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Despite the promising performance of recent learning-based Index Advisors (IAs), they exhibited the robustness
issue when poisoning attacks polluted training data. This paper presents the first attempt to study the
robustness of updatable learning-based IAs against poisoning attack, i.e., whether the IAs can maintain robust
performance if their training/updating is disturbed by injecting an extraneous toxic workload. The goal
is to provide an opaque-box stress test that is generally effective in evaluating the robustness of different
learning-based IAs without using the users’ private data.

There are three challenges, i.e., how to probe "index preference" from opaque-box IAs, how to design
effective injecting strategies even if the IAs can be fine-tuned, and how to generate queries to meet the specific
constraints for IA probing and injecting. The presented stress-test framework PIPA consists of a probing stage,
an injecting stage, and a query generator. To address the first challenge, the probing stage estimates the IA’s
indexing preference by observing its responses to the probing workload. To address the second challenge,
the injecting stage injects workloads that spoof the IA to demote the top-ranked indexes in the estimated
indexing preference and promote mid-ranked indexes. The stress test is effective because the IA is trapped in
a local optimum even after fine-tuning. To address the third challenge, PIPA utilizes IABART (Index Aware
BART) to generate queries that can be optimized by building indexes on a given set of indexes. Extensive
experiments on different benchmarks against various learning-based IAs demonstrate the effectiveness of
PIPA and that existing learning-based IAs are non-robust when faced with even a subtle amount of injected
extraneous toxic workloads.
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Fig. 1. Performance degradation of a learning-based index advisor caused by injecting extraneous toxic
workloads

1 INTRODUCTION
Index selection is crucial to the performance of relational database systems [26]. Traditionally,
index selection relies on expert database administrators [18] to analyze the workload and data
characteristics and select the appropriate set of indexes. To reduce labor expenses, various heuristics
algorithms [6, 8, 31, 39] have been proposed to guide the search of possible indexes. Since the
heuristics algorithms are manually designed and rarely altered, their capabilities are usually limited,
i.e., they may miss some beneficial indexes suitable for a particular workload/data. On the contrary,
learning-based Index Advisors (IAs) [19, 20, 26, 29, 30, 33, 40, 45] can update their indexing strategies by
optimizing the model parameters with training data. This approach has recently gained significant
attention from both academia and industry.
For learning-based IAs, the quality of training data determines the ability of machine learning

methods. However, in realistic scenarios, there is usually a non-negligible and inevitable gap between
the training data and the testing data. If the training data is updated, the learning-based IA models
will be updated, affecting the performance on the testing data. Thus, if there is a malicious poisoning
attack on the training workload, whether the IA models are robust is a risk (i.e., the performance on
the testing workload will be significantly degraded.) Suppose a supplier with multiple franchisees
(e.g., tenants of Salesforce) shares the same cloud business solution. Learning-based IAs are applied
to normal daily workloads submitted by franchisees and employees. Suppose an attacker (e.g., a
reckless employee or a malicious franchisee) submits abnormal workloads at some point before
the IAs update the parameters. In that case, the training data of IAs contains extraneous toxic
workloads. Figure 1 shows that the extraneous workloads in training data can be toxic (e.g., in
red) and significantly damage the IAs’ performance. With only 1% extraneous toxic workloads, the
execution cost of the same testing workloads by IAs’ indexes is increased by 20%. Thus, poisoning
attacks on IAs can be utilized by malicious attackers (e.g., fired employees and hostile competitors).
It’s of significant importance to study the robustness of learning-based IAs against poisoning
attacks.
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The above illustration raises concerns about the robustness of updatable learning-based IAs
when training data is polluted, which refers to the capability of maintaining the performance under
the same testing workload when the training/updating is disturbed by extraneous toxic workloads.
This investigation yields two main advantages. First, it sheds insight into the training and updating
of learning-based IAs (e.g., how to choose appropriate training/updating workloads and design
appropriate training/updating strategy). Second, it facilitates the database administrators (DBAs)
to deploy a more robust leaning-based IA to ensure reliable indexing performance unaffected by
model updates with diversified training workloads.
To assess the aforementioned robustness, the core idea is to inject extraneous toxic workloads

into the training workloads and compare the performance before and after the injection, which is
widely studied and referred to as “poisoning attack" in Artificial Intelligence (AI) fields [9, 10,
12, 14, 37, 38]. As illustrated in Figure 1, the IA (DQN) is first trained and tested on the normal
workloads (green flow). After it is re-trained on the set of normal and injected workloads (red flow),
it recommends inaccurate indexes on the normal workloads, reflecting the lack of robustness of
DQN.
Despite the similar workflow, the robustness test of updatable learning-based IAs is distinctive

in two aspects that existing poisoning attack methods are not applicable. First, a poisoning attack
injects incorrect training data (e.g., with wrong labels or rewards). In contrast, the injected extrane-
ous workloads are executable and sargable (i.e., these workloads can take advantage of indexes)
queries to reflect real scenarios. Second, to propose a universally effective assessment independent
of specific learning-based IA models, testing workloads, and training processes, we should conduct
an opaque-box testing. That is, the evaluator has no access to the IA’s internal designs (e.g., the
applied algorithms, the considered index candidates, and the exact values of model parameters).
Besides, the evaluator does not know the IA’s training data (e.g., the normal workloads) and cannot
control the training process (e.g., it cannot provide wrong rewards or directly interfere with the
index selection).
Under the above settings, the evaluator can only interact with the IA by submitting an input

workload and observing the IA’s output. Thus, most existing poisoning attack methods are hard to
follow and require a certain amount of knowledge of the training process, such as the gradient [27],
rewards [1, 24, 28, 36, 44] action space [23], and the labels of the training data [17]. Specifically, the
main challenges are as follows.

C1: IA Probing Strategy. There is an unlimited number of injection workloads to choose from,
and we are interested in injections that can cause a significant performance reduction to stress-test
the IAs. Injections without any guidance information obviously cannot effectively function as stress
tests. The problem is, what information can be helpful in an opaque-box setting? Inputting some
probing workloads and extracting information from the output may be a solution. However, due
to the cost of executing the probing workloads, it remains a difficult problem to design effective
probing workloads to meet the small probing overhead budget.

C2: Effective Injection Strategy. The impacts of injection workloads differ on learning-based
IAs with diverse design details. Some IAs, such as SWIRL [19], are deployed in an one-off fashion,
i.e., once the IA is trained or re-trained, it makes direct predictions for any workload. For one-off
IAs, the injection workloads explicitly alter their parameters. Others [20, 26, 29, 30] are trial-based
for the inference stage, i.e., after being well-trained or updates, the IA still iterates several times to
produce trial indexes for a given workload. For the trial-based IAs, the injection workload only
alters the initialization of their parameters, and the impact on the final performance is far more
complicated. It is challenging to design injection strategies that are both effective on one-off and
trial-based IAs.
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C3: Query Generation for IA Probing and Injecting. A query generator is needed to automate
the stress-test procedure. Existing query generators are not applicable because their goals do not
match the probing and injection strategies (i.e., to reveal IA’s information or to be most influential
on the IA’s training). For example, as shown in Figure 1(3), the queries generated by SQLsmith [32],
which focuses on generating queries that satisfy the syntax constraint, can not expose that DQN is
a non-robust IA.
We study the above challenges and propose PIPA (Probing-Injecting Poisoning Attack).

PIPA consists of a probing stage before an injecting stage, both of which are based on a query
generator IABART (Index Aware BART). To address C1, the probing stage (Section 4) iteratively
refines the probing workloads to estimate the IA’s indexing preference on all indexable columns
(i.e., which column is likely to be chosen to build an index) within the probing budget. To address
C2, the injecting stage (Section 5) designs workloads that can actively spoof the IA to demote the
top-ranked indexes in the estimated indexing preference and promote mid-ranked indexes. This
strategy is effective on “one-off" IAs since degrading top-ranked indexes leads to inferior indexing
performance. It is also effective on “trial-based" IAs because promoting mid-ranked effectively traps
the IA in a local optimum. To address C3, IABART targets on generating a SQL query that can be
optimized by building an index on some given columns (Section 3). We propose several techniques,
including progressive training to increase the awareness of indexing performance in the resulting
SQL query and a novel decoding method to ensure the results are syntactically correct queries.

