. (2) 
database_exporter …

DB Product 
Docs

【1st prompt】
Key Point Extraction 

You are a database 
expert… please summarize 
key points from given 
documents. Be specific, 
accurate and cover all the 
content of the document, 
not just the title.
Document: {{doc}}

【2nd prompt】
Question Generation

You are a database 
expert… please generate 
a question for each given 
point. Each generated 
question must be 
guaranteed to correspond 
to the key point, cover 
the core content and to 
be answered by given 
documents.
Documents: {{doc}},
Key Points: {{points}}

LLM

【3rd prompt】
Answer Generation

You are a database 
expert… please answer 
the question based on 
the given documents. 
The answer must be 
specifc and user-
friendly.
Document: {{doc}}, 
Question: {{question}}

Key points are 
summarized as follows:

1. Anomaly_detection
2. Os_Exporter ...

Generated Question 
What information can the 
anomaly_detection tool 
collect in OpenGauss?

Retriever

Document 
Anomaly_detection is 
an integrated AI tool 
in OpenGauss …
The supported 
information Label 
collection is divided 
into three parts: 
os_exporter, 
database_exporter, 
and wdr. 

Figure 2: Generation of product-specific QA

This allows LLMs to process the documents more precisely and
generate more detailed QA pairs.

Step 2: QA Generating. To reduce manual efforts, we use LLMs
to generate several QA pairs on each document segment. The chal-
lenge is, directly instructing the LLM to generate QA results in
low-quality outcomes. Specifically, the generated questions can
overly focus on minor details while neglecting the main points of
the given document segment, the answers can be too concise, and
the QA pairs can be repetitive, lacking a diverse coverage of possi-
ble topics. Thus, we propose a novel prompt chain to generate QA.
As shown in Figure 2, the prompt chain first requires LLMs to sum-
marize the document segment’s key points. Then, the prompt chain
demands LLMs to generate a question for each key point that can
be answered based on the document segment. Finally, the prompt
chain asks LLMs to produce a detailed, user-friendly answer.

Step 3: Retrieval Label Annotating. Since the dataset evalu-
ates the QA bot’s ability to apply external knowledge and adapt to
different DB products in RAG scenarios, we also annotate relevant
text chunks. We use the generated question and answer as a query
to identify the fine-grained chunks with relevant information (with
cosine similarity ≥ 0.8).

3.3 Instance-Specific QA
It is infeasible to construct instance-specific QA pairs from on-
line sources. Online questions are almost always incomplete due
to privacy reasons, missing necessary instance-level contextual
information, such as the database’s table structures, workload in-
formation, etc. Therefore, we have to generate instance-specific QA
pairs by LLMs automatically.

There are numerous database tools provided in DBMS that sup-
port database monitoring, optimizing, and analyzing for DB de-
velopers, administrators, and analysts. The LLM’s proficiency in
answering instance-specific questions relies on whether LLMs can
accurately invoke different tools to obtain the instance’s contextual
information. Thus, as shown in Figure 3, our dataset construction
workflow starts with building a pool of DB tools.

Step 1: Constructing DB Tool Pool. (1) We first survey the DB
tools commonly used in real-production systems. We identify six
types of common DB tools that are frequently used for data modeling,
database monitoring and performance optimization (Details in the
Appendix 8). The implementation of each tool type, including the

Database 
Expert

Q&A
Cases

Q&A Cases
· Tools: db_structure_info
· Invocation Format: …
· Question: how much tables
in my database?
· Answer:  Thought…    Action:
db_structure_info Action 
Input: …Observation: …

【1st prompt】
Question Generation

Common
Tools

LLM
… I will give you a tool. 
Please generate 
questions that can be 
solve by the tool. …
Tool: {{T}}
Tool Format: {{F}}

【2nd prompt】
Answer Generation

… I will give you a tool 
and some answer cases. 
Please generate answers 
that (1) using given tool, 
(2) answer like given
answer-cases, (3) create
tool’s output by yourself.
Example: {{E}}
Tools: {{T}}
Question: {{Q}}

Tools
· db_structure_info Format: .
· sql_executor Format: …

【3rd prompt】
Invocation Format

Generated Question: 
I want to  know the 
average processing 
time of A task  from 
the business flow 
database.

Generated Answer:
Thought: I can use an 
SQL query to 
calculate … 
Action: 
Action Input: 
Observation: ...
Thought: … 
Action: …

Tools Contructed by Expert
Please check whether the 
answers (1) organized by 
given template, (2) use the 
tool correctly as format
Tools: {{T}}
Question: {{Q}}
Answer: {{A}}

Tools Contructed by LLM
I will give you a answer, 
please generate a format 
demand including content 
requirement and format 
requirement for the tool 
used in the answer.   ...

Common 
Scenarios

LLM

Tool & Format
· parameter tuner tool

Format: input must …

【0th】
Tool

Expan
-sion

Expand Tools

Figure 3: Generation of instance-specific QA

exact tool name and the format of input and output, may vary for
different DBMS products. (2) The common tools can not cover all
DB tools, especially new ones developed to meet the demands of a
real-production system. We expand the common tools to a set of
generalization tools to evaluate the QA bot’s generalization ability
to utilize different DB tools properly. We determine DB scenarios
and require GPT-4 to generate imaginary DB tools that can benefit
these DB scenarios.

Step 2: Generating Questions. For each tool, we require GPT-4
to generate questions that can be solved by the target tool using
the prompt in Figure 3. Moreover, we want to effectively evaluate
the QA bot’s planning ability, which involves adequately combin-
ing several DB tools and organizing tools with the right action
order. Thus, we manually construct three to four questions for each
common tool and scenario that demand a chain of multiple tool
invocations, and we use these questions as few-shot examples to
encourage GPT-4 to generate complex questions.

