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ABSTRACT
Review-based recommender systems (RRS) have received an in-
creasing interest since reviews greatly enhance recommendation
quality and interpretability. However, existing RRS suffer from high
computational complexity, biased recommendation and poor gen-
eralization. The three problems make them inadequate to handle
real recommendation scenarios. Previous studies address each issue
separately, while none of them consider solving three problems
together under a unified framework. This paper presents LUME
(a Lightweight Unbiased Multi-teacher Ensemble) for RRS. LUME
is a novel framework that addresses the three problems simulta-
neously. LUME uses multi-teacher ensemble and debiased knowl-
edge distillation to aggregate knowledge from multiple pretrained
RRS, and generates a small, unbiased student recommender which
generalizes better. Extensive experiments on various real-world
benchmarks demonstrate that LUME successfully tackles the three
problems and has superior performance than state-of-the-art RRS
and knowledge distillation based RS.
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1 INTRODUCTION
Online reviews are valuable feedback in recommender systems, as
they provide explanations on various aspects of a product and guide
users towards purchase. Due to the prevalence of online reviewing
sites, Review-based Recommender Systems (RRS) have attracted a
great amount of attention [1, 2, 11, 17, 25, 31, 35].

Although existing RRS provide high-quality and interpretable
recommendations, they still suffer from issues such as high com-
putational complexity, biased recommendations, and poor
generalization. (1) As shown in Fig. 1 (a), since state-of-the-art RRS
typically adopt deep neural networks to analyze review contents,
they have much more parameters than the non-review-based, shal-
low recommendation models such as Matrix Factorization (MF) [12].
(2) As shown in Fig. 1(b), RRS are recently found to show senti-
ment bias [16], i.e., they generate more significant errors on critical
users who write fewer positive reviews than on positive users who
post more positive reviews. (3) As shown in Fig. 1(c), RRS make
inaccurate (i.e., large median MAE) and unreliable (i.e., large vari-
ance) predictions on low-rating reviews, which are with insufficient
training samples but more valuable than high-rating reviews [22].
These issues severely affect the efficiency in terms of inference time
and storage cost, and the quality and fairness of recommendations,
when RRS are deployed in practice.

In the literature, model compression [5, 14, 24, 28], debiasing [3,
30] and generalization [15] have been studied for RS. However,
existing works address these problems separately. Furthermore, the
three issues are correlated, e.g., model complexity and generaliza-
tion ability, generalization ability to low-rating reviews and bias
against critical users. Lacking consideration of any of the above
problems will result in sub-optimal, ineffective and/or inefficient
RRS that are inadequate to handle real recommendation scenarios.

Inspired by recent advances on Knowledge Distillation (KD) [8],
we propose Lightweight Unbiased Multi-teacher Ensemble (LUME)
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for the review-based recommendation task. LUME first captures
high quality, generalizable common knowledge shared within mul-
tiple teacher RRS, and then trains a lightweight student model and
mitigates the biases via a KD process. Experiments on various real-
world RS datasets verify the superiority of LUME tomake consistent,
high-quality and unbiased review-based recommendations.

In summary, our contributions are three-fold. (1) We design a
novel framework, LUME, which simultaneously alleviates high
computational complexity, bias and poor generalization of RRS.
(2) Unlike most existing KD-based RS that only learn from one
teacher model, LUME compresses and accelerates multiple teachers
by fusing common knowledge and adapting it to the student model.
(3) The KD process of LUME is specially designed to handle biases
in RRS and improves its generalization ability.

Figure 1: (a) Number of parameters in five state-of-the-
art RRS (i.e., DeepCoNN [35], MPCN [25], NARRE [2],
DAML [17] and D_ATTN [11]) and conventional MF (with
embedding/factor size = 50). (b) RRS produce much higher
Mean Square Error (MSE) on critical usersU− than on pos-
itive users U+. U−,U+ are decided based on the sentiment
scores of reviews as in [16]. (c) Averaged MAE (i.e., MAE aver-
aged over different RRS on every sample) on one-star rating
samples has a large variance and a large median value.