In summary, our contributions are four-fold. (1) We make the first attempt to study the robustness
of updatable learning-based IAs against poisoning attacks. (2) We propose an opaque-box stress-
test framework PIPA that can stress-test the robustness of learning-based IAs regardless of the
IA’s internal mechanisms, user data, and the testing workloads. (3) We conduct comprehensive
experiments on different benchmarks, IAs, and injection workload sizes to demonstrate that both
one-off IAs and trial-based IAs are not robust when training workloads are polluted. (4) We reveal
some interesting insights, such as the strong impact of mid-ranked indexes, the local optimum trap
in the learning process of IA, and the influence of design details of various IAs on robustness. We
believe that these insights can better assist DBAs in deploying learning-based IAs.

2 ROBUSTNESS OF LEARNING-BASED IAS AGAINST POISONING ATTACK
2.1 Problem Definition

Definition 2.1. (Learning-based Index Advisor) Given a target workloadW on a dataset 𝑑 , an index
advisor IA is a function parameterized by 𝜃 that aims to build a set of indexes I𝑤,𝑑 = IA𝜃 (W, 𝑑),
such that the performance improvement of executing the workloadW with indexes I𝑤,𝑑 against
without the indexes is maximized, under the budget constraint that the index storage/number size
B(I𝑤,𝑑 ) is not larger than a budget bound 𝐵, i.e., B(I𝑤,𝑑 ) ≤ 𝐵.

Generally, the IA’s parameters are optimized by minimizing a certain loss function computed on
the training workloads. For a given IA, its parameters are dependent on the training workloads.
Many IAs [19, 20, 26, 29, 30, 33, 40, 45] assume the training workloads are equivalent to the target
workload. We follow this setting to establish a performance baseline, i.e., the intended performance
of an IA well-trained on the target workload.

Definition 2.2. (Performance Baseline of a Learning-based IA) Given a target workload W, a
dataset 𝑑 , and a learning-based IA IA with parameters 𝜃 , its performance baseline is defined as
the execution cost 𝑐 () of the target workload based on the well-trained IA’s recommended index
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which minimizes the loss function 𝐿(𝜃,W).
𝑐𝑏 (W, 𝑑,IA) = 𝑐

(
W, 𝑑,IA𝜃 ∗ (W, 𝑑)

)
,

𝜃∗ ← arg min
𝜃

𝐿(𝜃,W).

Since IA𝜃 is updatable, comparing its performance before and after the model update reflects its
robustness. To construct the new training workloads to update 𝜃 , we inject an extraneous workload
IW, “extraneous" means IW∩W = ∅. We adopt the injection for three reasons. (1) Injection mimics
real scenarios, e.g., the training workloads contain historical workloads not present in the current
target workload. (2) Injection is also adopted in some IAs [19], e.g., the training workloads contain
variants of the target workload. (3) We can control the degree of overlap between previous and new
training workloads by setting the size of injection workloads. Accordingly, we define the Absolute
performance Degradation (AD) as a measure of the learning-based IA’s robustness when its training
is disturbed by various extraneous injection workloads.

Definition 2.3. (Absolute performance Degradation) Given the IA’s performance baseline 𝑐𝑏 , the
extraneous injection workload IW selected by the evaluator, the IA is retrained on the combined
set {W, IW} to update the parameters, the Absolute performance Degradation (AD) is defined as
the relative increased execution cost,

𝐴𝐷 (W, 𝑑,IA, IW) =
𝑐
(
W, 𝑑,IA

𝜃
(W, 𝑑)

)
− 𝑐𝑏 (W, 𝑑,IA)

𝑐
(
W, 𝑑, ∅

)
− 𝑐𝑏 (W, 𝑑,IA)

,

𝜃 ← arg min
𝜃

𝐿(𝜃, {W, IW}) .
(1)

For heuristic IAs, the AD score is always zero. Note that heuristic IAs have no concept of training
workload and testing workload per se. If the testing workloadW does not change, the indexing
recommendation results generated by heuristic IAs according to the predefined procedure will
remain unchanged. The AD score is usually negative for extraneous injection workloads, such as
the workload variants adopted by SWIRL [19]. We argue that the AD score should be positive for a
correct evaluator. A negative AD score means the injection workload can not disturb the training
process. Thus, this AD score can not truly evaluate the robustness of IAs against poisoning attacks.
Instead, high positive AD scores from various injection workloads (especially the maximal score)
reflect that the IA is non-robust.
There is an unlimited number of injection workloads IW. To develop a thorough evaluation

against the extreme condition inspired by poisoning attack [41], we next define the concept of
Toxic Injection Workload that has a destructive impact on the IA’s performance.

Definition 2.4. (Toxic Injection Workload) Given the well-trained IA IA𝜃 ∗ as the victim, if an
injection workload harms the updated IA’s performance on the target workloads compared with its
performance baseline,

𝑐
(
W, 𝑑,IA

𝜃
(W, 𝑑)

)
> 𝑐𝑏 (W, 𝑑,IA), 𝜃 ← arg min

𝜃
𝐿(𝜃, {W,TW}), (2)

then TW is a toxic injection workload.

Toxic injection workloads are a subset of all injections. Compared to random injections, toxic
injection workloads can stress-test the robustness limits of IA on a larger scale. Consequently, we
define another robustness metric.

Definition 2.5. (Relative performance Degradation) For each IA, various random injection work-
loads IW, Relative performance Degradation (RD) calculates the difference between the performance
degradation caused by random injection workloads and toxic injection workloads:

𝑅𝐷 (W, 𝑑,IA) = 𝐴𝐷 (W, 𝑑,IA,TW) −𝐴𝐷 (W, 𝑑,IA, IW), (3)
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where 𝐴𝐷 (W, 𝑑,IA, IW) acts as performance testing for the IA under different training condi-
tions, 𝐴𝐷 (W, 𝑑,IA,TW) acts as stress test under deliberately malfunctioning training, and 𝑅𝐷

measures to what extend the performance degradation under toxic injection workload exceeds the
expected degradation. Since one would expect the injection in training data to cause performance
degradation, 𝑅𝐷 complements𝐴𝐷 to provide a more comprehensive measurement of the robustness
of learning-based IAs. Since there is a vast possibility of injection workloads, we use average AD
and average RD in the experiments over multiple runs.

2.2 PIPA Overview
From Definition 2.5, the robustness is measured through the toxic injection workload generated by
PIPA (Probing-Injecting Poisoning Attack). For a more generalized robustness evaluation,
we impose certain restrictions on the evaluator’s ability. (1) To generalize to all learning-based IAs,
the evaluator cannot observe the internal design details of IA; only the input and output interfaces
of IA are exposed. (2) To be independent of users’ private information, the evaluator can only access
the database schema, such as the structure of tables and columns, but cannot obtain the private
data.
Workflow. PIPA comprises three modules, i.e., query generator IABART , IA probing, IA injecting,
as shown in Figure 2. The training of IABART is independent of the other two modules. In each
evaluation, the evaluator implements the probing stage before the actual injecting stage, and IABART
is called in both stages.
Index Advisor Probing. Since the model parameter 𝜃 and training workloadsW are unknown
under the opaque-box setting, we extract the IA’s indexing preferences, i.e., which column is more
likely to be chosen by the IA regardless of the target testing workloads. Intuitively, the preferred
columns will likely be effective on the target workloadsW to minimize the loss in Definition 2.2.
To avoid costly probing, i.e., extensive index overhead to many/ large probing workloads, we resort
to an iterative approach (i.e., the number of iterations is less than a probing budget). As shown
in Figure 2, in each iteration, the probing workload is renewed to obtain an accurate estimate of
indexing preference (details in Section 4.3).
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Index Advisor Injecting. We can use the indexing preference to supervise the injection. Specifi-
cally, as shown in Figure 2, we can generate workloads that (1) can be optimized by building indexes
on less preferred columns and (2) can not be optimized by building indexes on the most preferred
indexes. Injecting such workloads and retraining the IA will eventually down-weigh the preferred
columns in 𝜃 . As a result, the updated parameters 𝜃 will be less effective on target workloads.
Query Generator. The probing and injecting stages both need a query generator to yield a
workload of queries that satisfy specific index-aware performance requirements. The input of
IABART is a set of columns specified by the probing or the injecting stage; the output is a query
that can be optimized by building indexes on these columns.

3 QUERY GENERATOR
The probing and injecting stages raise a query generation problem tomeet index-aware performance
requirements. Formally, given a set of 𝑛 columns I = {𝑙1, · · · , 𝑙𝑛}, the evaluator’s own data tables 𝑑 ,
the goal is to generate a query 𝑞 that the optimal index for 𝑞 is the input column set, i.e., ∀I′ with
|I′ | = 𝑛, 𝑐

(
𝑞, 𝑑, I

)
≤ 𝑐 (𝑞, 𝑑, I′).