Step 3: Generating Answers. (1) First, we manually produce
answer cases for manually constructed questions above. The DB
experts compose the answer cases in the following procedure: con-
struct a real DB instance according to the description in the question,
call the DB tools when necessary, and answer the question based
on real tool feedback. (2) Then we use the answer cases as few-shot
learning examples to guide GPT-4 to generate answers efficiently.
We adopt the Chain-Of-Thought(COT) prompting technique to
generate an answer for each question following ReACT [53].

Step 4: Polishing Answers. Finally, we ask GPT-4 to rethink
and polish the answer. This step is different for common tools and
generalization tools. (1) For each answer to common tools, since the
common tools are real DB tools with pre-defined formats of tool
output, we ask GPT-4 to examine its output to ensure the answer
format is correct to trigger the tool. (2) For each answer relating
to generalization tools, since the generalization tools are imagined
and reasonably inferred by GPT-4, they do not have a pre-defined
format; we ask GPT-4 to summarize the tool’s format.

4 DQATestbed
When adopting a general-purpose LLM for DB QA, various aux-
iliary modules are indispensable to leverage and adapt the LLM’s
general knowledge of linguistic patterns and common senses into
the DB environment. Currently, there lacks an all-encompassing
DBQA testbed that incorporates LLM and various auxiliarymodules.
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User

Submit

Query

LLM

[2] QCR (Question Classification Routing)

DB-Related 

DB-Irrelevant

General DB
DB Product
DB Instance

[3] PTE (Prompt Template Engineering)

General DB 
… DB Product

You should 
follow the doc…

Please reject 
answer …

Offline Preparation 
Online Pipeline

Routing

Trigger

[4] RAG (Retrieval Augment Generation)

Vector
Database

Prompt

Embbeding

DocsQuery Embbeding

Retrieval

DB
Instance

Supported
Tools

[5] TIG (Tool Invocation Generation)

AppendInput

Answer

Generate

Key 
Word Matcher

Trigger

Tool
Result

Implement

Interact

Docs
Books

[1] Pre-training & Fine-tuning

Q&As

Retrieval
Result

DB Instance 
… DB Irrelevant

Figure 4: The Overview of DQATestbed Framework.

Table 2: Comparison of LLM-based DBQA Solutions.

Solution Pre-
training

Fine-
tuning

Question
Routing

Retrieval
Augment

Tool/
Agent

LLM-only ✓ ✓ X X X
Langchain [7] X X X ✓ X∗

D-bot [62] X X X ✓ X★

DB-GPT [50] X ✓ X ✓ X★

Ours ✓ ✓ ✓ ✓ ✓

Note:✓: fully supports the component. X: lacks functionality completely.
X∗: DB tools need to be customized in the Langchain framework. X★:
limited support, D-bot focuses on data interaction issues, and DB-GPT
focuses on database operational diagnosis.

Table 2 compares the completeness of the proposed testbed with
recent LLM adaptation frameworks. Existing works overlook some
important modules. On the contrary, our proposed testbed supports
a full chain of auxiliary modules for LLM’s domain adaptation. We
believe that these modules represent a future design paradigm for
DBQA systems. We will describe and analyze the contribution of
each module to DBQA performance, demonstrating their necessity
in well-designed LLM-based DBQA systems of the future.

The workflow of the proposed testbed is shown in Figure 4.
Offline. Before deployment, the core LLM module goes through
the stage of continual pre-training and fine-tuning to acquire more
specific DB concepts and skills while preserving the LLM’s general
linguistic knowledge. The user can also load a knowledge source
of documents (usually up-to-date materials that do not appear in
the training corpus, or in-house data for privacy reasons) stored in
the form of a vectorized database.
Online. When the user submits a query, it first goes through the
Question Classification Routing (QCR) module to determine the log-
ical structure of reasoning an answer. Depending on the result
of QCR, i.e., the type of question, it is directed to an appropriate
prompt in the Prompt Template Engineering (PTE) module. Key-
words in the prompt generated by the PTE module will trigger the

Retrieval Augmented Generation (RAG) or Tool Invocation Generation
(TIG) module to append to the content of the prompt. For example,
if the query is related to a certain DB product, then to mitigate
hallucination, the RAG module is triggered to retrieve trusted data
and generate more accurate and relevant answers. The process
can iterate for a few rounds if needed. For example, if answering
the query needs to perform data analysis, the schema tool is first
triggered to fetch the table structure of the database. And then
a selection tool is triggered to execute a SQL selection query, to
compute the required data statistics in the database. Finally, the
LLM is instructed by the prompt to generate the answer.

The specific components of the testbed are as follows.
Pre-training and Fine-tuning. Prior to deployment, the LLM un-
dergoes continual pre-training and fine-tuning to acquire domain-
specific database concepts while retaining its general linguistic
capabilities. In addition, users may load a vectorized knowledge
base containing up-to-date or private documents.
Question Classification Routing (QCR). This module automati-
cally categorizes incoming queries and routes them to customized
prompt templates, thus mitigating security risks and enhancing
response accuracy. We explore three approaches: an LLM-based
classifier, an XLNet-based classifier trained on annotated data, and
a hierarchical classifier through multi-step classification.
Prompt Template Engineering (PTE). Customized prompt tem-
plates are designed for various query categories. Each template
features dynamic slots (indicated by “{{}}”) that are populated by
auxiliary modules. For example, specific keywords trigger either
the RAG module for DB product queries or the module for instance-
specific queries.
Retrieval Augmented Generation (RAG). To enrich the LLM’s
responses with external knowledge, this module first segments
documents from the knowledge base into text blocks, converts
them into dense vectors, and stores them in a vector database. A
submitted query is similarly vectorized and matched against these
blocks. The retrieved content is appended to the prompt, guiding
the LLM to generate more precise and context-relevant answers.
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Six typical RAG techniques (1) Naive RAG [7] (2) RRR [29] (3) Iter-
Retgen [38] (4) Self-Ask [34] (5) Active RAG [20] (6) Self-RAG [2]
are evaluated under the RAG-Lab [59] framework.
Tool InvocationGeneration (TIG). Leveraging a Chain-of-Thought
(COT) prompt template [53], the TIG module enables the LLM to
iteratively decide which database-specific tools to invoke. The pro-
cess involves the LLM outputting a “Thought” to reason about the
necessary tool, followed by an “Action” and “Action Input” that
specify the tool and its parameters. After the tool executes and re-
turns an “Observation,” the LLM may invoke additional tools until
sufficient information is gathered for a final answer.