2 RELATEDWORK
Review-based Recommender Systems (RRS). Traditional RRS
have utilized latent semantic analysis [34], LDA [27] or latent
factor model [20] to model reviews and provide better recom-
mendations. Recently, deep learning based techniques such as
CNN [35]MLP [11], LSTM [23, 26], Autoencoder [36], and the at-
tention mechanism [2, 17, 25] have significantly facilitated the
development of RRS [31].
Biases in RS. Several biases have been observed in RS [4], including
selection bias [19], conformity bias [18], position bias [9], popular-
ity bias [32], and exposure bias [29]. The ubiquitous sentiment bias
problem [16] in RRS is hard to handle. To mitigate biases in RS, nu-
merous debiasing methods [4] adopt causal inference methods [29],
or regularization methods [3, 16].
Knowledge Distillation (KD) for RS. A number of recent studies
have investigated KD [8, 10] in RS, where a small student model
learns to rank items [14, 24] from one large teacher models to re-
duce model complexity. The ranking distillation framework can
be enhanced by a three-player game where a discriminator is in-
troduced to learn the true data distribution from the teacher [28].
The student and the teacher can learn from each other simultane-
ously [13, 33] to enhance the interpretability or the performance of
RS. For RRS, an adversarial distillation framework [5] is proposed
to make review predictions.

3 OUR METHOD: LUME
As shown in Fig. 2, LUME mainly consists of two parts. Given a set
of pre-trained RRS (i.e., teachers), LUME first learns a HeadTeacher
model to fuse the knowledge from multiple teachers and further
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Figure 2: Overview of LUME.

improves the quality of common knowledge, using three steps: label
blending, teacher selection, and adaptive model update (Sec. 3.1).
Then, LUME trains a student model using the guidance from the
HeadTeacher, mitigates biases, and strengthens generalization in a
KD process (Sec. 3.2).

3.1 Multi-teacher Ensemble
Different from existing KD-based RS [5, 14, 24, 28] that leverage a
single-teacher architecture, LUME uses a multi-teacher architecture,
so that the student will not be easily misled by a single teacher if the
teacher performs poorly in some cases. A natural approach to fuse
multiple teachers is to use an ensemble model𝑀𝑒 , parameterized by
Θ𝑒 to integrate the predictions of multiple teachers, i.e., ensemble
learning [6]. However, as illustrated in Sec. 1:different RRS produce
inconsistent predictions on hard cases, which introduces noise to
the KD process. It is questionable whether abnormal predictions
from some teachers should be incorporated into the ensemblemodel.
To overcome the above problem, we propose the multi-teacher
ensemble to generate the HeadTeacher.

Suppose that we have a number of teacher models, where each
teacher model 𝑡 ∈ T gives the prediction X̂𝑡

𝑢,𝑖
for the ratingX𝑢,𝑖 of a

user𝑢 ∈ U on an item 𝑖 ∈ I. The teacher models are independently
pre-trained on the training set DS, and they are fixed during the
training phase of the later KD process.

We first use a label blending step which traverses the training
setDS and removes low-quality teacher predictions to fuse outputs
from multiple teachers. A label 𝑙 (𝑡,𝑢, 𝑖) is assigned for each teacher
𝑡 on every prediction X̂𝑡

𝑢,𝑖
to indicate whether the prediction should

be utilized in training the HeadTeacher. If the deviation between
the prediction and the actual rating, i.e., |X̂𝑡

𝑢,𝑖
−X𝑢,𝑖 |, is larger than

a predefined threshold 𝜁 , X̂𝑡
𝑢,𝑖

will be considered as abnormal and
it will not benefit the ensemble learning.

Teacher selection. Then, the HeadTeacher takes the output of
each teacher model X̂𝑡

𝑢,𝑖
, if 𝑙 (𝑡,𝑢, 𝑖) equals 1, and make a fused pre-

diction. The HeadTeacher uses a two-layer feed-forward network
(FFN). In the first layer, predictions from teachers are aggregated
to generate the probabilities of different rating values:

z𝑢,𝑖 = w1

(
𝑐𝑜𝑛𝑐𝑎𝑡𝑒

(
𝑙 (𝑡,𝑢, 𝑖)X̂𝑡

𝑢,𝑖 , 𝑡 ∈ T
) )

+ b1, (1)

where 𝑐𝑜𝑛𝑐𝑎𝑡𝑒 (·) ∈ R |T |×1 is a concatenated vector, z𝑢,𝑖 ∈ R5×1

indicates the probability distribution of ratings. w1 ∈ R5×|T | and
b1 ∈ R5×1 are learnable weight vector and bias vector, respectively.
In the second layer, different rating values are aggregated to form
the predicted rating:

X̂𝑒
𝑢,𝑖 = w𝑇

2 z𝑢,𝑖 + 𝑏2, (2)
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where w2 ∈ R5×1 and 𝑏2 are learnable parameters.
Adaptive model update. Besides, we use a subset of the test-

ing data as a validation set DV to improve the generalization of
LUME. We derive the gradient of the HeadTeacher parameters in
the validation set and carry a small number of trials to update
the ensemble model.The motivation is similar to model-agnostic
meta-learning [7]: Since RRS will be updated using a gradient-
based method on new data (including low-rating reviews) that they
can not learn well (i.e., poor generalization), LUME is designed to
find model parameters that are sensitive to new data so that small
changes in model parameters will produce large improvements on
the loss function.

3.2 Knowledge Distillation
Formally, the student model is denoted as𝑀𝑠 , parameterized with
Θ𝑠 , which makes predictions X̂𝑠

𝑢,𝑖
= 𝑀Θ𝑠 (P𝑢 ,Q𝑖 ) for each user

profile P𝑢 and item profile Q𝑖 . We construct a user profile P𝑢 by
concatenating all reviews written by user 𝑢. An embedding vector
is used to represent each review token, and thus a user profile is
defined as P𝑢 ∈ R𝑁𝑢×𝑁𝑤 , where 𝑁𝑢 is the maximal number of
reviews that LUME includes in a user profile, and 𝑁𝑤 is the number
of the tokens that LUME considers for each review from its begin-
ning. Similarly, we construct an item profile Q𝑖 by concatenating
all reviews written on item 𝑖 .

The architecture of the student model, as most RRS models, con-
sists of an encoding module that learns feature representations of
textual reviews and a prediction module. The goal of the student
model in LUME is to make it as lightweight as possible. We ex-
perimentally find that Convolutional Neural Network (CNN), as
an encoding module, generates stable performance. To reduce the
computational complexity, we use the same CNN module for both
user profiles and item profiles. The prediction module in the student
model is a one-layer FFN that predicts the ratings in one to five
stars.

The student optimizes a combined loss that helps the student
mimic the behavior of the HeadTeacher via a teacher distillation
loss L𝑡 , student loss L𝑠 , and mitigates biases via a debiasing loss
L𝑥 , and strengthens generalization via a generalization losses L𝑔 .
The overall loss for training the student model is defined as:

L = 𝜆𝑡 L𝑡 + 𝜆𝑠L𝑠 + 𝜆𝑥 L𝑥 + 𝜆𝑔L𝑔, (3)

where 𝜆𝑡 , 𝜆𝑠 , 𝜆𝑥 , 𝜆𝑔 are loss weights.
Teacher distillation loss. Recall that the HeadTeacher contains

two layers, where the output of the first layer (i.e., logits z𝑢,𝑖 in Eq. 1)
carries ensemble knowledge from different teachers, by predicting
the probabilities of one to five rating stars, i.e., z𝑢,𝑖,𝑐 = 𝑃𝑟 (X𝑢,𝑖 =

𝑐), 𝑐 ∈ {1, 2, 3, 4, 5}. However, the student outputs numerical rating
values instead of discrete rating categories. Thus, the cross-entropy
loss used in many KD systems [8] is infeasible for RRS.

To transfer the ensemble knowledge in𝑀𝑒 to𝑀𝑠 , LUME uses the
logits as supervision signals and optimizes the MSE loss between
logits and the student model’s output as the teacher loss L𝑡 :

L𝑡 =
∑︁

𝑢∈U, 𝑖∈I,X𝑢,𝑖≠0

(∑︁
𝑐

𝑐 · z𝑢,𝑖,𝑐 − X̂𝑠
𝑢,𝑖

)2
, (4)

where 𝑐 = {1, 2, 3, 4, 5} refers to discrete ratings in RS, z𝑢,𝑖,𝑐 is the
logit output from the first layer of HeadTeacher on the neuron for
𝑐 (Eq. 1).

