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ABSTRACT
Recently, many E-commerce searchmodels are based on Graph Neu-
ral Networks (GNNs). Despite their promising performances, they
are (1) lacking proper semantic representation of product contents;
(2) less efficient for industry-scale graphs; and (3) less accurate on
long-tail queries and cold-start products. To address these problems
simultaneously, this paper proposes CC-GNN, a novel Content
Collaborative Graph Neural Network. Firstly, CC-GNN enables
content phrases to participate explicitly in graph propagation to
capture the proper meaning of phrases and semantic drifts. Sec-
ondly, CC-GNN presents several efforts towards a more scalable
graph learning framework, including efficient graph construction,
MetaPath-guided Message Passing, and Difficulty-aware Represen-
tation Perturbation for graph contrastive learning. Furthermore,
CC-GNN adopts Counterfactual Data Supplement at both super-
vised and contrastive learning to resolve the long-tail/cold-start
problems. Extensive experiments on a real E-commerce dataset of
100-million-scale nodes show that CC-GNN produces significant
improvements over existing methods (i.e., more than 10% improve-
ments in terms of several key evaluation metrics for overall, long-
tail queries and cold-start products) while reducing computational
complexity. The proposed components of CC-GNN can be applied
to other models for search and recommendation tasks. Experiments
on a public dataset show that applying the proposed components
can improve the performance of different recommendation models.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
E-commerce search refers to the search module in an E-commerce
platform to help customers find the products they desire. It has be-
come an indispensable component and has driven the rapid growth
of numerous E-commerce platforms, such as Amazon [23, 30], Al-
ibaba [45], eBay [42], and so on. Therefore, E-commerce search has
been extensively studied in academia and industry [1, 3, 4, 6, 18, 20,
22, 23, 42, 45].

Retrieval models generally have an encoding phase, which repre-
sents queries and products as low-dimensional embedding vectors.
Recently, an increasing number of retrieval models [3, 6, 8, 15, 19–
22, 46, 48] rely on Graph Neural Networks (GNNs) [28] in the
encoding phase. There are two advantages of using a GNN-based
retrieval model: (1) Convenience of modeling relationships for dif-
ferent E-commerce search problems. E-commerce search can take
textual keywords [1, 4, 18, 22], images [5, 31, 45], or even prod-
ucts [20] as queries. Regardless of the query types, graph is a natu-
ral way to model the relationships among queries and products. (2)
Promising performance in E-commerce search with sparse feedback.
E-commerce has insufficient feedback signals to guide the training
of retrieval models. GNNs have shown great performance in this
situation because they can embed high-order proximity in node em-
beddings by repeatedly aggregating information from neighboring
nodes [14, 36].

However, E-commerce search has long suffered from the follow-
ing three challenges, which are not fully solved by recent GNN-
based models, especially for data at an industrial scale.

C1: semantic representation of product content. Learning
semantic representation of product content (e.g., the title) is crucial,
because it is a valuable source to measure query-product relevance.
The problem is that the semantics of phrases in the content are
usually collaboratively defined by users and merchants on the E-
commerce platforms. For example, the exact meaning of the phrase
"2022 new style" depends on what products it is used to describe.
Furthermore, the meanings of phrases can be changed (i.e., semantic
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Figure 1: Different graph constructions for E-commerce
search. (a) Graph built solely from user feedback, where
product contents are treated as node attributes [24, 48]. (b)
Content Collaborative Graph presented in this paper, where
carefully extracted phrases are nodes explicitly involved in
graph propagation.

drift), and it is significantly influenced by correlated products. For
example, if MacBook Air uses "starlight" (original meaning: light
that comes from the stars) to describe a silver color, other electronic
gadgets in silver color will tend to use "starlight" to describe them-
selves. Most existing studies, as shown in Fig. 1(a), use the content
as node attributes and do not update their semantic representations
according to the E-commerce data, leading to sub-optimal search
performance.

C2: learning efficiency for industry-scale graph. In partic-
ular, we focus on two efficiency bottlenecks. (1) Due to the mas-
sive volume of nodes and links, only a limited neighborhood of
each node can be sampled for message passing [11]. Previous stud-
ies [6, 8, 15, 19, 21, 22, 46, 48] do not incorporate link characteristics
in this process. Thus their learning efficiencies are restricted by
noisy neighbors (e.g., irrelevant neighbors introduced by noisy
clicks as shown in Figure 1(a)). (2) Recent studies [38, 40] have
strengthened retrieval models by combining supervised learning
with self-supervised contrastive learning. Unfortunately, they are
impractical for industry-scale graphs because of the expensive
graph augmentation to construct positive samples.

C3: long-tail queries and cold-start products. As shown in
Figure 1(a), only a few nodes have high degrees, while a large
number of nodes have low degrees. Low-degree nodes include
long-tail queries, which users infrequently search [16, 25], and
cold-start products, which land on the market for a short period of
time [10, 39]. These low-degree nodes do not have enough links
for conventional GNNs [28] to obtain meaningful neighborhood
aggregation, so their representations are inaccurate. This problem
hampers the overall search performance and raises fairness issues
for customers and online merchants.

These three challenges interact and compound with each other,
requiring simultaneous solutions. Thus, we propose a novelContent
Colla- borativeGraphNeuralNetwork (CC-GNN) for E-commerce
search. CC-GNN constructs a Content Collaborative Graph (Fig-
ure 1(b)) to jointly model product content and user feedback. The
phrase nodes are explicitly involved in the graph propagation to
learn their proper semantic representations. CC-GNN proposes
MetaPath-guided Message Passing, which helps the GNN capture
each node’s robust topological features. Regarding the learning par-
adigm, CC-GNN combines supervised and contrastive learning. In

supervised learning, CC-GNN incorporates counterfactual supple-
ment samples for long-tail queries and cold-start products, which
are possible training samples "if the queries/products are not long-
tail/cold-start". In contrastive learning, to speed up computation,
CC-GNN presents Difficulty-aware Representation Perturbation,
which has the lowest computation complexity w.r.t. SOTA graph
contrastive learning methods. CC-GNN further enhances the train-
ing for long-tail queries and cold-start products by counterfactual
data supplement at contrastive learning, which appropriately distin-
guishes training samples "if the clicks are not affected by popularity
bias".

In summary, our contributions are four-fold:
(1) A new graph representation for E-commerce search problem

and its efficient construction, to improve search performance by
better capturing semantics of content phrases, while reducing
storage cost.

(2) Improvements towards a more scalable graph learning frame-
work, in message passing and contrastive learning, which im-
prove performance with lower computational complexity.

(3) Counterfactual data supplement at both supervised and con-
trastive learning to resolve the long-tail/cold-start problems.

(4) Extensive experiments that verify the superiority of CC-GNN
on large-scale E-commerce search (more than 100 million nodes).
We also empirically show that several proposed components of
CC-GNN can be flexibly stacked on various models (including
GNNs and recommendationmodels) and boost their performance
on different datasets.