5 End-to-End Performance Experiment
We examine the end-to-end performance of different LLMs, i.e., do
they produce high-quality answers for database questions.
LLMs. Seven popular commercial and open-source LLMs are com-
pared, including (1) GPT-4 [32], the most powerful large-scale LLM
currently released by OpenAI, using the GPT-4-0125-preview ver-
sion. (2) GPT-3.5 [31], a popular large-scale LLM currently released
by OpenAI, using the GPT-3.5-turbo-0125 version. (3) GLM-3 [57],
a popular large-scale LLM for both Chinese and English, released
by Zhipu AI. (4) Llama3-8B [42], the latest mid-sized open-source
LLM released by Meta AI, claimed to achieve SOTA performance
among mid-sized models, using the Llama3-8B-Instruct version. (5)
Llama2-13B [43], the most popular mid-sized open-source LLM
released byMeta AI, using the Llama1-13B-Chat version. (6) Yuan2-
2B [46], a popular small-sized open-source model for both Chinese
and English, released by IEIT Systems, using the Yuan2-2B-Februa
version. (7) Baichuan2-13B [51], a popular mid-sized open-source
model for both Chinese and English, released by Baichuan Intelli-
gence, using the Baichuan2-13B-Chat version.

In addition to evaluating the performance of vanilla LLMs, we
assess the impact of continued pre-training and fine-tuning. Limited
by training cost, we only apply them upon Baichuan2-13B, leading
to two additional LLM variants: (8) Baichuan2-13B-sft, which is
a Baichuan2-13B variant fine-tuned. (9) Baichuan2-13B-cpt-sft,
which is a Baichuan2-13B variant pre-trained and fine-tuned.
Evaluation pipeline. Theworkflow in Section 4, i.e., with auxiliary
modules, can improve the answer quality of each tested LLM. Thus,
this section presents the results generated by LLMs through the
entire workflow implementing all modules of DQATestbed. Since
each module can adopt various strategies that may introduce bias
when comparing the performance between the LLMs, we use a
standard pipeline with fixed intermediate output to obtain the best
output of different LLMs.

5.1 Factual Accuracy on Simple Questions
We first extract simple QAs that involve only a single knowledge
point and have clear true/false answers. We then use a GPT-4-based
judging approach to determine whether the LLMs’ answers met the
factual correctness criterion. We also conduct evaluations by DB
experts, and 96% GPT-4 judgments align with the experts’ opinions,
demonstrating the reliability of the GPT-4 judge.

Figure 3 shows that (1) current DBQA systems remain far from
ideal. even the SOTA models such as GPT-4 achieve only around
50% accuracy on general and product-specific questions and 40%

Table 3: Factual accuracy for simple EN DBQAs

Models
General

DB
Product
Specific

Instance
Specific

GPT-4 0.51 0.50 0.42
GPT-3.5-turbo 0.31 0.42 0.28
GLM-3-turbo 0.33 0.48 0.18

Llama3-8B-Instruct 0.32 0.44 0.20
Llama2-13B-Chat 0.04 0.15 0

Yuan-2B 0.01 0.06 0
Baichuan2-13B-Chat 0.14 0.23 0.05

Baichuan2-sft 0.23 0.46 0.52
Baichuan2-cpt-sft 0.29 0.58 0.57

on instance-specific ones, indicating that current DBQA systems
remain far from ideal; (2) models leveraging both pre-training
(cpt) and fine-tuning (sft), like Baichuan2-cpt-sft, show clear im-
provements that underscore the importance of these techniques;
(3) smaller models struggle with advanced questions that require
tool usage and extensive knowledge sources.

5.2 Comprehensive Evaluation
The DBQAs often require comprehensive solutions, complex code
design, detailed conceptual explanations, and multi-faceted pro-
posal analyses. These types of QAs are not easily reduced to a simple
binary factual accuracy judgment. Beyond accuracy, factors like
logical coherence, specificity, and user-friendliness of the language
style are also critical in evaluating an LLM’s capability. To capture
these broader dimensions, we adopt the widely used WinRate met-
ric from the NLP community. In the WinRate judging prompt, we
stipulated that factual error would result in a loss, while overall
judgment also considers the answer’s logical structure, depth of
detail, illustrative examples, and user-friendliness. This holistic
evaluation offers a more nuanced comparison of LLM performance
in the DBQA domain.

We compute the WinRate of each LLM versus two baselines. (1)
GPT-3.5-Turbo (Vanilla): we input the user’s question to GPT-3.5-
Turbo without employing any prompts. This result demonstrates
the difference between a dedicated DBQA system (i.e., the testbed)
and typical LLM applications. (2) GPT-3.5-Turbo (Testbed): we also
equip GPT-3.5-Turbo on the testbed. This result emphasizes the
inherent capability difference of each LLM. We have the following
insights from Table 4.