Student loss. L𝑠 in LUME is defined between the ground truth
rating value X𝑢,𝑖 and the output of the student to encourage the
student to make accurate predictions:

L𝑠 =
∑︁

𝑢∈U, 𝑖∈I,X𝑢,𝑖≠0

(
X̂𝑠
𝑢,𝑖 − X𝑢,𝑖

)2
. (5)

Debiasing loss. In the following, we use the sentiment bias,
which exists in most RRS [16], as the example to illustrate how
LUME mitigate biases. The idea can be generalized to other biases
(e.g., popularity bias). Intuitively, to reduce sentiment bias, the
student model must be enhanced to provide better predictions
on negative users/items. We propose 𝐸𝑣 (S, 𝑡) to evaluate teacher
model 𝑡 , based on how much the embedding vectors of negative
items spread out in the batch containing samples S: 𝐸𝑣 (S, 𝑡) =∑
X𝑢,𝑖 ∈S & 𝑖∈I− ∥e𝑡

𝑖
− ē𝑡 (S)∥2

2, where ē𝑡 (S) is the mean embedding
vector in the set S. When the best teacher model 𝑥 , in terms of
the smallest 𝐸𝑣 is selected, we can use the output of 𝑥 (i.e., X̂𝑥

𝑢,𝑖
)

to guide the student model and reduce sentiment bias on negative
items via the following debiasing loss:

L𝑥 =
∑︁

𝑢∈U, 𝑖∈I−,X𝑢,𝑖≠0

(
X̂𝑥
𝑢,𝑖 − X̂𝑠

𝑢,𝑖

)2
. (6)

Generalization losses. The Generalization loss L𝑔 is defined
as L𝑔 = 𝜆𝑦L𝑦 + 𝜆𝑧L𝑧 . If teacher models do not agree with each
other, we increase the uncertainty of student model’s output. We
first select samples O in the batch (i.e., X𝑢,𝑖 ∈ S) using the follow-
ing evaluation function: 𝐸𝑜 (𝑢, 𝑖) =

∑
𝑡 ∈T

∑
X𝑢,𝑖 ∈S

(
X̂𝑡
𝑢,𝑖

− X𝑢,𝑖
)2,

where X𝑢,𝑖 is the average output of all teacher models for the sam-
ple X𝑢,𝑖 . If the variance of teacher model outputs (i.e., 𝐸𝑜 (𝑢, 𝑖)) is
large, LUME uses the entropy-based regularizer L𝑦 to increase the
uncertainty of the final output:

L𝑦 =
∑︁

𝑢∈U, 𝑖∈I−, 𝐸𝑜 (𝑢,𝑖 )>𝜙

5∑︁
𝑐=1

𝑝 (𝑢, 𝑖, 𝑐) log𝑝 (𝑢, 𝑖, 𝑐), (7)

where 𝜙 denotes a predefined threshold to judge whether teachers
agree or not. Simply connecting a FFN layer with softmax to the
prediction layer of the student, we can obtain 𝑝 (𝑢, 𝑖, 𝑐) = 𝑃𝑟 (X𝑢,𝑖 =

𝑐), which denotes the probability that user 𝑢 gives item 𝑖 a rating
of 𝑐 , where 0 ≤ 𝑝 (𝑢, 𝑖, 𝑐) ≤ 1,

∑
𝑐 𝑝 (𝑢, 𝑖, 𝑐) = 1, and 𝑐 ∈ {1, 2, 3, 4, 5}.

To further enhance the generalization on low-value ratings, we
present the error function 𝐸𝑔 (S, 𝑡), to evaluate whether a teacher
model 𝑡 provides unbiased predictions on low ratings in a set of
ratings S: 𝐸𝑔 (S, 𝑡) =

∑
X𝑢,𝑖 ∈S &X𝑢,𝑖<3

(
X̂𝑡
𝑢,𝑖

− X𝑢,𝑖

)2. When the
best teacher model 𝑧, in terms of the smallest 𝐸𝑔 is selected, we
can use the output of 𝑧 (i.e., X̂𝑧 ) to strengthen the student model’s
performance on low-value ratings:

L𝑧 =
∑︁

𝑢∈U, 𝑖∈I,X𝑢,𝑖≠0

(
X̂𝑧
𝑢,𝑖 − X̂𝑠

𝑢,𝑖

)2
. (8)

4 EXPERIMENTS
Experiments are conducted on four Amazon datasets [21] and
Yelp dataset. We apply 5-core pre-processing on Yelp to make
sure each user/item has at least five ratings. We use 8:1:1 train-
ing/validation/test split. Five state-of-the-art RRS models are used
as teacher models and competitors: DeepCoNN [35], MPCN [25],
NARRE [2], DAML [17], D_ATTN [11]. Other baselines include
simple RRS and state-of-the-art KD-based RS: (1) CNN: we train
a student network with a CNN encoding module and a FFN pre-
diction layer via the student loss in Eq. 5. This baseline does not
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Table 1: MSE andNDCG@5 of differentmethods. Bold entries
suggest that LUME outperforms the competitor.