2 RELATEDWORK
Types of E-commerce search. Depending on the query types, E-
commerce search falls into three categories. (1) Conventionally, the
search engine takes a short text entered by users as a query [1, 4, 22].
(2) Visual search uses image queries [5, 31, 45] to retrieve products
with the same appearance. (3) Many large E-commerce platforms
such as Taobao and JD.com have encouraged using products as
queries [20]. Product queries are more complex than textual and im-
age queries. A product query provides rich data (e.g., the product’s
title, description, images, user feedback, etc.) to depict the underly-
ing user preferences inmany aspects, including the desired function,
price, quality, appearance, and so on. However, E-commerce search
with product queries has been rarely explored in the research com-
munity. In industry, search engines usually treat product search as
a keyword or visual search task.
Graph Representation learning in E-commerce search. Due to
the power of graphs in capturing relationships, numerous studies
have modeled the E-commerce ecosystem as a large graph and
encoded node embeddings by Graph Neural Networks that boost
the neural e-commerce search to a new level [8, 20–22, 41]. Most of
them build a heterogeneous graph, e.g., a bipartite graph of queries
and items [15, 19, 46, 48], or a tripartite graph of users, queries, and
items [3, 6, 18], from historical user feedback. However, the content
of items is treated as node attributes and does not involve in the
propagation of node embeddings in these works. Furthermore, user
feedback is known to be biased and noisy, leading to popularity
bias/cold start problems [2]. Some studies build a homogeneous
graph of items based on content similarity[37, 44]. However, the
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E-commerce ecosystem easily reaches the size of millions of items.
It is time-consuming to compute pair-wise similarity.
Remarks. In this work, we focus on the under-explored E-commerce
search problem with product queries. The proposed Content Col-
laborative Graph is a heterogeneous graph of queries, products, and
phrases nodes. Such a graph has three advantages. (1) It leverages
information from the supplier end and supplements missing clicks.
(2) The embeddings of phrase nodes are updated in graph propaga-
tion, which is more accurate in capturing semantic representations.
(3) It does not require time-consuming pairwise content similar-
ity computation. Compared with the recent work in cross-domain
recommendation [41], where a single word is a node, our method
extracts phrases from the content as nodes. Thus our method is
more scalable as each node connects to fewer neighbors. The pro-
posed Content Collaborative Graph Neural Network is tailored
for Content Collaborative Graph, which combines supervised and
contrastive learning.

3 METHODOLOGY
3.1 Preliminaries
We focus on a particular type of E-commerce search where users
use products to search products. The goal of E-commerce search
with product queries is to return a list of relevant items for a given
query. Note that although a query is also an item that is drawn from
the universe of products, we model queries and items separately.
In addition to queries and items, we define another type of entity,
i.e., phrases which appear in the titles of the queries and items. It is
natural to model the three types of entities and their relationships
as a graph.

As shown in Figure 2, the proposed method CC-GNN is founded
on Content Collaborative Graph, formally defined as a heteroge-
neous graph G = {V, E}, where its nodesV = {Q,T ,P} are a set
of query nodes Q, item nodes T and phrase nodes P. The edges
also include three types of edges, a click edge 𝑞 − 𝑡, 𝑞 ∈ Q, 𝑡 ∈ T be-
tween a query 𝑞 and a clicked item 𝑡 , a query content edge 𝑞 − 𝑝, 𝑞 ∈
Q, 𝑝 ∈ P between a query 𝑞 and a phrase 𝑝 in 𝑞’s title, and an item
content edge 𝑡 − 𝑝, 𝑡 ∈ T , 𝑝 ∈ P between an item 𝑡 and a phrase 𝑝
in 𝑡 ’s title.

The overall framework of CC-GNN is shown in Figure 2.We con-
struct Content Collaborative Graph (Section 3.2) and use MetaPath-
guided Message Passing to get the node embeddings (Section 3.3).
CC-GNN combines supervised learning (Section 3.4) and con-
trastive learning, where the contrastive learning is based onDifficulty-
aware Representation Perturbation (Section 3.5) and Counterfactual
Data Supplement at contrastive learning (Section 3.6).

3.2 Content Collaborative Graph Construction
To construct the Content Collaborative Graph (CCG), we add click
edges {𝑞 − 𝑡} to queries and items. We also need to extract phrases
from products’ titles. This is a non-trivial problem because com-
putational efficiency and semantic informativeness should be con-
sidered. On the one hand, the naive choice of using a word as a
node [41] is problematic. Since some popular words (e.g., "new") are
used extremely frequently, the graph will have hub nodes that con-
nect to too many neighbors, resulting in unaffordable storage and
computation cost. On the other hand, enumerating all phrases is un-
necessary. It will hinder information propagation by adding phrases

that do not contribute a complete and clear piece of semantic infor-
mation. Motivated by the above reasoning, we extract informative
phrases of indefinite length. There are two steps: candidate phrase
generating and phrase pruning.

3.2.1 Candidate Phrase Generating. Intuitively, informative phrases
will be commonly used by correlated products, e.g., to describe a cer-
tain desirable product feature. Thus we generate candidate phrases
from historical interaction logs.

We collect pairs of queries and items {< 𝑞, 𝑡 > |∃(𝑞 − 𝑡) ∈ E},
pairs of co-clicked queries {< 𝑞, 𝑞′ > |∃(𝑞 − 𝑡) ∈ E, (𝑞′ − 𝑡) ∈ E},
and pairs of co-clicked items {< 𝑡, 𝑡 ′ > |∃(𝑞 − 𝑡) ∈ E, (𝑞 − 𝑡 ′) ∈ E}.
We extract 𝑁 -gram phrases that appear in both titles of more than
three pairs. To increase coverage (i.e., to find as many informative
phrases as possible), we do not limit the length of phrases. Since
phrases with the same words but different word orders usually have
equivalent or similar roles in content collaboration, to avoid redun-
dant sequence comparisons, we rewrite each phrase and reorder
the words in a phrase in alphabetical order. For example, "fine wine
glasses" and "wine glasses fine" will be rewritten as "fine glasses
wine".
3.2.2 Phrase Pruning. To further reduce the size of phrases and
accelerate graph computation, we filter out phrases that are too
vague and irrelevant to any product feature. We use an E-commerce
Named Entity Recognition (NER) tool to identify and score the
entities in each candidate phrase. If the total score of the phrase
falls below a predefined threshold 𝜉𝑠 , the phrase will be deleted.
3.2.3 Feature Transformation. Queries and items are associated
with sparse features and content features. (1) Sparse features (e.g.,
prices, sales, cities) are segmented and transformed into one-hot
vectors. Suppose there are 𝐾 fields, i.e., f1, · · · , f𝐾 . (2) Content fea-
tures include a title and a product image. We use a pre-trained
language model to transform the title into a vector f𝑡 , and a pre-
trained visual model to transform the product image into f𝑣 .

Thus we initialize the node embeddings from the concatenation
of all features.

q0 = W𝑄 × [f1 | |f2 | | · · · | |f𝐾 | |f𝑡 | |f𝑣 ], (1)
t0 = W𝑇 × [f1 | |f2 | | · · · | |f𝐾 | |f𝑡 | |f𝑣 ],

where q0, t0 are the initialized query and item embeddings re-
spectively, W𝑄 ,W𝑇 ∈ R𝐷×𝐹 are linear transformations, 𝐷 is the
embedding size, 𝐹 is the feature size, 𝐷 ≪ 𝐹 for dimensionality
reduction, | | represents the concatenation of features.