The experiment result shows that (1) larger models and richer
pre-training data boost DBQA performance—GPT-4 sets the state-
of-the-art on general DB questions, and Llama3-8B, leveraging 15T
tokens, gains significant improvements on the DQABench dataset;
(2) domain-specific continual pre-training and fine-tuning enhance
DBQA, with Baichuan2-13B’s continual pre-training raising scores
by 0.28–0.39 (80%–111%) and fine-tuning adding another 0.28–0.38
(80%–136%), even allowing Baichuan2-13B-sft to outperform GPT-4
on instance-specific questions; (3) RAG and TIG strategies further
benefit LLMs in DBQA tasks, as indicated by lowerWinRate against
GPT-3.5-Turbo testbed; and (4) smaller LLMs struggle with DB tool
usage, since instance-specific inputs and outputs demand robust
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Table 4: WinRate of different LLMs versus the competitor

Model |𝜽 | DB General Product-specific Instance-specific Average

ZH EN ZH EN ZH EN ZH EN

WinRate v.s. Vanilla GPT-3.5-Turbo

GPT-4 0.85 0.95 0.86 0.86 0.69 0.53 0.80 0.78
GPT-3.5-Turbo 0.53 0.56 0.60 0.60 0.58 0.57 0.57 0.58
GLM-3-Turbo 0.63 0.62 0.81 0.58 0.44 0.44 0.63 0.55
Llama3 8B 0.60 0.67 0.79 0.75 0.37 0.40 0.59 0.61
Llama2 13B 0.12 0.09 0.35 0.41 0 0 0.16 0.17
Yuan2 2B 0.03 0.02 0.22 0.18 0 0 0.08 0.07
Baichuan2(vanilla) 13B 0.27 0.29 0.56 0.60 0.23 0.15 0.35 0.35
Baichuan2-sft 13B 0.44 0.31 0.88 0.76 0.90 0.82 0.74 0.63
Imp. w.r.t. vanilla +0.17 +0.02 +0.32 +0.16 +0.67 +0.67 +0.39 +0.28
Baichuan2-cpt-sft 13B 0.57 0.48 0.88 0.74 0.91 0.87 0.79 0.70
Imp. w.r.t. vanilla +0.30 +0.19 +0.32 +0.14 +0.68 +0.72 +0.44 +0.35

WinRate v.s. GPT-3.5-Turbo (Testbed)

GPT-4 0.83 0.95 0.64 0.68 0.90 0.64 0.79 0.76
GPT-3.5-Turbo - - - - - - - -
GLM-3-Turbo 0.62 0.65 0.66 0.57 0.55 0.49 0.61 0.57
Llama3 8B 0.60 0.65 0.62 0.51 0.49 0.52 0.57 0.56
Llama2 13B 0.12 0.06 0.36 0.16 0 0 0.16 0.07
Yuan2 2B 0.03 0.02 0.13 0.07 0 0 0.05 0.03
Baichuan2(vanilla) 13B 0.26 0.30 0.42 0.40 0.16 0.11 0.28 0.27
Baichuan2-sft 13B 0.44 0.30 0.68 0.66 0.85 0.87 0.66 0.61
Imp. w.r.t. vanilla +0.18 0 +0.26 +0.26 +0.69 +0.76 +0.38 +0.34
Baichuan2-cpt-sft 13B 0.55 0.42 0.65 0.73 0.95 0.90 0.72 0.68
Imp. w.r.t. vanilla +0.29 +0.12 +0.23 +0.33 +0.79 +0.79 +0.44 +0.41

Table 5: Multi-dimensional Evaluation of Different LLMs

Model General Product-Specific Instance-Specific
GE Pr Ip GE Pr Ip GE Pr Ip

GPT-4 6.19 96.80 97.45 5.77 78.60 84.30 4.06 50.05 53.40
GPT-3.5-turbo 4.57 81.50 82.85 5.41 63.55 70.50 3.59 46.80 49.50
GLM-3-turbo 4.93 90.25 91.65 6.13 72.95 80.25 3.19 39.80 42.75

Llama3-8B-Instruct 4.73 90.00 91.90 5.95 68.65 76.00 3.33 49.20 44.50
Llama2-13B-Chat 1.36 21.60 24.60 4.69 47.65 44.65 0 0 0

Yuan-2B 1.44 21.20 25.40 2.51 27.20 27.85 0 0 0
Baichuan2-13B-Chat 3.47 75.25 80.05 4.29 54.55 61.65 0.48 6.40 16.50

Baichuan2-sft 3.73 69.95 65.90 5.63 74.65 79.55 5.67 69.50 70.85
Baichuan2-cpt-sft 4.16 80.10 82.55 6.64 85.40 88.10 5.87 73.70 73.35

instruction-following that models like Llama2 and Yuan2 lack, un-
derscoring the need for targeted instruction tuning.

5.3 Multi-dimensional Evaluation
We conducted a multi-dimensional evaluation of LLMs’ end-to-
end DBQA performance, extending beyond traditional metrics like
accuracy and win rate. The assessment framework, aligned with
the accuracy evaluation datasets, comprises three key dimensions:
(1)GE (G-Eval):Comprehensive scoring of LLM-generated answers.
(2)Pr (Practicality): Assessment of answer’s practical utility and
actionable guidance. (3)Ip (Interpretability): Measurement of
answer’s conceptual clarity and logical transparency.

The experimental results, illustrated in Figure 5, reveal three
critical findings: (1) Dimensional Consistency: LLMs demon-
strate consistent performance patterns across all metrics, with no
significant discrepancies between dimensions. (2) RAG-Induced
Degradation: Advanced models like GPT-4 exhibit compromised
usability and interpretability when processing RAG content, indicat-
ing the lack of LLM human-friendly alignment for holistic quality
in RAG scenarios. (3) Instance-Specific Limitations: Challenges
persist in maintaining usability and interpretability for questions

 

Figure 5: Performance on “DB General" questions

requiring instance-specific reasoning, underscoring the need for
improved tool invocation logic to enhance overall response quality.