Existing query generators can not fulfill the above goal. For example, in Figure 1, even though
the column is fixed as "o_custkey," the SQL generator [32] produces a query that the optimal
index is "o_orderkey," which is inconsistent with the input constraint. Our intuition is to train
a SQL generator based on the backbone BART [21], which has demonstrated a strong ability to
generate sequences in NLP. However, the conventional BART can not be directly applied due
to three challenges. (1) The original training of BART is based on masked sequence completion
for a natural language sequence, which is infeasible to train a query generator to meet certain
index-aware performances. (2) The training task is designed to capture context relationships within
the sequences, which is inefficient in generating an entire query sequence given its optimal indexing
columns. (3) BART can not guarantee the syntactic correctness of the output query (i.e., executable),
which is unacceptable in probing and injecting.

Thus, we present the construction of training data (Section 3.1), a novel progressive training
paradigm (Section 3.2), and a syntactically correct inference method (Section 3.3).
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As shown in Figure 3, IABART contains a bi-directional encoder and an auto-regressive decoder.
The bi-directional encoder reads an input text sequence x𝑚𝑎𝑠𝑘 corrupted from x (e.g., some tokens
are masked) from both directions (i.e., left to right and right to left) and produces a representation
𝐸 (x𝑚𝑎𝑠𝑘 ). The auto-regressive decoder outputs a sequence y that recovers the input text from
left to right, based on the encoder’s representation and previously generated tokens, i.e., y𝑡 =

𝐷
(
𝐸 (x𝑚𝑎𝑠𝑘 ), y<𝑡

)
. To utilize the common-sense knowledge learned from pre-training in large-scale

English language corpus (e.g., a basic understanding of numerical magnitudes), we initialize the
model by BART-base1.

3.1 Construction of Training Data
To construct the ground-truth sequences {x}, three parts are concatenated, i.e., the query, the
indexes, and the performance. Each x is in the form of "<CLS> 𝑞 <SEP> I𝑞,𝑑 <SEP> R(I𝑞,𝑑 )", where
<CLS> is a special token to mark the beginning of a sequence, <SEP> segments the sequence, 𝑞 is a
SQL query, 𝑑 is the evaluator’s own data, I𝑞,𝑑 is a sequence of indexes, R(I𝑞,𝑑 ) is the corresponding
indexing performance.
𝑞 is generated by feeding a random seed to the Finite State Machine (FSM) [43] on 𝑑 . We generate

each 𝑞 starting from the state "FROM," which helps the FSM to determine the table of the SQL
statement first to determine the subsequent legal column candidates in the next steps. We tokenize
the query because a SQL query usually contains words that are rare in the open-domain corpus
or in training (i.e., Out of Distribution) but are important clues to suggest the data structure. For
example, "customer.c_income" rarely appears in the corpus on which BART-base is trained so
that it will be abrupt for BART-base. But its token segments are important in the SQL query because
they suggest the table customer and the column c_income. Therefore, we use the sub-token level
tokenizer to segment word customer.c_income to five tokens, i.e., customer, ., c, _, income to
handle OOD problems.

To associate different SQL queries with their appropriate index configurations, we use SWIRL [19]
to recommend a set of indexes I𝑞,𝑑 for each query. We use SWIRL because it is a State-Of-The-Art
IA with superior indexing performances. Moreover, it can adapt to different workloads and make
index advice on the fly, thus reducing the time cost to construct the ground-truth data.
The inclusion of R(I𝑞,𝑑 ) in the training sample is to help IABART to understand the benefit of

I𝑞,𝑑 and further enhance its accuracy in generating a SQL query to meet the index requirements.
We compute R(I𝑞,𝑑 ) = 𝑐 (𝑞,𝑑,∅)−𝑐 (𝑞,𝑑,I𝑞,𝑑 )

𝑐 (𝑞,𝑑,∅) , where ∅ is the null index. We use estimated cost instead of
the actual cost to speed up the construction and collect more training samples. R(I𝑞,𝑑 ) is discretized
into the interval of 0, 1 rounded up to two decimals (e.g., 0.31) so that the numerical performance is
treated as a classification task to avoid generating real numbers.

3.2 Progressive Masked Span Prediction
The masked span prediction pre-training task is found to be more suitable in generating and
predicting spans of text [16]. Each sequence in the training set is corrupted by masking a sequence
span starting from 𝑠 to 𝑒 . The masked token is replaced by a special <MASK> symbol to form x𝑚𝑎𝑠𝑘 .
Then, the masked span prediction attempts to recover the corrupted sequence by optimizing the
following loss function:

L(𝐸, 𝐷) =
𝑡=𝑒∑︁
𝑡=𝑠

−𝑙𝑜𝑔𝑝
(
x𝑡 = 𝐷

(
𝐸 (x𝑚𝑎𝑠𝑘 ), y<𝑡

) )
. (4)

1https://huggingface.co/facebook/bart-base
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However, the masked span prediction task is ineffective as our goal is to generate the whole SQL
query. We present progressive masked span prediction, which is motivated by the human learning
process, i.e., human learning abilities are enhanced by progressively training from the easiest task
to the hardest task. Thus, we present three pre-training tasks.
As shown in Figure 3, in the first task, each mini-batch randomly draws a sequence from the

training set and corrupts the sequence by randomly masking one token. The first task encourages
the model to learn correlations among tokens, e.g., to predict a missing token in a SQL query, to
predict a missing index given the entire SQL query and other indexes, or to predict the possible
indexing performance. It is the easiest task since only one token is missing each time.

The second task strengthens the model’s understanding of the association between indexes and
a SQL query by masking all indexes I𝑞,𝑑 . Note that instead of masking a single token, this task
masks a sub-sequence, and hence is more difficult than the first task and encourages the model to
improve itself.

The third task masks the query sequence 𝑞 and keeps only the index configuration and required
performance. This task is the most difficult. Thus, by training progressively with the three tasks,
IABART can capture the complex relationships among the SQL query, the index, and the indexing
performance. Furthermore, the third task generates an SQL query from scratch, close to the inference
task in the probing and injecting stages.

3.3 Inference
In the inference, the input is in the form "<CLS> <MASK> <SEP> I <SEP> <MASK>," where I are
a set of indexable columns specified in the probing or injecting stage. The trained IABART is
implemented to fill the masked part to be extracted as an SQL query.

The conventional decoding strategy in inference is greedy search (i.e., in each step, selecting the
token with the largest probability) or beam search (i.e., expanding the greedy search and returning
a list of most likely sequences). These decoding strategies can not be used because the generated
sequence might have incorrect grammar. We present a novel decoding approach based on FSM.

Specifically, in each generation step, given the previously generated tokens, the model will look
for the candidate states in FSM and search the decoder in a top-downmanner to adopt the first token
that matches a candidate state. The dictionary of the decoder is collected from the sub-tokens in
the training samples to handle OOD problems. We propose a prefix-matching strategy to adapt the
word-based FSM to our sub-token level tokenizer. An example is shown in Figure 3, the previously
generated token is "select", and the candidate states by the FSM include "c_income, o_date,
c_phone". The next word is generated by combining several tokens. For the first token, in the
decoder’s generation list, "c" will be selected because "from" does not match the prefix of any
of the FSM’s candidate states. Once “c" is selected, ‘o_date" will be deleted from the candidate
states, and “c_income, c_phone" are reserved for future matching. Next, the decoder updates its
output. “_" will be selected because “c_" matches the prefix of FSM’s candidate states. In the third
step, "income" will be selected, and "c_phone" will be deleted from the FSM’s candidate states.

4 PROBING INDEX PREFERENCE
4.1 Derivation of Indexing Preference
For practical reasons, we only extract information regarding single-column indexes in the probing
stage. (1) The internal architecture of the IA, including the set of multi-column index candidates, is
unknown. (2) The enumeration space of possible combinations of columns is too large, leading to
inaccurate information given the probing budget. (3) Single-column indexes also reveal valuable
information about multi-column indexes. Because the primary column of a multi-column index is
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Fig. 4. Intuition of probing and injecting

accessed first, the indexing performance of a multi-column index is primarily related to the first
single-column index.
We seek to derive a ranking over all indexable columns as the indexing preference. We use

a ranking instead of the actual numeric value for two reasons. First, the specific value of inner
parameters 𝜃 is unknown in the opaque-box setting. Second, the ranking order (i.e., which indexable
column is preferred over the other) provides substantial supervision in generating the injection
workload.