For any phrase node 𝑝 , we again use a pre-trained language
model to obtain the textual feature vectors and transform them into
the initial phrase embedding p0.

p0 = W𝑃 ×𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔
(
f𝑤1 , · · · , f𝑤𝐿

)
, (2)

where𝑤𝑖 , 𝑖 = 1, · · · , 𝐿 is the word in the phrase with length 𝐿.

3.3 MetaPath-guided Message Passing
Inspired byGraphSage [11], large-scale graph propagation is achieved
by sampling a local neighborhood and aggregating information
from the local neighborhood. On Content Collaborative Graph, a
dominant fraction of edges is click edges. This means that if we
randomly sample the neighborhood, we rely heavily on information
propagation through user feedback. However, user feedback can
be uncertain and noisy, e.g., a click is the consequence of random
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Figure 2: Overall framework of CC-GNN
browsing instead of user preference. If we apply the vanilla sam-
pling, the training will be inefficient. Therefore we adopt MetaPath-
guided Message Passing (MPMG).

As shown in Figure 2 (B), we define two metapaths: a click path
and a phrase path. For query nodes, the click path is 𝑞 − 𝑡 − 𝑞 and
the phrase path is 𝑞 −𝑝 − 𝑡 . For item nodes, the click path is 𝑡 −𝑞 − 𝑡 ,
and the phrase path is 𝑡 − 𝑝 − 𝑞.

The click path and phrase path guide the sampling process. Let’s
denote the sub-graph sampled for a query node 𝑞 ∈ Q on click path
as G𝑞,𝑐 , and the sub-graph sampled on phrase path as G𝑞,𝑝 . The
two sub-graphs are of equal node size, i.e., for each hop on the path
(maximal two hops), we sample 𝐾 neighbor nodes along the cor-
responding path. This ensures that content-relevant queries/items
will play an important role in message passing.

We adopt two Graph Attention Networks (GAT) [35] as the
aggregator on the sampled sub-graphs. The final query embedding
is obtained by merging the node embeddings of the sub-graphs.

q𝑐 = 𝐺𝐴𝑇𝑐 (G𝑞,𝑐 ), q𝑝 = 𝐺𝐴𝑇𝑝 (G𝑞,𝑝 ),
q = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔 (q𝑐 , q𝑝 ),

(3)

where 𝐺𝐴𝑇 (·) represents the output of an 𝐿-layer GAT with the
LeakyReLU function, q𝑐 represents the query embeddings from
G𝑞,𝑐 and q𝑝 represents the phrase embeddings from G𝑞,𝑝 .

Similarly, we can obtain two sub-graphs for the item node and
its final item embedding t. Note that we do not sample subgraphs
for phrase nodes, but the phrase embeddings are updated during
the GAT computations.

3.4 Counterfactual Data Supplement at
Supervised Learning

We adopt pair-wise supervised learning to train the model. In a
mini-batch B, for each positive pair, i.e., a query and an item that
has been clicked under the query (𝑞, 𝑡), we sample 𝑁 negative items
𝑡 ′ under the same category of the positive item 𝑡 and that 𝑡 ′ has
not been clicked under the query.

Under the supervised learning scheme, long-tail query nodes
and cold-start item nodes are under-represented because they lack
positive samples in the training batch. To address this problem, we
generate counterfactual supplementary samples.

For a long-tail query node 𝑞 ∈ B, we first retrieve 𝑀 similar
items T �̃� = {𝑡}, based on the cosine similarity on content features,

i.e., 𝑐𝑜𝑠 (f�̃�, f𝑡 ) > 𝜉𝑐 , where 𝜉𝑐 is a predefined threshold. Then, we
sample ⌈𝑀/10⌉ items 𝑡 from T �̃� based on its number of clicks, and
form B̃ = {(𝑞, 𝑡)}. Thus, we add items that are most likely to be
clicked "if the query is not a long-tail query".

Similarly, we can add queries to the mini-batch for a cold-start
item 𝑡 by first selecting 𝑀 similar queries and sampling ⌈𝑀/10⌉
queries 𝑞 based on the number of clicks. This forms B̂ = {(𝑞, 𝑡)}.

The results of counterfactual data supplement at supervised
learning (CDS-SL) are illustrated in Figure 2 (C). For smaller nodes
on the graph (i.e., long-tail queries and cold-start items), counterfac-
tual data supplement correlates more nodes with long-tail queries
and cold-start items (red edges). Since the counterfactual supple-
mentary samples are not true clicks, we use a confidence level to
"downgrade" them in the supervised loss:

L𝑠𝑢𝑝 =
∑︁

(𝑞,𝑡 )∈B⋃ B̃⋃ B̂

−𝜃𝑞,𝑡 𝑙𝑜𝑔
𝑒𝑥𝑝

(
𝑠𝑖𝑚 (q, t)/𝜏

)
𝑒𝑥𝑝

(
𝑠𝑖𝑚 (q, t)/𝜏

)
+∑

𝑡′ 𝑒𝑥𝑝
(
𝑠𝑖𝑚 (q, t′)/𝜏

) ,
(4)

where (q, t) are either true positive pairs or counterfactual supple-
mentary pairs, 𝑡 ′ is a negative sample for query 𝑞, 𝜏 is the tempera-
ture, 𝑠𝑖𝑚(q, t) is the cosine similarity of node embeddings (Equa-
tion 3), confidence level 𝜃 is maximal for true positive samples.
Otherwise, 𝜃 is measured by cosine similarity on the content fea-
tures.

𝜃𝑞,𝑡 =

{
1, if (𝑞, 𝑡 ) ∈ B
𝑐𝑜𝑠 (f𝑞, f𝑡 ), if (𝑞, 𝑡 ) ∈ B̃⋃ B̂.

(5)

.
3.5 Difficulty-aware Representation

Perturbation
We combine supervised learning with self-supervised graph con-
trastive learning, as graph contrastive learning has been success-
fully applied in E-commerce recommendation and search with
sparse labels [8, 38, 43].

The main idea of contrastive learning is to contrast represen-
tations of positive (i.e., augmented) and negative samples. Data
augmentation, to a large extent, determines the effect of contrastive
learning. Augmentation on graph can be carried on the structure
(e.g., SGL [38] and GCA [52]), or directly upon embedding space
(e.g., SimGCL [43] and COSTA [47]). The former type has larger
computational complexity as shown in Table 1. The limitation of
current embedding augmenting methods [43, 47] is that they add
the same strength of disturbance to all nodes (including low-degree
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Table 1: Computational complexity of existing graph con-
trastive learning methods, 𝐸: number of edges, 𝐷 : embedding
size, 𝐿: number of convolutional layers and 𝑅: dropout rate.