5.4 In-depth Analysis on DB General Questions
The DB-general questions require LLMs to depend on their inherent
knowledge, with each question often demanding a distinct skill set.
For example, the LLM needs to be proficient in SQL grammar to
solve “Write a SQL to create index" and knowledge of index advisor
to answer “which index is better." There are two types of questions
in the subset, namely the subjective questions and the objective
questions with multiple choices. In this section, we analyze the
answers to DB-general questions from the two perspectives.

First, we report the WinRate of various LLMs in answering sub-
jective questions. Specifically, we utilize GPT-4 to assign detailed
labels to each question in the “DB general” subset, incorporating
predefined few-shot labels from the prompt and allowing GPT-4
to generate new labels autonomously. We identify the eight most
common labels: “Performance Monitoring and Tuning”, “Backup
and Recovery”, “Query Optimization”, “Data Migration”, “Data Se-
curity”, “Database Design and Deployment”, “Data Analysis” and
“SQL Programming”. These labels cover 93.79% of the questions in
the “DB general” subset.

The experimental results, illustrated in Figure 5 (a)’s radar chart,
lead to the following conclusions: (1) Numerically, the response
capabilities of different models in each sub-field correlate positively
with their model size and overall ability, with no model being highly
specialized in any particular field. (2) Regarding shape proportion,
the radar charts of GPT-3.5 and GPT-4 are similar, showing balanced
capabilities across the eight aspects. In contrast, Llama2, Llama3,
Baichuan2, and other models based on the llama architecture dis-
play a similar pattern, excelling in Performance Monitoring and
Tuning but weaker in SQL Programming. This indicates that GPT
series models are better at generating accurate SQL Programming
instructions, while llama-based models excel in comprehensive
subjective analysis.

Next, we report the Multiple-Choice Accuracy, measured on
the objective questions. As shown in Figure 5 (b), MCA aligns
closely with the WinRate on subjective questions. This validates
that questions in DQABench are set with an appropriate difficulty
level and require a good understanding of DB knowledge to answer.
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Table 6: WinRate (w/ Routing v.s. w/o Routing)

Models
WinRate V.S. Self w/o Routing

Product-Specific Instance-Specific
ZH EN ZH EN

GPT-4 0.85 0.75 0.69 0.61
GPT-3.5-turbo 0.73 0.76 0.59 0.60
GLM-3-turbo 0.82 0.76 0.44 0.53

Llama3-8B-Instruct 0.84 0.78 0.41 0.60
Llama2-13B-Chat 0.90 0.81 0 0

Yuan-2B 0.96 0.94 0 0
Baichuan2-13B-Chat 0.68 0.73 0.26 0.07

Baichuan2-sft 0.52 0.65 0.87 0.82
Baichuan2-cpt-sft 0.56 0.73 0.86 0.86

6 Modularized Evaluation
In this section, we rigorously assess the performance of eachmodule
of DQATestbed. We aim to achieve two goals: (1) verify the necessity
of adopting each module for DBQA to improve answer quality; (2)
evaluate the strengths and weaknesses of various solutions for each
module in the context of DBQA.

6.1 Modularized Evaluation on QCR
We first demonstrate that using the QCR module to classify and
route questions—thus enabling customized answers—is necessary.
We implement two versions of each LLM to test whether question
routing is necessary for DBQA systems. (1) LLM w/ Routing: using
the QCR model for question classification and feeding the LLM
with customized prompts according to the question type. We use
the ground truth question type in DQABench. (2) LLM w/o Routing:
prompting the LLM using the "General DB" prompt template for
all questions. Table 6 reports the WinRate of LLM w/Routing v.s.
LLM w/o Routing on two question types, i.e., Product-Specific and
Instance-Specific, because DB General questions are treated using
the same prompt and thus receive the same result.

The results indicate that: (1) Most WinRate values exceed 0.5
(meaning LLM w/ Routing surpasses LLM w/o Routing), which
suggests that utilizing query routing to customize responses based
on question type significantly enhances the LLM’s performance.
Recent studies have demonstrated the importance of prompt engi-
neering [45]. The QCR module can be seen as a dedicated, prompt
engineering strategy tailored for DBQA that autonomously gives
instructions and organizes examples. (2) In a few cases, particularly
on instance-specific questions, the WinRate values fall below 0.5 or
even reach zero. This is due to the model’s limited ability to invoke
tools: models lacking any tool invocation capability cannot provide
effective customized responses, and thus, QCR can not improve
their performance.

We then investigate which question classifier in Section 4 is effec-
tive. The testing data includeDB-related questions fromDQABench,
safe but DB-irrelevant questions fromAlpaca [41] and Longbench [4],
and unsafe labeled questions from Safety-Prompts [39] and Beaver-
Tails Evaluation [18]. The F1 score for each category, accuracy, and
response latency deployed on a workstation with an RTX-3090 GPU
card are shown in Table 7.

From the experimental results, we have the following conclu-
sions: (1) XLNet and Hierarchical are more accurate (+0.35) and
faster (6.7x) than GPT-4. This is reasonable because general-purpose
LLMs like GPT without fine-tuning perform worse on specific tasks

Table 7: Classification Performance

Method F1-score ACC LatencyUnsafe General Gauss Tool No-DB

ZH

GPT-4 0.77 0.48 0.47 0.25 0.59 0.55 2.64s
XLNet 0.95 0.89 0.92 0.91 0.79 0.90 0.39s
Hierarchical 0.95 0.91 0.98 0.99 0.87 0.94 0.68s

EN

GPT-4 0.80 0.57 0.37 0.49 0.69 0.63 2.61s
XLNet 0.91 0.92 0.81 0.90 0.79 0.87 0.37s
Hierarchical 0.92 0.97 0.88 0.93 0.91 0.92 0.67s
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Figure 6: WinRate vs. GPT-3.5-Turbo (vanilla)

than smaller models that are specifically trained. (2) There is a
trade-off between latency and accuracy for small models. As shown
in Table 7, the hierarchical classifier can achieve approximately a
0.05 performance improvement with 300ms more inference cost.