DataSet Games Food Kindle Electronics Yelp
Model MSE NDCG MSE NDCG MSE NDCG MSE NDCG MSE NDCG

DeepCoNN 1.1581 0.7857 0.9942 0.8905 0.6962 0.8863 1.2912 0.8836 1.3294 0.8262
ratio/LUME 1.0247 0.9015 1.0131 0.9965 1.0334 1.0051 1.0163 1.0063 1.0203 1.0208
D_ATTN 1.1687 0.8534 1.0060 0.8173 0.6960 0.8900 1.2906 0.8867 1.3498 0.8112

ratio/LUME 1.0341 0.9792 1.0252 0.9146 1.0331 1.0093 1.0158 1.0098 1.0360 1.0022
MPCN 1.4325 0.7924 1.1966 0.8109 0.9077 0.8531 1.4075 0.8426 1.5145 0.7388

ratio/LUME 1.2675 0.9092 1.2194 0.9075 1.3473 0.9675 1.1078 0.9596 1.1624 0.9128
NARRE 1.1189 0.8686 0.9669 0.8921 0.6612 0.8929 1.2588 0.8944 1.2958 0.8272

ratio/LUME 0.9900 0.9967 0.9853 0.9983 0.9814 1.0126 0.9908 1.0186 0.9946 1.0220
DAML 1.1155 0.8546 0.9672 0.8911 0.7213 0.8872 1.3240 0.8890 1.3840 0.8138

ratio/LUME 0.9870 0.9806 0.9856 0.9972 1.0707 1.0061 1.0421 1.0124 1.0622 1.0054
CNN 1.1608 0.8625 0.9933 0.8924 0.6910 0.8781 1.2908 0.8721 1.3165 0.8019

ratio/LUME 1.0271 0.9897 1.0122 0.9987 1.0257 0.9958 1.0160 0.9932 1.0104 0.9907
CNN+KD 1.1377 0.8731 0.9845 0.8856 0.6751 0.8815 1.2732 0.8757 1.3035 0.8074
ratio/LUME 1.0066 1.0018 1.0033 0.9910 1.0021 0.9997 1.0021 0.9973 1.0005 0.9975
BD+BPR 3.8520 0.7569 3.5768 0.7698 2.8416 0.7730 3.2652 0.7894 3.2651 0.7021

ratio/LUME 3.4082 0.8685 3.6450 0.8615 4.2179 0.8766 2.5700 0.8990 2.5060 0.8674
CNN+KDgate 1.1416 0.8569 0.9855 0.8918 0.7009 0.8804 1.2874 0.8760 1.3125 0.7995
ratio/LUME 1.0101 0.9832 1.0043 0.9980 1.0404 0.9984 1.0133 0.9976 1.0074 0.9878

LUME 1.1302 0.8715 0.9813 0.8936 0.6737 0.8818 1.2705 0.8781 1.3029 0.8094

Table 2: Statistics of model parameters.

Method DeepCoNN D_ATTN MPCN NARRE DAML
#Parameters 30,187,864 30,626,334 32,365,264 31,596,293 30,998,429
ratio/LUME 11.9868 12.1609 12.8514 12.5460 12.3086

Method CNN CNN+KD BD+BPR CNN+KDDgate LUME
#Parameters 2,518,432 2,518,442 1,169,700 2,518,752 2,518,442
ratio/LUME 1.0000 1.0000 0.4645 1.0000 1.0000

use KD. (2) CNN+KD: we train a student network (the same as the
CNN baseline) via the teacher loss in Eq. 4 and the student loss in
Eq. 5. (3) CNN+KDgate: we train the student network (the same as
the CNN baseline) with multiple teachers via a gating network [37].
(4) BD+BPR: we train a BPR student network using the bidirec-
tional distillation framework [13]. Our source codes and parameter
settings are publicly available1.