Augmentation Type Model Computational Complexity
Adjacency Matrix Graph Convolution

Augmentation
on Structure

SGL Θ(2𝐸 + 4𝑅𝐸) Θ((2 + 4𝑅)𝐸𝐿𝐷)
GCA Θ(2𝐸 + 4𝑅𝐸) Θ((2 + 4𝑅)𝐸𝐿𝐷)

Augmentation
on Embedding

SimGCL Θ(2𝐸) Θ(6𝐸𝐿𝐷)
COSTA Θ(2𝐸) Θ(4𝐸𝐿𝐷)
DARP Θ(2𝐸) Θ(2𝐸𝐿𝐷)

nodes and high-degree nodes). Because high-degree nodes are usu-
ally trained well, adding the same amount of disturbance as low-
degree nodes will cause unstable training.

Motivated by the above argument, we propose Difficulty-aware
Representation Perturbation (DARP). Formally, for each anchor
query q, we obtain a positive sample q̄ by adding some disturbance
on q. The strength of disturbance is based on the degree of the node,
i.e., the normalized number of clicks 𝑁𝐶 (𝑞) and the normalized
number of phrases 𝑁𝑃 (𝑞).

q̄ =
𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔

(
q + Δ𝑐𝑞 × 𝑁𝐶 (𝑞), q + Δ

𝑝
𝑞 × 𝑁𝑃 (𝑞)

)
| |𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔

(
q + Δ𝑐𝑞 × 𝑁𝐶 (𝑞), q + Δ

𝑝
𝑞 × 𝑁𝑃 (𝑞)

)
| |22
, (6)

where 𝑁𝐶 (𝑞) = 𝜌𝑐𝑞/max𝑞 𝜌𝑐𝑞 and 𝑁𝑃 (𝑞) = 𝜌𝑝𝑞 /max𝑞 𝜌
𝑝
𝑞 , 𝜌𝑞 is the

segmentation function which maps the clicks or phrase connections
to intervals. q̄ is 𝐿2 normalized.

The disturbance vector Δ𝑥𝑞 is generated as follows.

Δ̄𝑥 ∼ U(0, 1), Δ𝑥𝑞 = Δ̄𝑥 ⊙ 𝑠𝑖𝑔𝑛 (q), 𝑠 .𝑡 . ∥Δ𝑥𝑞 ∥2 = 𝜖. (7)

where Δ̄𝑥 a randomly sampled 𝐷−dimensional vector, ⊙ is the
element-wise multiplication, 𝑠𝑖𝑔𝑛(q) returns a vector indicating
the sign of each element in q. Δ̄𝑥 ∼ U(0, 1) obtains a random
positive seed convenient for future computation. Δ𝑥𝑞 = Δ̄𝑥 ⊙𝑠𝑖𝑔𝑛(q)
transforms the seed into a noise vector which has the same direction
as q, ensuring that the perturbation has the same sign as the gradient
of the loss function with respect to q. This will result in a smoother
training process. ∥Δ𝑥𝑞 ∥2 = 𝜖 controls the magnitude of noise. 𝜖 is
small enough to ensure that the perturbed representation retains
most of the original representation’s information while maintaining
some variance.

The process is shown in Figure 2 (D), the augmentation is gen-
erated and added to the node embedding. The smaller nodes get
bigger perturbations (i.e., the color of small nodes is changed more
significantly after perturbation).

From theminibatchwith counterfactual data supplementB⋃ B̃⋃ B̂
(defined in Section 3.4), we remove redundant queries and form a
set of distinct queries, i.e., B̄𝑞 . The contrastive loss for a query 𝑞 in
this set B̄𝑞 is

L𝑞
𝑐𝑙

= −𝑙𝑜𝑔 𝑒𝑥𝑝 (q̄𝑇 q̄′/𝜏)∑
𝑔∈B̄𝑞 𝑒𝑥𝑝 (q̄𝑇 ḡ/𝜏)

, (8)

where q̄ and q̄
′
are two augmentations on the same query 𝑞, ḡ is

the augmented representation on a negative sample 𝑔 ∈ B̄𝑞 . The CL
loss encourages consistency between augmented representations of
the same query while minimizing the agreement between distinct
queries.

Similarly, from the minibatch with counterfactual data supple-
ment B⋃ B̃⋃ B̂, we remove redundant items and form a set of
distinct items, i.e., B̄𝑡 . For each items 𝑡 in B̄𝑡 , we apply similar

augmentations to item t.

t̄ =
𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔

(
t + Δ𝑐𝑡 × 𝑁𝐶 (𝑡 ), t + Δ

𝑝
𝑡 × 𝑁𝑃 (𝑡 )

)
| |𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔

(
t + Δ𝑐𝑡 × 𝑁𝐶 (𝑡 ), t + Δ

𝑝
𝑡 × 𝑁𝑃 (𝑡 )

)
| |22
, (9)

where 𝑁𝐶 (𝑡) = 𝜌𝑐𝑡 /max𝑡 𝜌𝑐𝑡 and 𝑁𝑃 (𝑡) = 𝜌
𝑝
𝑡 /max𝑡 𝜌

𝑝
𝑡 . The con-

trastive loss for this item is

L𝑡
𝑐𝑙

= −𝑙𝑜𝑔 𝑒𝑥𝑝 ( t̄𝑇 t̄′/𝜏)∑
ℎ∈B̄𝑡 𝑒𝑥𝑝 ( t̄𝑇 h̄/𝜏)

, (10)

where t̄ and t̄
′
are two augmentations on 𝑡 , h̄ is the augmented

negative sample of ℎ ∈ B̄𝑡 . Then, we define the contrastive loss as:

L𝑐𝑙 =
∑︁

𝑞∈B,𝑡∈B

(
L𝑞
𝑐𝑙

+ L𝑡
𝑐𝑙

)
. (11)

Computational Complexity Analysis. The computational com-
plexity of graph contrastive learning is strongly affected by two
parts, computing the adjacency matrix, and graph convolution [38,
43], as shown in Table 1.

In computing adjacency matrix, Difficulty-aware Representa-
tion Perturbation (DARP) has the same computational complexity
as other augmentation on embedding methods, and smaller com-
plexity than augmentation on structure methods. Augmentation
on embedding methods (i.e., SimGCL, COSTA, and DARP) do not
change the original graph structure, so they just need to normalize
the adjacency matrix before feeding it to graph convolution, and the
complexity is proportional to the number of edges, i.e., Θ(2𝐸) [43].
For augmentation on structure methods (i.e., SGL and GCA), they
have additional computations of dropping out edges with dropout
rate 𝑅, hence their computational complexity is larger [38].

In graph convolution stage, DARP has the smallest computa-
tional complexity. The complexity of graph convolution is related
to the number of convolutional layers 𝐿, the number of edges
𝐸, the embedding size 𝐷 , and the number of augmented graphs.
Each graph has Θ(2𝐸𝐿𝐷) complexity. (1) for SGL and GCA, they
have one original and two augmented graphs, so the complexity
is Θ((2 + 4𝑅)𝐸𝐿𝐷) [38, 52]. (2) SimGCL adds noise to embeddings
in each graph convolutional layer, which means it triples the con-
volution computation [43]. (3) COSTA uses covariance-preserving
feature space augmentation to construct a single-view positive sam-
ple, which means it doubles the convolution computation [47]. (4)
DARP augments the representations after graph convolution, and
does not change the complexity of convolution.