6.2 Modularized Evaluation on RAG
We have demonstrated the importance of RAG in end-to-end DBQA
in Section 5 by the sharp performance rise with RAG. In Section 5,
GPT-3.5-Turbo is provided the ground-truth retrieval text blocks.
In this section, we want to investigate whether RAG with incorrect
retrieval results can enhance answer generation.

First, we implement three versions of the nine LLMs to be eval-
uated. (1) w/o RAG, the LLMs are prompted to generate answers
without the external knowledge provided by the RAG module; (2)
w/ Naive RAG, the testbed retrieves the relevant text blocks by
directly searching the vector database; (3) w/ Ground-truth RAG,
the testbed uses the retrieval ground-truth from DQABench. We
report the WinRate score of each LLM version v.s. GPT-3.5-Turbo
(vanilla) on the “product-specific" sub-dataset in Figure 6.

From the results, we have the following observations. (1) If the
ground-truth retrieval texts are provided, the RAG module can sig-
nificantly enhance the performance of general-purposed LLMs of
any size, i.e., the seven LLMs. The performance improvements are
more pronounced in smaller models, e.g., a 2.4× improvement on
Llama2. This observation reveals the substantial value of RAG for
edge-deployed models. However, the improvement is under ideal
conditions, while the actual retrieval accuracy is not guaranteed in
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Figure 7: Performance of Different RAG Solutions
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real applications. (2) The ground-truth RAG implementation has
brought minimal performance improvement for models fine-tuned
with domain knowledge from databases, i.e., the last two LLMs
Baichuan2-sft, and Baichuan2-cpt-sft. This observation suggests a
significant overlap between the improvements brought by model
fine-tuning and those from the RAG module, indicating that de-
ploying either technique alone is sufficient within a limited budget.
(3) With the naive RAG implementation, the performance increase
reasonably shrinks for most LLMs. Furthermore, the performance
improvement is negligible for GPT-4, and we observe a performance
decline on Llama-3, Baichuan2-sft, and Baichuan2-cpt-sft. Detailed
case studies indicate that this is primarily due to low recall rates.
LLMs generate incorrect responses by grounding on irrelevant
documents, ultimately compromising their ability to produce high-
quality answers for questions they could have answered otherwise
correctly without RAG.

Second, we investigate the impact of various RAG techniques
implemented in DQATestbed. We report two metrics in Figure 7: (1)
Recall rate: the average number of relevant text blocks successfully
identified in the top-3 retrieval results, where the ground-truth
labels contain one relevant block for each question. Since the result
may not be completely identical with the ground-truth text block,
i.e., they have overlapping parts. To determine whether a result is
relevant, we compute the ROUGE-5, i.e., the overlap of sequences
of five consecutive characters between the result and the ground-
truth. If ROUGE-5 > 0.15, we determine a result is relevant. (2)
WinRate calculates the performance of Llama3-8B-Instruct with
the aformentioned RAG methods, compared with GPT-3.5-Turbo.

We have the following observations. (1) All existing RAG tech-
niques yield low recall rates (below 50%), highlighting the main
challenge in DBQA: accurately locating relevant documents. (2) For
RAG methods that generate a passage based on the retrieval results,
higher retrieval performance generally leads to higher answer qual-
ity, i.e., the recall rate positively correlates with the WinRate on
Naive_RAG, Iter_Retgen, and RRR. (3) Techniques using a sentence-
by-sentence generation strategy, such as Self-Ask, Active RAG, and

Self-RAG, harm the QA performance. Because these RAG strategies
divide the answer passage into sentences and generate sentences
based on relevant documents at the sentence level, their retrieval
module has been called more often, which raises the risk of en-
countering irrelevant information. For example, we identify an
erroneous case where the question concerns only the log_dir pa-
rameter, but the retrieval results also contain information on the
alarm_report parameter, the LLM elaborates on both parameters
in the answer, which is undesired.

6.3 Modularized Evaluation on TIG
The TIG module enhances the ability of LLMs to interact with
database, particularly in DB instance-related QA. The benefit of
TIG is already highlighted in Table 4. Specifically, we examine the
correlation between WinRate and tool invocation success rate. Our
findings show that nearly all (93%) responses, where the tool invo-
cations are successful, achieve a win in the final answer comparison.
In this section, we further explore the capabilities of existing LLMs
and discuss how LLMs can support instance-related QA.

We propose TSA (Tool Selection Accuracy) and TFA (Tool Format
Accuracy) to measure tool invocation capabilities. TSA measures
whether the correct tools are chosen to solve problems and TFA
measures the accuracy of the tool invocation format, i.e., whether
the LLM’s response aligns with the tool’s input (definition in Ap-
pendix B).

As shown in Figure 8 (1) The ability of LLMs to select appro-
priate tools and format input correctly is closely correlated with
their overall performance. (2) There is a significant difference in
the ability of the tested LLMs to invoke database tools. Comparing
Figure 8 and Table 4, we observe that the difference in tool invo-
cation ability is greater than in answering general questions. For
instance, the WinRate of LLaMa2 and Yuan in TIG is close to zero,
while the performance of Baichuan2 variants approaches one. (3)
The capability of LLMs to invoke DB tools is impacted by whether
the models underwent instruction-following fine-tuning and align-
ment, i.e., adjusting the LLMs to align their behaviors and respond
in a particular format. E.g. the technical reports for LLaMA2 [42]
and Yuan [46] indicate that they lack targeted instruction-following
fine-tuning and alignment, producing the worst TSA and TFA re-
sults. In contrast,DQATestbedimplements fine-tuning on DB-related
examples to enhance Baichuan-13B’s ability to follow DB-specific
instructions and obtains the best TSA and TFA results.