4.1 Recommendation Performance
We use MSE and NDCG@5, to evaluate recommendation perfor-
mance. Tab. 1 shows the results. For each method, we also calculate
the ratio of its performance with respect to LUME’s performance,
i.e., “ratio/LUME”. We can observe that: (1) LUME provides supe-
rior recommendations in terms of MSE and NDCG@5 than teacher
models. In most datasets, the teacher models generate worse rec-
ommendations, i.e., higher MSE with ratio/LUME > 1.0 and lower
NDCG with ratio/LUME < 1.0. (2) LUME consistently outperforms
other KD-based competitors for both rating prediction and top-𝑘
recommendation.

4.2 Model Complexity
We can see that the number of parameters of each KD-based method
is an order of magnitude fewer than that of each teacher model
in Tab. 2. Compared among KD-based methods, BD+BPR has the
least parameters. However, its performance is significantly worse
than LUME’s as illustrated in Tab. 1. This observation shows that
LUME has achieved a good balance between model complexity and
recommendation quality.

4.3 Bias Mitigation and Generalization
As shown in Tab. 3, we can see that LUME provides lower user sen-
timent bias (BU [16]) and item sentiment bias (BI [16]) than teacher
models and competitors in most datasets, i.e., ratio/LUME > 1.0. By
comparing LUME with CNN+KD which does not use the debiasing
1https://github.com/XMUDM/LUME

Table 3: User sentiment bias and Item sentiment bias of dif-
ferent methods.

DataSet Games Food Kindle Electronics Yelp
Model BU BI BU BI BU BI BU BI BU BI

DeepCoNN 1.4471 0.8090 1.2958 0.8749 1.0811 0.7665 1.5338 1.2952 1.5279 1.2712
ratio/LUME 1.0815 1.0239 1.0249 1.0812 1.0737 1.0879 1.0411 1.0382 1.0565 1.1087
D_ATTN 1.5247 0.7582 1.3244 0.9047 1.0723 0.7633 1.4579 1.2635 1.5448 1.2599

ratio/LUME 1.1395 0.9596 1.0475 1.1180 1.0650 1.0833 0.9895 1.0128 1.0682 1.0988
MPCN 2.3533 1.7431 1.6758 1.3502 1.7521 1.0606 1.9555 1.5603 2.0117 2.3487

ratio/LUME 1.7588 2.2062 1.3255 1.6686 1.7401 1.5053 1.3273 1.2507 1.3910 2.0484
NARRE 1.3435 0.8244 1.2759 0.8067 1.0024 0.7044 1.4132 1.1890 1.4379 1.1538

ratio/LUME 1.0041 1.0434 1.0092 0.9969 0.9955 0.9997 0.9592 0.9531 0.9943 1.0063
DAML 1.3454 0.8119 1.2999 0.8279 1.2250 0.8485 1.7306 1.4007 1.7473 1.8656

ratio/LUME 1.0055 1.0276 1.0282 1.0231 1.2166 1.2042 1.1746 1.1228 1.2082 1.6271
CNN 1.4757 0.8516 1.2978 0.8648 1.0744 0.7477 1.5561 1.3249 1.4931 1.2093

ratio/LUME 1.1029 1.0778 1.0265 1.0687 1.0670 1.0612 1.0562 1.0620 1.0324 1.0547
CNN+KD 1.3854 0.7916 1.2759 0.8311 1.1032 0.7181 1.4976 1.2640 1.4762 1.1936
ratio/LUME 1.0354 1.0019 1.0092 1.0271 1.0956 1.0192 1.0165 1.0132 1.0207 1.0410
BD+BPR 0.5308 0.9731 0.1134 0.9188 1.9816 1.2120 2.3084 1.9884 1.7702 0.8750

ratio/LUME 0.3967 1.2316 0.0897 1.1354 1.9680 1.7201 1.5668 1.5939 1.2240 0.7631
CNN+KDgate 1.4828 0.8238 1.4152 0.9844 1.0658 0.7523 1.6582 1.3365 1.5485 0.6008
ratio/LUME 1.1082 1.0427 1.1194 1.2165 1.0585 1.0677 1.1255 1.0713 1.0707 0.5240

LUME 1.3380 0.7901 1.2643 0.8092 1.0069 0.7046 1.4733 1.2475 1.4462 1.1466
Table 4: Popularity bias and low value rating bias of different
methods.