Overall, DARP has smaller computation complexity than existing
graph contrastive methods.
3.6 Counterfactual Data Supplement at

Contrastive Learning
The motivation of Counterfactual Data Supplement at Contrastive
Learning (CDS-CL) is to handle long-tail and cold-start problems
from the perspective of true and false relevance.We believe that true
relevance corresponds to items that are content-relevant and will be
clicked under the same query by users. False relevance corresponds
to items that are irrelevant, but the model makes a wrong predic-
tion based on a false correlation of feedback. Previous works have
mainly focused on learning true relevance and rarely considered
false relevance [10, 27, 29, 49]. For example, some works [29, 49]
learn shared representations of diverse item attributes. However, as
the click feedback is biased toward head items, their attributes tend
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to dominate the prediction. This makes it difficult to distinguish
the representations of head attributes after training, resulting in
inaccurate click predictions when using head attributes. We simul-
taneously learn the true relevance and eliminate the effect of false
relevance. (1) We pull pairs of <warm/head item, cold/tail items>
closer in the representation space to learn the true relevance. (2)
We push the representations of dissimilar items with the same level
of click numbers apart to eliminate the effect of false relevance.

As shown in Figure 2(E), after Counterfactual Data Supplement
at Contrastive Learning, the cold item is pulled closer to the warm
item and the warm item is moved away from the negative items.

For each cold item 𝑡 ∈ B⋃ B̃⋃ B̂, we first retrieve similar warm
items ¤𝑡 and form a warm item set ¤T 𝑡 , ∀¤𝑡 ∈ T 𝑡 , 𝑐𝑜𝑠 (f𝑡 , f ¤𝑡 ) > 𝜉𝑐 ,
where 𝑐𝑜𝑠 () is the cosine similarity on content feature f , and 𝜉𝑐
is a predefined threshold. Then, we randomly sample one similar
warm item ¤𝑡 from ¤T 𝑡 as a positive sample. ¤𝑡 should be similar in
representation space to 𝑡 "if 𝑡 has been exposed earlier". For each ¤𝑡
and 𝑡 , we sample 𝑁 negative items 𝑡 ′ which have the same number
segment of clicks, and that 𝑡 ′ are dissimilar. The counterfactual
contrastive loss of item is:

L𝑡
𝑐𝑙𝑐

= −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚 ( t̂, ¤t)/𝜏)
𝑒𝑥𝑝 (𝑠𝑖𝑚 ( t̂, ¤t)/𝜏) +∑

𝑡′ 𝑒𝑥𝑝
(
𝑠𝑖𝑚 (¤t, t′)/𝜏

) , (12)

where 𝑡, ¤𝑡 are positive samples to each other, 𝑡 ′ are the negative
samples, 𝜏 is the temperature, 𝑠𝑖𝑚() is the cosine similarity of node
embeddings obtained by Equation 3.

Similarly, we can form counterfactual contrastive pairs for queries.
For each tail query 𝑞, we retrieve similar head queries and form a
head queries set ¥Q�̃� and randomly sample one head query ¥𝑞. We
sample𝑁 negative queries𝑞′which have the same number segment
of clicks, and that 𝑞′ are dissimilar. The counterfactual contrastive
loss of query is:

L𝑞
𝑐𝑙𝑐

= −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚 (q̃, ¥q)/𝜏)
𝑒𝑥𝑝 (𝑠𝑖𝑚 (q̃, ¥q)/𝜏) +∑

𝑞′ 𝑒𝑥𝑝
(
𝑠𝑖𝑚 ( ¥q, q′)/𝜏

) , (13)

where 𝑞, ¥𝑞 are positive samples to each other, 𝑞′ are the negative
samples. The counterfactual contrastive loss is:

L𝑐𝑙𝑐 =
∑︁

𝑞∈B,𝑡∈B

(
L𝑞
𝑐𝑙𝑐

+ L𝑡
𝑐𝑙𝑐

)
. (14)

The final loss of CC-GNN consists of the supervised loss L𝑠𝑢𝑝 ,
contrastive loss L𝑐𝑙 , and counterfactual contrastive loss L𝑐𝑙𝑐 .

L = L𝑠𝑢𝑝 + 𝛼L𝑐𝑙 + 𝛽L𝑐𝑙𝑐 , (15)

where 𝛼, 𝛽 adjust the losses to the same magnitude.
4 EXPERIMENT
In this section, we study the following research questions:
(1) RQ1: Can CC-GNN improve the performance of industrial-

scale product search (Section 4.2)
(2) RQ2: How does each component of CC-GNN affect the search

performance? Specifically, we perform ablation study on "Con-
tent Collaborative GraphConstruction" (SectionA.3), "MetaPath-
guided Message Passing " (Section 4.4), "Difficulty-aware Rep-
resentation Perturbation " (Section 4.5) and "Counterfactual
Data Supplement " (Section 4.6).

(3) RQ3: CanCC-GNN shed insight into other tasks, e.g., can com-
ponents of CC-GNN be applied to recommendation models
and improve their performances (Section 4.7)?

Table 2: Overall ranking results on IPQS

Model Recall@100 MRR@100 NDCG@100
GraphSAGE 0.4441 0.0819 0.1528
AdaptiveGCN 0.4434 0.0825 0.1531

LasGNN 0.4805 0.1038 0.1759
CC-GNN 0.5450 0.1189 0.2046

4.1 Experimental Setup
Datasets. (1) From Section A.3 to Section 4.6, we use an Industry-
scale Product Query Search dataset for evaluation. The dataset,
named IPQS, is constructed by collecting 91 days of log data in
a real-world E-commerce platform. Each record in IPQS dataset
corresponds to a product query and a clicked item and contains the
necessary information about the queries and items, including prod-
uct IDs, categories, prices, sales, images, titles, etc. We randomly
sample 35 million queries, 87 million items, and 709.7 million
interactions from the log data in the first 90 days as training data.
We use the log data of the last day for testing. We remove products
(i.e., either queries or items) that do not appear in the training set.
(2) For Section 4.7, we evaluate on Amazon Sport Dataset [12, 26],
containing 35,598 users, 18,357 items, and 296,337 interactions,
which is a widely used recommendation dataset [32, 50, 51]. We
pre-process it with a 5-core setting on both items and users follow-
ing [32, 50, 51].
Evaluation Metrics.We evaluate the ranking quality at top 100 re-
sults, i.e., Recall (𝑅𝑒𝑐𝑎𝑙𝑙@100), Mean Reciprocal Rank (𝑀𝑅𝑅@100),
andNormalizedDiscounted Cumulative Gain (𝑁𝐷𝐶𝐺@100). Higher
values of 𝑅𝑒𝑐𝑎𝑙𝑙@100,𝑀𝑅𝑅@100, and 𝑁𝐷𝐶𝐺@100 indicate more
accurate search results.