7 Conclusion
In this paper, we propose the first comprehensive DBQA benchmark
DQABench, which includes an extensive dataset that simulates real-
world DB scenarios and a complete testbed that implements the en-
tire DBQA workflow. Our comprehensive evaluation demonstrates
the impact of modules such as QCR, RAG, and TIG on DBQA perfor-
mance. The proposed benchmark dataset, testbed, and findings will
guide the future development of LLM-based database applications.
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A Testbed Impletation Details
A.1 Pre-training and Fine-tuning
(1) Pre-training. We extensively collect pre-training corpora re-
lated to databases, comprising approximately 47,000 entries each
in Chinese and English, totaling around 100 million tokens. This
corpus includes major database textbooks, official documentation
of various database products, and selected authoritative reports and
articles on databases.

(2) Fine-tuning. We propose a sequential fine-tuning strategy,
including three stages. We prioritize the fine-tuning sequence based
on the crucial abilities in DB problem-solving. For instance, the
first fine-tuning stage focuses on enhancing the LLM’s NL2SQL and

table understanding ability using NL2SQL data like Spider [54] be-
cause it is fundamental in DB tasks. In the second fine-tuning stage,
a mixture of different fine-tuning data is adopted. The fine-tuning
data includes (1) general conversational datasets like Stanford Al-
paca [41] to mitigate the LLM’s forgetting of general dialogue skills,
and (2) reformulated questions from DQABench using correspond-
ing prompts in the PTEmodule to enhance the LLM’s understanding
of the prompt template. The last fine-tuning stage focuses on en-
hancing the alignment of LLM’s final response with DB experts
in terms of quality and format, by using answer cases written by
DB experts in Section 3. The specific settings will be detailed in
Section 5.

A.2 Question Classification Routing
In this paper, we implement and evaluate three methods of QCR
modules to explore the better design paradigm.
(1) LLM-based Classification Method. We use a prompt, which
is designed to elicit a classification response from GPT-4. 1
(2) Classifier. We train an XLNet-based [52] classifier. We con-
struct the training data2 where each question is labeled as “unsafe",
“safe but irrelevant", “DB general", “product-specific", or “instance-
specific". The positive samples for the “unsafe" category are col-
lected from Safety-Prompts [39] and BeaverTails-Evaluation [18].
The “safe but irrelevant" samples are collected from Alpaca [41]
and Longbench [4]. The rest three categories are from the training
set of DQABench (which does not overlap with the test set).
(3) Hierarchical Classifier. Training a single function to predict
all possible labels is more difficult. Furthermore, a “flat" classifier
method requires a balanced amount of training queries for each
class. Alternatively, we train a hierarchical classifier, which first
classifies safe and unsafe questions and then classifies the safe
questions into four sub-classes. We use an independent XLNet-
based [52] classifier at each level.

A.3 Retrieval Augment Generation
The RAG implementation utilizes the multilingual text encoding
model bge-m3 with specific experimental parameters. The system
is configured with a temperature of 0.0 and a top_p value of 1.0. For
document retrieval, the self_rag method retrieves 5 documents and
includes an additional filtering step to ensure the usefulness of the
content, while the other methods retrieve 3 documents each. All
methods enforce a maximum answer length of 500 tokens, with the
active_rag method further restricting each sentence to 50 tokens.
Additionally, active_rag is set with a filter probability of 0.8 and
a masked probability of 0.4. Both the iterative_rag and self_ask
methods are limited to a maximum of 3 iterations. In the self_rag
method, the weight parameters are configured as follows: w_rel at
1.0, w_sup at 1.0, and w_use at 0.5.

A.4 Tool Invocation Generation
We implement a Chain of Thought (COT) prompt template follow-
ing ReAct [53]. This prompt template encourages the LLM to think
in a loop according to the following chain of thought the same as
the instance-specific prompt on ??. The LLM first outputs a COT

1All prompts used on this paper can be found on [link]
2The sources and statistics of the dataset for these classifiers are detailed in [link].
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Table 8: Supported types of common DB tools

Objective Type Functionality

Data
Modeling

Schema Obtain database table structure, constraints,
etc.

Selection Return SQL execution results of retrieving
specific data from the database, computing
data distribution, etc.

Database
Monitoring

Resource Obtain information about CPU usage, mem-
ory, disk IO, etc.

WorkloadWorkload analysis, slow question identifica-
tion, etc.

Status Detailed information about the current in-
dexes, views, knob settings, etc.

Optimizing Tuning Identify optimization opportunities by advis-
ing indexes, setting knobs, etc.

with the tool it wants to invoke and its input. The tool trigger in-
terrupts the LLM’s output, while the TIG module identifies the tool
name (following “Action:") from the pool in Table 8. If found, it
calls the tool using the input specified after "Action_Input:". Upon
interacting with the database, the tool outputs results, formatted
as text and appended to the LLM’s output afte “Observation:". We
optimize these outputs by (1) filtering relevant content and (2) con-
verting structured data into Markdown. After tool execution, the
TIG module resumes the LLM’s process, which uses the “Observa-
tion" results to decide whether to invoke additional tools. The cycle
continues until the LLM has enough information to output a final
answer.