To determine the order position of each column, our key idea is to compute the expectation
of the “preference" of each indexable column by aggregating over different probing workloads.
The intuition is illustrated in Figure 4. Generally, let’s denote the IA chooses a column 𝑙𝑖 for the
target workloadW based on 𝜃 (𝑙𝑖 ,W). Figure 4(a) illustrates 𝜃 (𝑙,W) on the specificW. Note that the
exact value of 𝜃 (𝑙,W) is invisible because we cannot access the user data and the target workloads.
Nonetheless, if we have multiple probing workloads PW and Figure 4(b)-(c) illustrates 𝜃 (𝑙𝑖 , PW)
on each slice. Although this is still invisible, we can approximate it by observing the IA’s output
index 𝜃 (𝑙𝑖 , PW) and incorporating the benefit of taking each index R̊ (𝑙𝑖 , PW). Based on different
probing workloads, we can then calculate the expectation, i.e., K(𝑙𝑖 ) = EPW

[
𝜃 (𝑙𝑖 , PW)R̊ (𝑙𝑖 , PW)

]
and eliminate theworkload variable, plotted as Figure 4(d). The resultingK(𝑙𝑖 ) represents a tendency
that the IA favors a column regardless of the workloads. Thus, it allows us to be unaware of the
training details, e.g., the training and target workload, the index trajectory of a reinforcement
learning IA, etc. Instead, it reflects workload-independent features in the training procedure, e.g.,
the column’s selectivity, inherent bias due to the model’s masking strategy to prune certain index
candidates, etc.

The above reason defines indexing preference k,
k =< 𝑙1, · · · , 𝑙𝐿 >,

∀𝑖 < 𝑗, K(𝑙𝑖 ) > K(𝑙 𝑗 ),

K(𝑙𝑖 ) = EPW
[
R̊ (𝑙𝑖 , PW)𝜃 (𝑙𝑖 , PW)

]
,

(5)

where k is a ranking over the set of indexable columns 𝑙1, · · · , 𝑙𝐿 . R̊ (𝑙𝑖 , PW) is the benefit of
building an index on column 𝑙𝑖 for a particular probing workload PW, 𝜃 (𝑙𝑖 , PW) is the approximated
parameter based on observed indexes, EPW is the expectation over all probing workloads.

4.2 Calculation of Indexing Preference
Suppose the probing stage repeats for 𝑃 iterations, each iteration generates a probing workload
PW𝑝 , 1 ≤ 𝑝 ≤ 𝑃 that contains 𝑁𝑃 probing queries, the IA’s output index configuration is I𝑝 .

First, to approximate parameter 𝜃 (𝑙𝑖 , PW𝑝 ), we know that in each inference step 𝑡 , the IA outputs
an index with the maximal 𝜃 . It means that if 𝑙𝑖 ∈ I𝑝 , then ∀𝑙 𝑗 ∉ I𝑝 , 𝜃 (𝑙𝑖 , PW) > 𝜃 (𝑙 𝑗 , PW). Also,
since each column appears at most once in the output indexes recommended by a well-train IA,
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this is equivalent to using a sparse policy 𝜃 ,

𝜃 (𝑙𝑖 , PW) =
{

1 𝑙𝑖 ∈ I𝑝 ,
0 𝑙𝑖 ∉ I

𝑝 .
(6)

Next, we assume each index contributes equally to the indexing benefit. Most IAs [19, 20, 26]
adopt the relative cost reduction to quantify the indexing benefit and use it as the loss function.

R̊ (𝑙𝑖 , PW𝑝 ) =


1 − 𝑐 (PW𝑝 ,𝑑,I𝑝 )

𝑐 (PW𝑝 ,𝑑,∅)
|I𝑝 | , if 𝑙𝑖 ∈ I𝑝

0 else,
(7)

where 𝑐 (PW𝑝 , 𝑑, I𝑝 ) is the actual execution cost of the probing workload using the IA’s recom-
mended index configuration, ∅ is the null index, |I𝑝 | is the number of indexes in the output.

Finally, the empirical expectation for K is computed by

K(𝑙𝑖 ) =
1
𝑃

∑︁
𝑝 :𝑙𝑖 ∈I𝑝

1 − 𝑐 (PW𝑝 ,𝑑,I𝑝 )
𝑐 (PW𝑝 ,𝑑,∅)
|I𝑝 | . (8)

4.3 Probing Strategy

The order of k is affected by probing workloads PW. Unfortunately, given the probing budget
𝑃, 𝑁𝑃 for the number of probing epochs and the size of the probing workloads, it is neither practical
nor necessary to enumerate all possible probing workloads. Our goal is to obtain an accurate
ranking within the probing budget. The intuition is illustrated in Figure 5. Suppose there are
three columns 𝑙1, 𝑙2, 𝑙3 = “orderID",“userID",“productID" and their R̊ (𝑙, PW) are visualized
as three lines in Figure 5, where the x-axis denotes the workloads. We highlight three areas in
the x-axis, i.e., workloads that the three indexing columns can optimize. Note that these lines are
unknown and if in a probing round, a probing workload PW is executed, a point R̊ (𝑙, PW) can
then be observed. Suppose, based on the original three observations I1, I2, I3, the ranking order is
“orderID" >“userID" >“productID". In the next round, to collect new information, we prefer

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 10. Publication date: February 2024.



10:12 Yihang Zheng et al.

to generate a probing workload that likely changes the previous order. Intuitively, we can choose
column "productID" that ranks at the lowest position, and generate a workload that is likely to be
optimized using "productID". In this manner, the IA’s output I4 is likely to include "productID",
and the observation will promote the ranking of "productID". Note that the fourth observation
does not necessarily change the column order, but it will likely reveal more information than using
other probing workloads, e.g., workloads that can be optimized by building an index on "orderID".

Algorithm 1: Probing procedure
Data: An opaque-box IA, the dataset 𝑑 , the query generator IABART , probing budget 𝑃, 𝑁𝑝 ,

number of specified columns |{𝑐}|
Result: The IA’s indexing preference k

1 𝜇1 ←U(0, 𝐿) ;
2 for 𝑝 ← 1 to 𝑃 do
3 for 𝑖 ← 1 to 𝑁𝑝 do
4 {𝑐} ∼ 𝜇𝑝 ;
5 PW𝑝 ← PW𝑝 ∪ 𝐼𝐴𝐵𝐴𝑅𝑇 ({𝑐});
6 end
7 I𝑝 ← IA(PW𝑝 , 𝑑) ;
8 Update K() by Equation 8;
9 Update 𝜇𝑝+1 by Equation 9;

10 end
11 Return k

Motivated by the above intuition, we propose the probing strategy. As shown in Algorithm 1, the
input includes the environment (e.g., IA, dataset), query generator IABART and hyper-parameters
such as probing budget 𝑃, 𝑁𝑝 , number of specified columns |{𝑐}| (which will be discussed in
Section 6). The probing stage initializes a probability vector over all indexable columns 𝜇 to a
uniform distribution (line 1), i.e., each column has an equal probability of being sampled. Then, the
probing stage repeats the process of maximal 𝑃 times (line 2), in each time 𝑁𝑝 probing queries can
be generated (line 3). Note that 𝑃 and 𝑁𝑝 are user-defined probing budgets. A set of column {𝑐} is
sampled based on the current column probability (line 4). The IABART in Section 3 is implemented
to generate a probing query to be put in PW𝑝 that can be optimized by building indexes on {𝑐} (line
5). Let the IA recommend index configuration I𝑝 for PW𝑝 on dataset 𝑑 (line 7). For each column in
the index configuration I𝑝 , the relative cost reduction is observed to update K (line 8). The column
probability 𝜇 is updated accordingly (line 9) for the next round.

To update the probability of sampling columns, we compute:

𝜇 (𝑙 𝑗 )𝑝 =𝑚𝑖𝑛
(
𝜇 (𝑙 𝑗 )𝑝−1 − 𝛼 1

𝑝 − 1

∑︁
𝑖<𝑝

R̊ (𝑙 𝑗 , s𝑖 ) − 𝛽, 0
)
,

𝜇 (𝑙 𝑗 )𝑝 =
1/(𝜇 (𝑙 𝑗 )𝑝 )∑
𝑗 1/(𝜇 (𝑙 𝑗 )𝑝 )

.