We make the codes of Difficulty-aware Representation Perturba-
tion (DARP) and Counterfactual Data Supplement at Contrastive
Learning (CDS-CL) modules of the CC-GNN available 1. Other
implementation details, ablation experiments, and parameter ex-
periments are provided in the appendix.
4.2 Performance on Product Search
Baselines. We compare CC-GNN on IPQS dataset with differ-
ent GNNs in the encoding phase of retrieval models. (1) Graph-
SAGE [11] samples and aggregates messages from a local neigh-
borhood. GraphSAGE has been widely utilized in retrieval mod-
els [33, 34]. (2) AdaptiveGCN [17] samples neighbors and uses the
sampled subgraph and learned residual graph to generate node em-
beddings. (3) LasGNN [9] samples the neighbors layer-wise along
the metapaths and constructs a subgraph to aggregate messages.
LasGNN has a great advantage in large-scale graph learning and
has been used in a real E-commerce production system [8]. Note
that due to the massive size of our IPQS dataset, many GNNs in the
literature are infeasible. In the matching phase of retrieval models,
we apply an Approximate Nearest Neighbor (ANN) search to return
results that have the largest cosine similarity to the query in repre-
sentation space. For these GNN baselines, we use the open source
implementations 2. All the baselines are trained in the supervised
loss.
Overall performance Analysis. As shown in Table 2, CC-GNN
significantly outperforms all competitors in terms of all evaluation

1https://github.com/XMUDM/CC-GNN
2https://github.com/alibaba/euler
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Figure 3: Comparative performance on different groups of queries and items

Figure 4: Visualization of the similarity of product and phrase
embeddings (P1 to P12) before and after CC-GNN.

metrics. CC-GNN improves over the best baseline (i.e., LasGNN)
in terms of overall 𝑅𝑒𝑐𝑎𝑙𝑙@100,𝑀𝑅𝑅@100, 𝑁𝐷𝐶𝐺@100 by 11.8%,
14.5%, and 16.3%, respectively.
Head queries and long-tail queries. To compare the performance
of GNNs on low-degree nodes, we divide the queries in the training
set into 5 groups according to the number of clicks. Each group of
queries has the same query numbers. Queries in the highest click
group are head queries, and queries in the lowest click group are tail
queries. From Figure 3, we observe a large performance gap between
head queries and long-tail queries by all models. Performances of
all baselines on long-tail queries are very close. However, CC-GNN
significantly improves long-tail query performance. The 𝑅𝑒𝑐𝑎𝑙𝑙@100,
𝑀𝑅𝑅@100,𝑁𝐷𝐶𝐺@100 on long-tail queries are increased by 13.7%,
16.7%, 14.2% comparing with the best baseline.
Cold-start items. Given the date of the testing set, we define cold-
start items as items that have been on the market for less than seven
days. There are more than 45 thousand cold-start items in the
training set, which accounts for 0.2% of all items. We report search
performance on cold-start items in Figure 3 and observe that CC-
GNN greatly enhances cold-start item performance. The 𝑅𝑒𝑐𝑎𝑙𝑙@100,
𝑀𝑅𝑅@100, 𝑁𝐷𝐶𝐺@100 on cold-start items are increased by 11.1%,
13.5%, 9.8%, respectively.
Semantic representation of phrase content. Here we provide a
showcase to demonstrate that CC-GNN can capture the semantics
of content phrases. First, we randomly sample one product from
the IPQS dataset and collect 12 phrases (i.e., from P1 to P12) that
are connecting with the product on Content Collaborative Graph.
Then, we extract the embeddings of these phrases before and after
CC-GNN. Next, we calculate cosine similarity between the product
embedding and the phrase embeddings before and after CC-GNN.

As shown in Figure 4, before CC-GNN, all phrases are highly
similar to the product (i.e., > 0.99). Note that since all existing
methods do not update the phrase embeddings, this means all
existing methods are not able to distinguish these phrases. On the
contrary, after CC-GNN, the differences between phrases become
more apparent. It suggests that CC-GNN can adapt the semantic
representation of phrase to the E-commerce data. The most relevant

phrase with the highest similarity before CC-GNN is Phrase3, and
after CC-GNN it is Phrase9. Examining these phrases, we can see
that Phrase3 contains a very general, noisy term "fashion" that does
not describe the property of the product, and is missing the term
"with sleeves" which is an important feature that consumers will
consider when purchasing the raincoat. Thus, Phrase3 is indeed
noisy and Phrase9 is better than Phrase3. CC-GNN can correctly
identify the most relevant phrase to describe a product by learning
the phrase semantics in graph propagation.
4.3 Ablation on Content Collaborative Graph
We first investigate whether different graph constructions affect our
model’s performance and whether Content Collaborative Graph
can benefit other graph learning models. Toward this goal, we
implement three different graph constructions, including: (1) con-
ventional bipartite query-item graph (BG), which has been used
in most search and recommendation problems [15, 19]. The BG
graph has 122 million nodes and 710 million edges. (2) Tripartite
query-item-phrase graph (TG), which has query nodes, item nodes,
and phrase nodes. N-gram phrases are extracted from product titles
and added to the graph without pruning. There are 138.4 million
nodes and 837million edges in TG. (3) Content Collaborative Graph
(CCG). N-gram phrases are extracted from product titles and added
to the graph with pruning. The threshold 𝜉𝑠 in Section 3.2.2 controls
the phrases to be pruned. Here we set the hyperparameter 𝜉𝑠 = 6.
CCG contains 128 million nodes and 734 million edges, where 6
million nodes are phrase nodes and 24million edges are connecting
to phrase nodes.

We test three supervised graph learning methods (i.e., Graph-
SAGE, AdaptiveGCN, and LasGNN) and two model variants (i.e.,
MGMP and CC-GNN) on the different graphs (i.e., BG, TG, and
CCG with the hyperparameter 𝜉𝑠 = 6).
Results and Analysis. We have three observations from Figure 5.
(1) For all GNN backbones, the best performance is achieved on Con-
tent Collaborative Graph. The result shows that simultaneously
propagating content and collaborative information in a graph neu-
ral network improves ranking accuracy. (2) The results on TG are
worse than the results on BG for all GNN backbones. This highlights
the importance of an appropriate abstract of the relations in the
E-commerce ecosystem. It is necessary to prune phrases. Without
pruning, many vague phrase nodes or irrelevant phrase nodes will
be added, introducing too much noise to the information propaga-
tion process. (3) Reasonably,CC-GNN obtains the best performance
on Content Collaborative Graph, where 𝑅𝑒𝑐𝑎𝑙𝑙@100, 𝑀𝑅𝑅@100,
𝑁𝐷𝐶𝐺@100 are increased by 3.8%, 6.4%, 5.2% comparing to TG.
4.4 Ablation on Meta-paths
From Figure 5, we can also analyze the impact of meta-paths. We
have the following observations. (1) Compared with the methods
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Figure 5: Performance of various GNNs on different graphs3

Table 3: Performance of different graph contrastive methods,
trained with different objectives. Improve. computes perfor-
mance divergence with respect to the base setting MGMP.
Best performance under each objective category is under-
lined.