B Experiments Setting
Evaluation pipeline. Directly using the LLMs can hardly gener-
ate satisfying answers for DB questions in DQABench, even with
prompt engineering. The workflow in Section 4, i.e., with auxiliary
techniques such as QCR, RAG, and TIG, can improve the answer
quality of each tested LLM. Thus, this section presents the results
generated by LLMs through the entire workflow implementing all
modules of DQATestbed. LLM performances without the auxiliary
techniques will be further investigated in Section 6. Since each
module can adopt various strategies that may introduce bias when
comparing the performance between the LLMs, we use a standard
pipeline with fixed intermediate output to obtain the best output of
different LLMs. The details of the standard pipeline are as follows.

(1) Question Routing with Ground-truth Class Label. Question
classification accuracy impacts answer generation performance.
Correctly associating "Why is SQL query execution slow?" with
the ‘instance-specific’ label is critical for triggering DB tools and
generating targeted responses. We analyze different classification
strategies in Section 6. Here, we use ground-truth labels to construct
optimal prompts for the core LLM.

(2) Generation with Ground-truth Retrieved Knowledge. Product-
specific questions require LLMs to access retrieval documents con-
taining product information. As shown in Section 6, retrieval pre-
cision directly affects answer quality. We append ground-truth
fine-grained retrieval text (correct text blocks) to prompts for eval-
uation.

(3) Generation with Ground-truth Tool Output. Instance-specific
questions evaluate LLMs’ ability to plan and use DB tools. However,
tool outputs often deviate from ground truth, causing hallucinated
tools/APIs and evaluation challenges. For these queries, we imple-
ment a "Thought-Action-Action_Input-Observation" process.

Testing questions. The testing questions consist of (1) DB gen-
eral questions are fundamental concepts in the database domain,
(2) product-specific questions are about the database product ‘open-
Gauss’, where the external retrieval documents are openGauss latest
documentation as of April 2024. The advantage of ’openGauss’ is
that our evaluated LLMs have not shown any signs of being specif-
ically trained on the latest detailed documentation of this product,
effectively avoiding unfair evaluation due to potential data leakage.
(3) instance-specific questions are created on the widely recognized
database benchmarks TPC-H, TPC-C, and TPC-DS.

MetricsWe adopt two evaluation metrics, WinRate and MCA
(Multiple Choice Accuracy), to measure the quality of end-to-end
answer generation.

(1) WinRate. Defined as shown in 5. We calculate WinRate as
follows:

𝑊𝑖𝑛𝑅𝑎𝑡𝑒 =
𝑁𝑟=1

𝑁𝑟=1 + 𝑁𝑟=−1
, where


𝑟 = 1 if𝑀 wins,
𝑟 = 0 if𝑀 ties,
𝑟 = −1 if𝑀 loses,

(1)

where 𝑁𝑟 represents the number of comparisons where the judge
GPT-4 considers case 𝑟 , and𝑀 is the model to be evaluated.

(2) MCA (Multiple-Choice Accuracy). To complement the objec-
tive LLM-based evaluationWinRate, we also provide subjective eval-
uations on DB-general questions. This metric measures the accu-
racy of all multiple-choice questions following𝑀𝐶𝐴 =

∑
𝑖𝑚𝑖,𝑖/

∑
𝑖∑

𝑗 𝑚𝑖, 𝑗 ),where𝑚𝑖, 𝑗 is the number of answers that the ground truth
choice is 𝑖 and the LLM’s output is 𝑗 , 𝑖, 𝑗 ∈ {𝐴, 𝐵,𝐶, 𝐷, 𝑜𝑡ℎ𝑒𝑟𝑠}. For
MCA, we prompt the LLM to output one letter; any deviation is
classified as 𝑜𝑡ℎ𝑒𝑟𝑠 and considered a categorization error.

(3) TSA measures whether the correct tools are chosen to solve
problems. It is essential to consider the order of actions to measure
the DB-specific planning ability. For example, the input of the suc-
ceeding tool is usually based on and formulated from the preceding
tool’s output. Therefore, if there is an error in the current tool invo-
cation, the subsequent invoked tools will no longer be included in
the metric calculation. Specifically, the TSA (Tool Selection Accu-
racy) is defined as: 𝑇𝑆𝐴 =

∑
1≤𝑖≤min𝑘 𝑗 ,𝐼 {𝑡𝑘𝑗 ,𝑗 }=0, 𝑗 𝐼 {𝑡𝑖, 𝑗 , 𝑗}

/ ∑
𝑗 𝑘 𝑗 ,

where 𝑡𝑖, 𝑗 is 𝑖−th tool for the query 𝑗 , 𝐼 {} is an indicator function
that returns whether the tool is labeled in the tool annotation in
Section 3, and 𝑘 𝑗 means the number of LLM tool invocations.

(4) TFA measures the accuracy of the tool invocation format, i.e.,
whether the LLM’s response aligns with the tool’s input. Due to
the diversity and subjectivity of tool format requirements, particu-
larly in the generalized tool QA, it is challenging to assess format
compliance using predefined rules. Therefore, we employ GPT-4
as an expert adjudicator model to judge whether tool invocations
meet the format requirements. Similarly, we consider the order
of tools. Specifically, the TFA (Tool Format Accuracy) is defined
as: 𝑇𝐹𝐴 =

∑
1≤𝑖≤min𝑘 𝑗 ,𝐺 {𝑡𝑘𝑗 ,𝑗 }=0, 𝑗 𝐺{𝑡𝑖, 𝑗 }

/ ∑
𝑗 𝑘 𝑗 , where 𝑡𝑖, 𝑗 is the

𝑖−th tool for the query 𝑗 , 𝐺{} is the output of GPT-4 that decides
whether the tool input (the content after “Action_Input") is correct,
and 𝑘 𝑗 means the number of LLM tool invocations.
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