DataSet Games Food Kindle Electronics Yelp
Model Pop Gen Pop Gen Pop Gen Pop Gen Pop Gen

DeepCoNN 0.2817 2.6316 0.1230 2.6900 0.0200 2.4923 0.3034 3.8933 0.4369 1.8121
ratio/LUME 1.1679 1.1617 1.3774 1.0250 1.9231 1.1350 1.0320 0.9505 1.0633 1.0325
D_ATTN 0.2620 2.5432 0.0975 2.9195 0.0207 2.3779 0.3055 3.8267 0.4289 1.7960

ratio/LUME 1.0862 1.1227 1.0918 1.1124 1.9904 1.0829 1.0391 0.9342 1.0438 1.0234
MPCN 0.1816 3.5803 0.0974 3.7089 0.0636 3.6926 0.3057 4.7618 0.6882 2.2369

ratio/LUME 0.7529 1.5805 1.0907 1.4132 6.1154 1.6816 1.0398 1.1625 1.6749 1.2746
NARRE 0.2780 2.5140 0.1304 2.7454 0.0375 2.2483 0.3321 3.8746 0.4566 1.6684

ratio/LUME 1.1526 1.1098 1.4602 1.0461 3.6058 1.0239 1.1296 0.9459 1.1112 0.9507
DAML 0.2478 2.5670 0.1511 2.7885 0.0411 2.4755 0.3531 4.4006 0.6791 1.9426

ratio/LUME 1.0274 1.1332 1.6920 1.0625 3.9519 1.1273 1.2010 1.0743 1.6527 1.1069
CNN 0.2419 2.7303 0.1005 2.8199 0.0242 2.4103 0.2905 4.2088 0.4181 1.8658

ratio/LUME 1.0029 1.2053 1.1254 1.0745 2.3269 1.0976 0.9881 1.0275 1.0175 1.0631
CNN+KD 0.2664 2.5347 0.1127 2.6312 0.0163 2.2258 0.2949 4.2157 0.4117 1.7661
ratio/LUME 1.1045 1.1189 1.2620 1.0026 1.5673 1.0136 1.0031 1.0292 1.0019 1.0063
BD+BPR 0.5124 2.8332 0.2003 2.6767 0.0956 3.1203 0.5424 4.2100 0.9653 3.2654

ratio/LUME 2.1244 1.2507 2.2430 1.0795 9.1923 1.4210 1.8449 1.0278 2.3492 1.8606
CNN+KDgate 0.2427 2.2664 0.1128 3.0311 0.0244 2.2956 0.2967 4.1775 0.4362 1.7588
ratio/LUME 1.0062 1.0005 1.2632 1.1549 2.3462 1.0454 1.0092 1.0198 1.0616 1.0022

LUME 0.2412 2.2653 0.0893 2.6245 0.0104 2.1959 0.2940 4.0962 0.4109 1.7550

loss, we verify that debiasing loss can effectively reduce the senti-
ment bias. Note that, by further analyzing the results, we find that
although BD+BPR produces lower BU, its results are meaningless
because BD+BPR produces “equally” poor rating predictions (i.e.,
high MSE) for all users (See Tab. 1).

Similarly, we compute the popularity bias 𝑃𝑜𝑝 , which is the rec-
ommendation performance divergence between popular items and
long-tail items, and low value rating bias 𝐺𝑒𝑛 between high rating
values and low rating values. As shown in Tab. 4, we can find that:
(1) LUME consistently provides better recommendations on long-
tail items and thus, produces smaller popularity bias. Except MPCN
on Games dataset, the teacher models and other competitors gener-
ate higher popularity bias (i.e., 𝑟𝑎𝑡𝑖𝑜/𝐿𝑈𝑀𝐸 > 1.0) than LUME. (2)
LUME also outperforms teacher models and competitors in terms
of Gen on most datasets, showing that it has a better generalization
ability and handles different cases (including low-rating cases) well.

5 CONCLUSION
The presented LUME framework addresses high computational
complexity, biased recommendation and poor generalization si-
multaneously. LUME fuses knowledge from multiple teachers and
derives a HeadTeacher to transfer the common knowledge. It can
easily deal with different biases, such as sentiment bias and popu-
larity bias, and have a stronger generalization ability on low-rating
reviews.
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