Objective Model Recall@100 MRR@100 NDCG@100

vanilla w/o
counter-
factual

supplement

MGMP(base) 0.4981 0.1058 0.1838
MGMP + SGL 0.4958 0.1063 0.1837
MGMP + GCA 0.4967 0.1069 0.1842

MGMP + simGCL 0.513 0.1111 0.1915
MGMP + COSTA 0.5051 0.1079 0.1871
MGMP + rand. 0.5173 0.1115 0.1926
MGMP + DARP 0.5200 0.1125 0.1940

Improve. ↑ 4.4 % ↑ 6.3 % ↑ 5.6 %

counter-
factual

supplement
(supervised)

MGMP 0.5010 0.1079 0.1863
MGMP + SGL 0.4965 0.1065 0.1840
MGMP + GCA 0.4994 0.1119 0.1889

MGMP + simGCL 0.5273 0.1138 0.1966
MGMP + COSTA 0.5128 0.109 0.1895
MGMP + rand. 0.5308 0.1153 0.1987
MGMP + DARP 0.5331 0.1155 0.1991

Improve. ↑ 7.0 % ↑ 9.2 % ↑ 8.3 %

counter-
factual

supplement
(supervised
+contrastive)

MGMP 0.5038 0.1092 0.1879
MGMP + SGL 0.4981 0.1069 0.1846
MGMP + GCA 0.5014 0.1082 0.1863

MGMP + simGCL 0.5312 0.1107 0.1948
MGMP + COSTA 0.5172 0.1105 0.1918
MGMP + rand. 0.5424 0.1177 0.2028
MGMP + DARP
(CC-GNN) 0.5450 0.1189 0.2046

Improve. ↑ 9.4 % ↑ 12.4 % ↑ 11.3 %

which do not use metapaths (i.e., GraphSAGE and AdaptiveGCN),
the methods which use metapaths (i.e., LasGNN, MetaPath-guided
Message Passing, and CC-GNN) can generally improve the search
performance, regardless of the graph constructions. This pattern
indicates that metapaths can better capture heterogeneous infor-
mation on different graphs. (2) MGMP produces better results than
LasGNN. The difference betweenMGMP and LasGNN is thatMGMP
samples two sub-graphs while LasGNN samples only one sub-graph.
It proves that separating the click-path and phrase-path is beneficial.
(3) The other components of CC-GNN can further improve the per-
formance of MGMP. More discussions are provided in Section 4.5
and Section 4.6.
4.5 Ablation on Graph Contrastive Learning
To investigate the impacts of the proposed Difficulty-aware Repre-
sentation Perturbation (DARP) in graph contrastive learning, we
compare DARPwith four SOTA graph contrastive learningmethods
that augment on graph structures or directly on representations.
(1) SGL4 contrasts the anchor graph with augmented (e.g., node

3MGMP and CC-GNN are not implemented on BG because of the lack of phrase nodes
in BG.
4https://github.com/wujcan/SGL-TensorFlow.

dropout, edge dropout, etc.) graph [38]. (2) GCA5 contrasts the
anchor graph with graph augmented on both topology (i.e., struc-
ture dropout) and attribute levels (i.e., feature masking) [52]. (3)
SimGCL6 creates contrastive views by adding uniform noises to
the embedding space at each graph convolutional layer [43]. (4)
COSTA7 uses a covariance-preserving feature space augmentation
to construct a positive sample [47]. We also compare with a variant
of DARP: (5) random perturbation (rand.) which adds a random
noise at the query and item representation.

All methods are applied to the representation learned byMetaPath-
guided Message Passing (MGMP). Since contrastive learning alone
does not generate competitive search performances, the supervised
learning loss is always incorporated. Furthermore, they are imple-
mented to optimize three different objectives. (1) Vanilla supervised
learning loss with true user click signals, but without counter-
factual data supplement. (2) Supervised loss in Equation 4 which
utilizes counterfactual supplement samples as "pseudo labels". (3)
The ensemble loss in Equation 15 that incorporates counterfactual
supplement at supervised and contrastive learning.
Results and Analysis. From Table 3, we have the following ob-
servations. (1) Augmenting the graph structure (i.e., SGL, GCA)
is universally less effective than directly augmenting the feature
representations (i.e., SimGCL, COSTA, rand. and DARP). In fact,
the performances of SGL and GCA are worse than MGMP. This
is probably because augmenting the graph structure is very likely
to drop some key nodes and their associated edges. If the sub-
graphs are broken into disconnected pieces because of the missing
key nodes/edges, the original graph topology will be distorted. (2)
The proposed DARP performs best compared with other competitors
and random perturbation regardless of the objectives. The improve-
ments are significant with respect to the base setting of MGMP. This
proves that the learning difficulty is different for each node and that
disturbance without considering learning difficulty is sub-optimal.

4.6 Ablation on Counterfactual Supplement
We analyze the results reported in Table 3 to investigate the perfor-
mance gain by Counterfactual Data Supplement. (1) From Table 3,
we observe positive impacts led by Counterfactual Data Supplement
at both supervised and contrastive learning objectives. The results
show that contrasting counterfactual positive and negative samples
is a promising way to address the data scarcity problem in the E-
commerce search. (2) CombiningMGMP, DARP, and Counterfactual
Data Supplement at both supervised and contrastive learning, we
have CC-GNN, which produces the highest ranking performance.

5https://github.com/CRIPAC-DIG/GCA.
6https://github.com/Coder-Yu/QRec.
7https://github.com/yifeiacc/COSTA.
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Figure 6: Recommendation performance on Amazon Sports Dataset

Table 4: Performance of Counterfactual Data Supplement.
The vanilla is MGMP + DARP.

Objective Groups Recall@100 MRR@100 NDCG@100
vanilla w/o

counterfactual
supplement

Head Query 0.5532 0.1212 0.2082
Tail Query 0.4416 0.0918 0.1699
Cold Item 0.4008 0.0793 0.1432

counterfactual
supplement
(supervised)

Head Query 0.5652 0.1235 0.2126
Tail Query 0.4579 0.0955 0.1664
Cold Item 0.4154 0.0820 0.1487

counterfactual
supplement

(supervised +contrastive)

Head Query 0.5778 0.1264 0.2179
Tail Query 0.4665 0.0991 0.1716
Cold Item 0.4174 0.0831 0.1497

(3) We point out here that the performance gain by all components
of CC-GNN is accumulative. For example, we have already shown
that the Content Collaborative Graph provides a better graph for
various GNNs, and MetaPath-guided Message Passing outperforms
other GNNs on Content Collaborative Graph. The Difficulty-aware
Representation Perturbation improves MetaPath-guided Message
Passing on Content Collaborative Graph, and combining Counter-
factual Data Supplement at supervised and contrastive learning
further improves the results obtained by Content Collaborative
Graph. Every component of CC-GNN improves a step further than
the previous components.

To investigate the impact of Counterfactual Data Supplement
on different groups of queries, we again split the head queries, tail
queries and cold start items following section 4.2. From Table 8, we
observe that Counterfactual Data Supplement can improve the per-
formance of different groups of queries and items simultaneously,
alleviating the long-tail/cold-start problems.
4.7 Performance on Recommendation Models
CC-GNN consists of several components that can be stacked on
other models and/or applied to other tasks. We have shown in Sec-
tion A.3 that Content Collaborative Graph can improve the perfor-
mance of different GNNs on product search problem. In this section,
we want to investigate the proposed Difficulty-aware Representa-
tion Perturbation (DARP) and Counterfactual Data Supplement at
Contrastive learning (CDS-CL). They can be easily plugged into
a wide range of models, which is not restricted to graph learning
methods. Furthermore, although the main purpose of CC-GNN is
to solve industry-scale product search problem, DARP and CDS-
CL can be applied to other tasks. In this section, we choose to
study the multi-modal recommendation task, because of its wide
usage [32, 37, 44, 50, 51].