(9)

We explain the details of Equation 9, where 𝜇 (𝑙 𝑗 )𝑝 is the probability of sampling 𝑙 𝑗 in round 𝑝 . A
column’s probability will be decreased if it receives a higher rank in previous iterations, i.e., larger∑

𝑖<𝑝 R̊ (𝑙 𝑗 , s𝑖 ), the coefficient 𝛼 controls how much the probability should be updated based on
the new observations. 𝛽 is a parameter to avoid exploring unwanted index columns and reduces
unnecessary probing steps. For example, suppose a column 𝑙 𝑗 with low index selectivity cannot
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serve as an index. In that case, the IA will never recommend it, thus receiving a zero reward score
R̊ (𝑙 𝑗 , s𝑖 ) in every previous round 𝑖 . 𝜇 (𝑙 𝑗 ) will be too large that 𝑙 𝑗 will be drawn to generate the
next probing workload. However, since the probing workload can not be optimized by building an
index on 𝑙 𝑗 , the next probing is non-informative. Thus, in Equation 9, if the reward of a particular
column 𝑙 𝑗 is rarely observed in all previous rounds and thus 𝜇 (𝑙 𝑗 )𝑝−1 − 𝛼 1

𝑝−1
∑

𝑖<𝑝 R̊ (𝑙 𝑗 , s𝑖 ) > 𝛽 ,
then we use the𝑚𝑖𝑛(·, 0) function to force 𝜇 (𝑙 𝑗 ) = 0. Finally, we use the absolute function | · | and
normalization to guarantee that 𝜇𝑝 is a probability function.

5 INJECTING
Based on the indexing preference k detected from the probing stage, we can generate the toxic
injection workload TW. We only inject the toxic injection workload once, assuming the IA will
re-train on the new training set after injection.
In Figure 6, k can be grouped into three segments: top-ranked indexes 𝑙1, mid-ranked indexes

𝑙2, · · · , 𝑙𝑞 , and low-ranked indexes 𝑙𝑞+1, · · · , 𝑙𝐿 , where the division boundaries are controlled by
hyper-parameter 𝑞. In addition, we treat the best index and its foreign keys as the top-ranked index,
which will be discussed in Section 6.4.

The intuition is that TW can be optimized by building indexes on columns that fall into a target
segment. Thus, during the re-training, the IA will be encouraged to promote columns in the target
segment and demote columns elsewhere. Clearly, toxic injection workloads should not contain
queries optimized by top-ranked indexes. The top-ranked columns are likely to perform well on
the training workloads. The stress test will be invalid if the injection workloads strengthen the
top-ranked columns.
We argue that the target segment can not be low-ranked indexes for the following reasons. (1)

Some columns in 𝑙𝑞+1, · · · , 𝑙𝐿 are bad indexes, e.g., they have low index selectivity. Therefore, if
we use them as the input for IABART , the generated queries will be more likely non-sargable, i.e.,
queries that can not be optimized by indexing. These queries will yield a reward close to zero
no matter what the victim IA changes its index configuration. Thus, injecting these toxic queries
will have little impact on re-training the IA. (2) The low-ranked columns usually do not appear
frequently in the target workload, meaning their stress-test effects are not generalized to different
IAs. For example, if we use a column that never appeared in the training workload, it will never be
considered as an index candidate by SWIRL [19].
Therefore, we choose the mid-ranked indexes as the target segment. As shown in Figure 4(e),

our goal is to downweigh the best column (e.g., the purple star 𝑙4 in the figure) and uplift the mid-
ranked column (e.g., 𝑙3). After injection, if the most preferred column is changed from 𝑙4 to 𝑙3, then,
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Algorithm 2: Injecting procedure
Input: 𝐼𝐴𝐵𝐴𝑅𝑇 , estimated indexing preference k = {𝑙1, · · · , 𝑙𝑁 }, the dataset 𝑑 , boundary 𝑞,

number of columns |{𝑐}|, toxic injection workload size 𝑁𝑎 .
Result: The toxic injection workload TW

1 for 𝑖 ← 1 to 𝑁𝑎 do
2 {𝑐} ∼ {𝑙2, · · · , 𝑙𝑞};
3 𝑞 ← 𝐼𝐴𝐵𝐴𝑅𝑇 ({𝑐});
4 if 𝑐 (𝑞, 𝑑, {𝑐}) < 𝑐 (𝑞, 𝑑, 𝑙1) then
5 TW← TW ∪ 𝑞;
6 end
7 end
8 Return TW

given a normal workload, the IA will likely select 𝑙3, which is sub-optimal. Moreover, operating on
mid-ranked indexes is efficient for both one-off and trial-based IAs. For one-off IAs, we already
illustrate in Figure 4(e) that the changed model parameter will lead to degraded performance. For
trial-based IAs, as shown in Figure 4(f), the stress-test will give a bad initialization in the IA’s search
procedure to minimize its loss function. The IA is more likely to be trapped in the local optimum.
More experimental discussions are presented in Section 6.2.

We sample the target columns for each query in the injection workload and generate a query by
IABART . We use sampling instead of defining a fixed set of target columns to increase the diversity
of the generated queries. Having more diverse queries in the injection workload has the advantage
that the column coverage of the injection workload is broader, which helps the injection workload
to bypass some indexing candidate filtering heuristics.

Motivated by the above intuition, we propose the injecting procedure. As shown in Algorithm 2,
the input includes query generator IABART , estimated indexing preference k and hyper-parameters
such as mid-ranked index boundary 𝑞, number of specified columns |{𝑐}|, toxic injection workload
size 𝑁𝑎 . 𝑁𝑎 toxic queries are generated (line 1). For each query, a set of columns {𝑐} is randomly
sampled from the mid-ranked indexes interval controlled by hyper-parameters 𝑞 (line 2). The
IABART in Section 3 is implemented to generate an toxic query (line 3). The generated query is
filtered to ensure that the top-ranked index is not the optimal index (line 4). Thus, the toxic injection
workload merges queries that (1) can be optimized by building indexes on mid-ranked columns
while (2) can not be optimized by indexing on top-ranked columns (line 5).

6 EXPERIMENT
In this section, we first verify the performance degradation of existing learning-based IAs when
faced with injected extraneous workloads (Section 6.2). We then investigate the impact of hyper-
parameters, including the size of the injection workload (Section 6.3), the division boundaries in the
injecting strategies (Section 6.4), the number of probing epochs (Section 6.5), the hyper-parameters
in Equation 9 (Section 6.6). Finally, we evaluate the performance of IABART (Section 6.7).
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Fig. 7. Absolute Reward Reduction (AD) by different methods against various index advisors

6.1 Experimental Setup
Datasets. Since most learning-based IAs only support analytic workloads, the experiments are
conducted on analytic benchmarks: TPC-H2 and TPC-DS3. For each benchmark, two different data
sizes are generated, i.e., 1 GB and 10 GB.
Index Advisors. We select four learning-based index advisors, i.e., DBAbandit [26] models index
selection as a multi-armed bandit problem; DQN [20] and DRLindex [29, 30] adopt the Deep Q-
Network algorithm; and SWIRL [19] adopts the proximal policy optimization algorithm. These IAs
cover typical learning-based IA design paradigms, except for the Monte Carlo Tree Search (MCTS)
methods. We do not stress-test MCTS models in this paper because they cannot be updated after
workload changes.

To train and retrain these IAs, 400 trajectories4 (20 for DBAbandit because it converges fast) are
produced for each workload. For inference, we let DQN and DRLindex produce 400 trajectories
(20 for DBAbandit) for each workload. The number of trajectories is defined to ensure each IA’s
training converges. Furthermore, we follow the settings in [19] and implement two variants: (1)
b: in training and retraining, parameters of the best trajectory for each workload are kept; in
inference, the best trajectory is delivered as the recommended index configurations. (2) m: in
training and retraining, the average parameters of the last 100 trajectories (10 trajectories for
DBAbandit) for each workload are kept; in inference, their average performance is reported. We
use “IA+implementation” to denote a variant. For example, “DQN-b” means index configuration
is based on DQN’s best trajectory. The default SWIRL is trained and retrained using b, and in
inference, SWIRL can directly recommend indexes for different workloads without producing any
trajectory. This gives us seven IAs in total.

2http://www.tpc.org/tpch/
3http://www.tpc.org/tpcds/
4A trajectory is a path of index selections the IA agent produces by interacting with the environment.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 10. Publication date: February 2024.

http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/


10:16 Yihang Zheng et al.

Table 1. Relative Performance Degradation of various IAs

Method TPC-H TPC-H TPC-DS TPC-DS
1GB 10GB 1GB 10GB

DQN-b 0.13 0.32 0.23 0.21
DQN-m 0.17 0.30 0.39 0.12

DRLindex-b 0.58 0.48 0.99 0.97
DRLindex-m 0.20 0.48 0.69 0.70
DBAbandit-b 0.32 0.94 0.41 0.07
DBAbandit-m 0.19 0.94 0.39 0.06

SWIRL 0.23 0.36 0.10 0.28

Workloads. Unless otherwise stated, to train and evaluate IAs, we follow SWIRL [19] to generate
the normal workloads. Specifically, in each run, we create a workload of 𝑁 queries, where 𝑁 = 𝑡𝑒𝑛

in TPC-H and 𝑁 = 90 in TPC-DS, by populating all available query templates of the benchmark
and randomly specifying the query frequencies according to a uniform distribution. The number
of probing epochs 𝑃 = 20, and the size of a probing or an injection workload is the same as the
normal workloads, i.e., 𝑁𝑝 = 𝑁𝑎 = 18 in TPC-H and 𝑁𝑝 = 𝑁𝑎 = 90 in TPC-DS. The index size
budget 𝐵 = 4, i.e., the maximal number of indexes for an IA. The number of specified columns
|{𝑐}| = 4 for IABART .
Evaluation Metrics. Unless otherwise stated, each experiment is repeated for 10 runs, and in
each run, we use Absolute performance Degradation (AD, Equation 1) and Relative performance
Degradation (RD, Equation 3) to measure the robustness of various IAs.
Implementation. The database server is a workstation with two Intel Xeon Platinum 8375C
2.90GHz CPUs and PostgreSQL 12.55. The machine learning models, including the IAs and IABART
, are implemented in a GPU server with Intel Xeon Gold 6133 @ 2.50GHz CPU and eight GeForce
RTX 3090 Ti graphics cards. Our codes and implementation details are available online 6.

6.2 Main Result
Baselines. We adopt five baselines and PIPA to produce injection workloads. (1) TP: each query
is generated from the TemPlates of the target workload with a frequency that is drawn from
the uniform distribution as in [19]. (2) FSM: each query is randomly generated by Finite State
Machine [43] with a random seed, where each query is assigned a unit frequency. (3) I-R: Each
query is generated by IABART with Randomly specified columns. (3) I-L: We used IABART to
generate queries using Low-ranked columns, i.e., the bottom 50% columns in the estimated indexing
preference. (5) P-C: each query is generated by IABART using the mid-ranked columns, and the
columns are ordered by the actual parameters of each index advisor. This is a clear-box variant
of PIPA; thus, it can be considered near-optimal. (6) PIPA: the boundary of the mid-ranked index
interval is [5,1/4L], where 𝐿 is the number of columns in each dataset, and we will further explain
in Section 6.4.
The effect of PIPA as a stress test. (1) Our experiments show that only PIPA and the clear-box
baseline P-C always achieve positive AD on all datasets against various IAs. Other methods can not
sustain positive AD values, e.g., TP and I-R boost SWIRL’s performance by up to 40% on TPC-H
1GB after the injection (i.e., they can not cause performance degradation and they are unqualified

5https://www.postgresql.org/
6https://github.com/XMUDM/PIPA
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Fig. 8. Cases of attacking DQN, DRLindex, DBAbandit, SWIRL on TPCH-10GB.

evaluators). (2) PIPA and P-C consistently achieve the highest mean AD averaged over runs (e.g.,
the orange line in Figure 7). The mean AD by PIPA is 0.2 − 0.6 higher than FSM and TP, 0.05 − 0.4
higher than I-R and I-L depending on datasets and IAs. (3) In most cases, the AD of PIPA has the
least variance (e.g., narrower box in Figure 7). The above three observations indicate that PIPA is a
superior stress test because it tests the IAs under abnormal conditions. It is the best opaque-box
test and is comparable to the near-optimal clear-box test P-C. Other methods can not consistently
obtain extreme cases to evaluate the robustness of IAs effectively.
The effect of probing. (1) PIPA always significantly outperforms I-R, which is based on the same
IABART , emphasizing the need for probing information about the IA.(2) PIPA achieves comparable
results to the clear-box method P-C, meaning that the estimated ranking k in Equation 5 is as
effective as true model parameters in generating injection workloads. (3) We further analyze the
difference between the estimated rank and the true model parameters and find that the estimated
rank is sometimes more informative. For example, PIPA’s performance on DQN is even better
than that of P-C. The true model parameters of the DQN model are excessively sparse, e.g., only
four columns are assigned with non-zero weights, and the remaining columns are discarded under
TPC-H. This brings difficulties for the evaluator to distinguish zero-weight columns and effectively
generate injection workloads. In contrast, the estimated indexing preference values K are denser,
and a more correct list of columns can be sampled to generate the injection workloads.
The effect of IABART . The model variants, i.e., PIPA, P-C, I-R, I-L, generally outperforms other
methods. This is because IABART can generate queries that satisfy certain performance constraints
on the specified index columns. This means that the queries generated by IABART aremore purposely
designed to stress-test and have more impacts on the parameters of the IA. This phenomenon
suggests that an effective test can not be achieved without a query generator specifically designed
to meet index-aware constraints.
The effect of targeting mid-ranked indexes. By comparing PIPA (targeting mid-ranked indexes)
with I-L (targeting low-ranked indexes), we find that the average AD of PIPA significantly improves
over I-L in most cases. Further analysis reveals two reasons.

Targeting mid-ranked indexes is more effective if the IA employs heuristic index candidate filtering.
Heuristic index candidate filtering can help an IA quickly filter out indexes that are not appropriate
to the current workload if targeting low-ranked indexes (i.e., I-L), the heuristic index candidate
filtering mechanism can potentially eliminate the bad indexes that I-L attempt to uplift, and thus
the attacking effect of I-L is diminished. For example, we find that three low-ranked indexes
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are selected by I-L, i.e., “c_phone,o_retailprice,c_custkey”, when stress-testing DQN and
SWIRL, only “c_custkey” can successfully obtain a positive AD score because “c_phone” and
“o_retailprice” are removed by DQN’s heuristic index candidate selection and SWIRL’s invalid
action masking mechanism.
Targeting mid-ranked columns traps an IA in the local optimum. We corroborate our analysis

with the following two cases. The first case is shown in Fig 8(a). After the stress test by PIPA, the
reward of the DQN stays around 10, which is a local optimum. After the test by I-L, on the other
hand, the reward is about 0-5, which is unsatisfying, so DQN tries to leave by random exploration
and then jumps out of the bad solution. Eventually, it successfully arrives at the optimal index
“l_partkey” after 320 learning epochs. The second case is shown in Fig 8(b). After stress test by
PIPA, the reward of the available index arms “o_custkey",“p_partkey" stays around 9, which
is a local optimum and thus does not trigger the index arm update operation of DBAbandit, so
that eventually DBAbandit picks the local optimum solution. However, after the test by I-L, the
index arms are too bad (zero rewards), thus triggering DBAbandit to update the index arms. Finally,
DBAbandit correctly selects the arm containing the global optimal index “l_partkey”.
Comparison across index advisors. DRLindex is generally the most vulnerable to stress-test. For
example, as shown in Figure 7, three attackers achieved 𝐴𝐷 = 0.96 against DRLindex-b on TPC-DS
1GB. As shown in Table 1, DRLindex-b’s RD scores are usually the highest. One possible reason for
DRLindex’s vulnerability is the sparse state representation. The state matrix in DRLindex indicates
which column is operated in which query. For example, the matrix is 90 × 432 in size on TPC-DS.
The model will tend to ignore the zero entries (e.g., missing columns in the normal workload) in
the sparse matrix. Thus, if the injection workload operates on different columns from the normal
workload, the model parameters will dramatically change, and DRLindex’s performance will be
severely damaged. Another possible reason is the over-sensitive reward function. DRLindex uses
1/𝑐 (W, 𝑑, I) as a reward. A small difference in the execution cost 𝑐 will cause the loss function to
vibrate. Thus, the RD and AD scores are high if the injection workload increases the execution cost.

Performance degradation can be better mitigated by running trial trajectories. We corroborate our
analysis in two aspects. (1) DQN, DBAbandit, and DRLindex need multiple trial trajectories to give
the final index selection result. Nonetheless, they can be treated as one-off IAs if the first trajectory
is adopted as the index advice. As shown in Figure 8(a)-(c), the highest reward is not obtained by the
initial trial at epoch=1. A larger award can be obtained with more trial epochs, and the AD and RD
scores are lower. (2) We also demonstrate the importance of trial trajectories using SWIRL. SWIRL
is a one-off model and does not produce multiple trial trajectories for a given workload. Thus, for
our demonstration purpose, we retrain SWIRL using the normal workload after poisoning (i.e.,
SWIRL has undergone three training stages). As shown in Fig 8 (d), if SWIRL is to predict indexes
directly, both PIPA and I-L cause SWIRL to miss an optimal index “l_suppkey”/“l_partkey”.
However, when SWIRL is retrained, it selects the optimal indexes (with the reward back to 17.6).
We want to highlight that even in this case against a strong IA with extensive training cost, PIPA is
effective and outperforms I-L.
The impact of dataset. On the TPC-DS dataset, model variants I-R and I-L sometimes (e.g., third
row, second column of figure 7) achieve comparable AD scores with PIPA. The underlying reason
is that TPC-DS contains more candidate columns, and some IAs are less effective in index selection.
Thus, once a critical column index is knocked out, the gentle evaluator can also be sensitive, and
the AD score will be the same.

6.3 Impact of Injection Workload Size
Naturally, the size of the injection workload 𝑁𝑎 significantly impacts the evaluation results. To
conveniently compare the performance among different training workloads, we fix the number of
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Fig. 9. Absolute performance degradation w.r.t. different injection sizes

queries in the injection workload to be 𝑁𝑎 = 180 and change the number of queries in the normal
workload. We compute 𝜔 = 𝑁𝑎/|W| to measure the poisoning proportion.

We vary 𝜔 = 0.01, 0.1, 1, 10, 100 and repeat the experiments five times. As shown in Figure 9, (1)
the AD score increases significantly with 𝜔 increases. (2) PIPA is valid (i.e., 𝐴𝐷 > 0) even under
the smallest 𝜔 against all IAs. (3) When 𝜔 is small, PIPA is most effective against DQN-m, i.e.,
𝐴𝐷 = 0.32 when 𝜔 = 0.01. Further analysis reveals that DQN is prone to overfitting to the local
optimum, even when a small injection workload pollutes it. (4) When 𝜔 is high, SWIRL has shown
strong resistance to the stress test due to its invalid action masking mechanism, which masks off
extraneous columns not involved in the training workloads.
We also report the RD result on TPC-H in Table 2. (1) PIPA yields positive RD values across

different𝜔 values, implying that PIPA can interfere with the training more severely than anticipated.
(2) For most models, the RD value increases as 𝜔 increases, which is reasonable because injecting
more extraneous workloads can significantly distort the training. (3) For DQNs, the RD reaches its
maximum when 𝜔 = 10. This is because DQN lacks a strong representation of workload features
in its state variables. Substantial changes in query patterns (whether gentle workloadIW or toxic
workload TW) can cause a sharp degradation in its performance; the two terms in Equation 3 are
both large, and the RD is small.

6.4 Boundaries of the Target Segment
We investigate the impact of boundary parameters by stress-testing DQN on TPC-H 10GB. In
Section 5, the top-ranked indexes are defined as the best index and its foreign keys. To verify this
strategy, we first fix the length of the mid-ranked index interval to 4, i.e., 𝑙𝑞−3, 𝑙𝑞−2, 𝑙𝑞−1, 𝑙𝑞 , and vary
the start point 𝑞 − 3 = 2, 3, 4, 5, 6, 7. We conducted five replicate experiments, and the experimental
results and variance are shown in Figure 10(a).
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The highest AD score is achieved when the start point is 5. Upon further analysis, we discovered
that when the start point is 5, the top-ranked indexes include “l_partkey” (Rank 1) and its foreign
keys “ps_partkey” (Rank 2) and “p_partkey” (Rank 4). This suggests that the target segment must
exclude the best index and its foreign keys to increase AD for a better stress-test effect.
Then we vary 𝑞 = 1/8𝐿, 1/4𝐿, 3/8𝐿, 1/2𝐿, 3/4𝐿, 7/8𝐿, where 𝐿 = 61 is the number of indexable

columns in the TPC-H 10GB dataset. The experiments are repeated for five runs. Figure 10(b)
shows that the highest AD score is achieved at 𝑞 = 1/4𝐿, yielding the highest mean AD and the
smallest variance. When 𝑞 = 1/8𝐿, the variance is significantly larger because the interval of mid-
ranked indexes is too small, and the result is uncertain. This observation verifies our assumption in
sampling columns from a target segment instead of fixing a set of columns to introduce diversity.
When 𝑞 > 1/4𝐿, the AD score decreases as 𝑞 increases. When 𝑞 = 7/8𝐿, the mean AD is close to 0.1
because low-ranked indexes are included, and they are ineffective for stress tests. This implies that
the target segment should be placed on mid-ranked indexes.

Table 2. Relative Performance Degradation "RD" on TPC-H 10GB w.r.t. different 𝜔

𝜔 10−2 10−1 100 101 102

DQN-b 0.15 0.19 0.21 0.45 0.02
DQN-m 0.32 0.27 0.42 0.52 0.02

DRLindex-b 0.08 0.09 0.22 0.41 0.56
DRLindex-m 0.11 0.37 0.08 0.40 0.40
DBAbandit-b 0.13 0.22 0.18 0.62 0.63
DBAbandit-m 0.13 0.22 0.30 0.65 0.61

SWIRL 0.04 0.02 0.27 0.34 0.38
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Fig. 11. Impact of the number of probing epochs

6.5 Impact of Probing Epochs
To investigate the impact of the probing budget, i.e., the number of probing epochs, we conducted
experiments by changing probing epochs 𝑃 = 0 − 20 on TPC-H 10GB and TPC-DS 1GB, and the
rest of the hyper-parameters unchanged. For each setting, we conducted five replicate experiments.
We compare the attack performance on two different types of index advisors (IAs): one-off

IAs that directly predict the optimal indexes for a given workload [19], and trial-based IAs that
implement trial runs with different index configurations to find the best ones [20, 29, 30]. Since this
distinction may affect the number of probing epochs needed for the attack, we conduct experiments
on DQN and SWIRL as representatives of each type. Figure 10 shows the experimental results
and their variance. The main findings are: (1) The AD score improves as the number of probing
epochs increases because more probing epochs lead to a more accurate estimation of the indexing
preference k. (2) However, only a few probing epochs are enough, e.g., 𝑃 = 4 achieves the best AD
score against DQN, and 𝑃 = 2 achieves a satisfying 𝐴𝐷 against SWIRL in TPC-H. Even in TPC-DS,
a high 𝐴𝐷 can be achieved within 15 rounds of probing. (3) The probing queries are assigned with
unit frequency, and running the probing stage is relatively fast, e.g., a probing round of 200 epochs
for DQN on TPC-H 10GB took 1 minute for our method.

6.6 Impact of Parameters
This section investigates the impact of 𝛼, 𝛽 in Equation 9. 𝛼 can be seen as the learning rate that
controls how much the sampling probability is updated based on new observations. It affects the
ultimate stress-test performance, i.e., 𝐴𝐷 . Thus, we exponentially selected different values of 𝛼 and
reported the AD result in Figure 12(a). Specifically, we normalized R̊ (𝑙 𝑗 , s𝑖 ) mentioned in Equation
9 into [0, 1) and chose 𝛼=0.01,0.05,0.1,0.5,1,10 for evaluation. We can see that the larger the value of
𝛼 , the larger the variance of AD (i.e., the evaluator is more likely to fail), and the appropriate value
of 𝛼 is around 0.1.

𝛽 acts as a sparsity term to filter out inappropriate columns to be index candidates, thus speeding
up the estimation of indexing preference rank. Nonetheless, insufficient probing leads to inaccurate
estimation. Since 𝛽 is related to 𝛼 and the number of columns 𝑛, we fixed 𝛼=0.1 and set 𝛽 =

1/(𝑖 ∗ 𝑛), 𝑖 = 20, 10, 5, 2, 4/3. We consider 𝑖 ∈ (1,∞) because the initial probability of each column
is 1/𝑛, and the probability should always be kept positive. We reported the number of epochs
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Fig. 12. Parameters Experiment in Equation 6

required for the members of top-ranked, mid-ranked, and low-ranked indexes to stop changing
in the next three epochs (blue line in Figure 12(b)). We also reported the average error rate, i.e.,
the average ratio of top-ranked, mid-ranked, and low-ranked indexes that are different from those
under 𝛽 = 0 (orange line in Figure 12(b)). A larger 𝛽 leads to smaller probing rounds and larger
estimation errors. Thus, we choose 1/(10 ∗ 𝑛) in the main experiment to strike a trade-off between
convergence speed and accuracy.

6.7 Evaluation of IABART
Evaluation Metrics. IABART is trained with 4, 326 queries as in Section 3.1. To evaluate the
performance of index-aware query generation, we randomly select three indexes and a reward
threshold and generate a testing query absent in the training set. We generate 𝑁 = 1000 testing
queries and adopt four measurements.
GAC (Grammar Accuracy) measures whether IABART can generate correct SQL queries that

conform to the SQL grammar. 𝐺𝐴𝐶 = 𝑁 (𝑞𝑐 )/𝑁 , where 𝑁 = 1000 is the total number of testing
queries, and 𝑁 (𝑞𝑐 ) is the number of correct queries that are executable.

IAC (Index Accuracy) measures whether IABART can generate SQL queries that can be optimized
by a specified index set.

𝐼𝐴𝐶 =

∑
𝑞𝑐 |I𝑞

𝑐 ∩ Ī𝑞𝑐 |
𝑁 (𝑞𝑐 ) , (10)

where 𝑞𝑐 is a correct query, I𝑞𝑐 is the specified index input to IABART to generate 𝑞𝑐 , Ī𝑞𝑐 is the
indexes selected by SWIRL for 𝑞𝑐 . 𝐼𝐴𝐶 ∈ [0, 1], a larger 𝐼𝐴𝐶 suggests IABART can generate queries
that are optimized by certain indexes.

RMSE (Root Mean Squared Error) measures whether IABART can generate SQL queries that can
achieve a given indexing performance on the specified indexes.

𝑅𝑀𝑆𝐸 =

√︄
1

𝑁 (𝑞𝑐 )
∑︁
𝑞𝑐

(R(𝑞𝑐 ) − R̂(𝑞𝑐 ))2, (11)

where 𝑞𝑐 represents a correct query, R(𝑞𝑐 ) is the random specified reward threshold for IABART to
generate 𝑞𝑐 , R̂ (𝑞𝑐 ) represents the estimated reward of 𝑞𝑐 using SWIRL’s recommended index
configurations. 𝑅𝑀𝑆𝐸 ∈ [0,∞), a smaller 𝑅𝑀𝑆𝐸 is better.
Distinct [22] measures the diversity of queries. It computes the ratio of unique tokens in each

correct query.
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Table 3. Performance of query generation

Method GAC IAC RMSE Distinct

ST 1.00 0.62 30.41 0.004
DT 1.00 0.24 27.76 0.005

GPT-3.5-turbo 0.82 0.60 33.06 0.033
GPT-4 0.92 0.63 59.79 0.010

GPT-4 w/ few-shot 0.97 0.61 26.66 0.014
GPT-4 w/ few-shot & COT 0.94 0.68 50.75 0.011

IABART w/o Task1&2 1.00 0.58 37.49 0.030
IABART w/o Task1 1.00 0.63 34.77 0.037
IABART w/o Task2 1.00 0.62 25.31 0.040

IABART 1.00 0.73 26.26 0.043

Competitors We compare IABART with four query generation methods. (1) ST: We build SQL that
contains only WHERE filter clauses and only the specified indexes in the WHERE clauses 7.
(2) DT: for any given index set, first, from the templates pool provided in the benchmark, we

select a template whose filter condition contains the most specified indexes. Then, we use the
template to populate the query. (3) chatGPT: We ask chatGPT to generate the SQL query. We
conducted extensive experiments on GPT 3.5 turbo and GPT 4, using prompt techniques, including
few-shot and Chain-of-Thought (COT). The prompts are available online 8. (4) IABART w/o Task
x: To understand the impact of progressive training tasks, we conducted an ablation study on three
variants of IABART trained without Task 1, Task 2, and Task 1&2, respectively.
Results. Table 3 demonstrated that (1) IABART achieves GAC= 1, showing that IABART can
generate syntactically correct queries. (2) IABART achieves the highest IAC, i.e., 0.085 higher
than the best competitor chatGPT. This suggests that IABART can generate queries that meet the
index requirement. (3) IABART and IABART w/o Task2 obtain the lowest RMSE, suggesting that
Task 1 is a key training task in capturing the relationship among queries, the optimal index sets,
and the corresponding performance. (4) IABART achieves the highest Distinct, i.e.,0.009 higher
than chatGPT. This suggests that IABART is capable of generating more diverse queries. (5) In
addition, by comparing IABART with and without progressive training, we find that the proposed
training paradigm is vital in the index-aware query generation problem, i.e., the IAC and RMSE
drop significantly without progressive training.

7 RELATEDWORK
Index advisors. Most conventional Index Advisors (IA) are based on heuristic algorithms that
enumerate possible solutions [6, 8, 31, 39]. Recently, learning-based IAs [19] have been proposed
to improve the performance of index selection. Most learning-based IAs [19, 20, 26, 29, 30] follow
the Reinforcement Learning (RL) framework, i.e., the IA acts as an agent that interacts with the
database (DB) environment. In training, the IA repeatedly produces trial trajectories (i.e., index
configurations) on the training workloads to maximize the reward of training trajectories. In each
step of the trial trajectory, the IA encodes the state of the current environment (e.g., workload,
database, currently chosen indexes) and selects an action (i.e., an index) based on the current
state. Different designs of state representations, reward functions, and action space exist. A few
learning-based IAs are based on Monte Carlo Tree Search (MCTS) [5, 45], which selects the best

7Specified case is on https://github.com/XMUDM/PIPA/Example.md
8https://github.com/XMUDM/PIPA/GPT_Prompts.md
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indexes by expanding the search tree based on a random sampling of the search space. In addition,
some IAs replace specific components of the heuristic algorithms by machine learning techniques,
e.g., cost estimator [13], query plan [11], and workload representation [34]. We do not attack IAs
based on MCTS or heuristic-based IAs with learning components. The reasons are that the MCTS
methods need to calculate for "rollout" nodes of the search tree for each training workload and the
learning components of heuristic-based IAs are trained separately and are not involved in index
mapping.
Poisoning attacks. Attacking machine learning models can be modifications on the testing

samples without modifying the model (i.e., evasion attack [2]) or contaminating the training dataset
and re-training the model (i.e., poisoning attack [41]). Regarding the types of the victim model,
poisoning attacks can be conducted against RL [1, 23, 24, 27, 28, 36, 44], supervised learning [3, 4, 15],
and unsupervised learning models [42]. Existing poisoning attacks against RL can be classified
into three groups, (1) manipulate the agent’s observation and its reward [1, 24, 28, 36, 44], (2) alter
the underlying environment [27], or (3) change the agent’s action[23]. PIPA differs significantly
from existing attacks as PIPA does not require knowledge of the IA and does not interfere with
the agent’s reward, environment, or action. Furthermore, PIPA differs from the existing poisoning
attack against learned index structures [17], which also assumes a clear-box setting.
SQL query generation. Generally, query generation can be divided into (1) Random methods

that generate queries by following pre-defined heuristic rules [32, 35], (2) Template-based methods
that rely on some given SQL templates and tweak the predicate values [7] or change values [25]
based on a space-pruning technique to reduce the search space, (3) Learning-based methods that
employ a reinforcement learning framework [43] to meet specific cardinality or cost constraints.
The former two types of methods are not capable of index perception. Thus, although they can
generate valid queries, only a small portion of the queries can be used for probing and attacking.
It is worth pointing out that the reinforcement learning framework [43] can not be applied with
trivial modifications such as specifying the constraint on columns because a separate RL model on
each column combination is needed due to the reward determination and the training cost will be
too expensive.

8 CONCLUSION
In this paper, we made the first attempt to study the robustness of updatable learning-based IAs
with polluted training workloads via PIPA. First, we proposed to probe the index preference under
the opaque-box setting. Second, we designed toxic injection workloads to trap IAs within the local
optimum. Besides, we proposed a query generation method for probing and injecting using large
language models (BART). Extensive experiments on different benchmarks against four typical
learning-based IAs demonstrated the effectiveness of PIPA. They showed the learning-based IAs are
not robust because they are easily interfered with by even a subtle amount of extraneous injection
workloads.
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