The experimental proposal is: we apply DARP and/or CDS-CL
on a backbone recommendation model. For a thorough study, we
experiment with five representative backbones with different model
architectures and learning paradigms. (1) VBPR [13] is a supervised,
non-graph learning method which incorporates visual content fea-
tures. (2) MMGCN [37] is a supervised, graph learning method

which learns from modal-specific graph. (3) SLMRec [32] is a recent
contrastive, graph learning method which proposes data augmen-
tation on multi-modal content. (4) BM3 [51] is a recent contrastive,
graph learning method on user-item interaction graph. (5) FREE-
DOM [50]) is a recent supervised, graph learning method which
incorporates item-item graph with user-item graph.

For all backbones, we use the open source implementations 8.
We use Amazon sports dataset as mentioned in Section 4.1. Other
implementation details are provided in the appendix.
Results andAnalysis. From Figure 6, we observe that (1) Difficulty-
aware Representation Perturbation (DARP) consistently increases
the performance of different models. Specially, DARP achieves
more significant improvements on supervised models (i.e., VBPR,
MMGCN, and FREEDOM) than on contrastive learning models (i.e.,
SLMRec and BM3). One possible reason is that DARP is designed
to differentiate item representations to distill additional supervi-
sory signals. (2) Counterfactual Data Supplement at Contrastive
Learning (CDS-CL) also consistently increases the performance of
different models. Specially, CDS-CL obtains more improvements on
contrastive learning methods (i.e., SLMRec and BM3). Contrastive
learning focuses on the item itself and its augmentation. Long-
tail/cold-start items are under-represented in the dataset and their
representation learning benefit less from their augmentations. On
the contrary, Counterfactual Data Supplement at Contrastive Learn-
ing is designed to transfer knowledge from head/warm items to
long-tail/cold-start items, so it can further improve the performance
of contrastive learning methods. (3) When combining DARP and
CDS-CL, the best results can be obtained on all backbones. This
phenomenon suggests that DARP and CDS-CL can be stacked on
various models and obtain maximal improvements from different
perspectives.
5 CONCLUSION
In this paper, we propose an efficient graph learning method CC-
GNN, which shows superior performance on industry-scale product
search, and alleviates the problems of long-tail queries and cold-
start items. In addition, the proposed components of CC-GNN,
such as the Content Collaborative Graph and Counterfactual Data
Supplement, are shown to generally improve the performance of dif-
ferent GNN baselines on product search. Furthermore, experiments
on public dataset show that applying the proposed components
Difficulty-aware Representation Perturbation and Counterfactual
Data Supplement at contrastive learning can improve the perfor-
mance of different recommendation models. These results show
that the proposed techniques have the potential to further enhance
the performance of search and recommendation systems.

8https://github.com/enoche/MMRec
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A APPENDIX
A.1 Implementation
A.1.1 Experiments on IPQS Dataset. The parameters are initialized
with Glorot initialization and trained using Adam optimizer.

On IPQS dataset, for all baselines, competitors, and CC-GNN
variants, the input title features are 50-dimensional vectors ex-
tracted from a word2vec model trained on an in-house large-scale
E-commerce corpus; the input image features are 512-dimensional
vectors extracted from a metric learning model trained on an E-
commerce visual search dataset. Sparse features include continuous
features and discrete features. For continuous features like prices
and sales, we segment them into intervals and convert each interval
into a one-hot feature. For other discrete features, such as cities and
ids, we use one-hot features directly. The size of the three types
of embeddings 𝐷 is 128. They are updated simultaneously during
training. Item embeddings t and query embeddings q are updated
according to the Loss function in Equation 15. Phrase embeddings p
are updated through the phrase meta-path in the graph propagation
process.

The product titles are in Chinese, and word segmentation and
named entity recognition are implemented using an open-source
tool 9.

Except in Appendix A.3 and Appendix A.4, the score threshold
𝜉𝑠 = 6, and the content similarity threshold 𝜉 = 0.85. We use
visual similarity as content similarity. We use 2-layer GAT as the
aggregator. The number of negative samples 𝑁 is 5. The hyper-
parameters 𝛼 = 0.6, 𝛽 = 0.2.

Table 5: Manually defined entities type scoring table

Entity Score Entity Score
Category 1.0 Quality 1.0

Category modifier 1.0 Proper noun 1.0
Brand 1.0 Prefix 0.75
Material 1.0 Suffix 0.75
Color 1.0 Unit 0.5
Efficacy 1.0 Time and Season 0.5
People 1.0 Symbol 0.25
Size 1.0 Number 0.25

Location 1.0 Common 0.1

A.1.2 Named entity recognition tool and manually defined entities
type scoring table. We utilize an open-source E-commerce Named
Entity Recognition tool 10 developed by Alibaba Group, the largest
e-commerce platform in China. This Named Entity Recognition
(NER) tool is specifically designed for e-commerce scenarios and
segments each e-commerce entity into 18 corresponding entity
types such as Category, Material, Color, Common, and so on. It also
provides weights for each entity type (i.e., the scores in Table 5),
which are based on extensive e-commerce data experience.
9https://m.nlp.aliyun.com/
10https://help.aliyun.com/document_detail/200996.html?spm=a2c4g.392277.0.0.
5bb6a4baPBFzeG

A.1.3 Reordering the words in a phrase alphabetically. We mainly
focus on incorporating content collaboration. Phrases with the
same words but different word orders usually have equivalent or
similar roles in content collaboration. If we treat them as distinct
nodes, the collaboration between the item and the query nodes
is dispersed, hindering the process of integrating content collab-
oration. It will also significantly increase the computational cost
in constructing the graph and storage cost in large-scale industry
graphs. Thus, we rewrite each phrase and reorder the words in a
phrase in alphabetical order. For example, "fine wine glasses" and
"wine glasses fine" will be rewritten as "fine glasses wine".

A.1.4 Experiments on Amazon Sports Dataset. The textual feature
dimension is 384 and the visual feature dimension is 4,096. The size
of user and item embeddings is 64. We use Adam as the optimizer
with a learning rate of 0.001. For convergence consideration, the
early stopping and total epochs are fixed at 10 and 200, respectively.

A.2 The impact of adding content nodes
Most previous studies add nodes that are already existing in the
system [3, 6, 7, 18]. For example, MEIRec [7] adds query nodes
to a user-item graph to represent the intent in the task of intent
recommendation. The query nodes already exist in the system
and have explicit interactions with other entities in the graph. In
contrast, we add virtual entities that are extracted from product
contents to provide auxiliary information. In other words, the added
nodes did not exist separately and did not have an identity of their
own in the system.

We argue that these virtual entities from product content play
an important role in information propagation. For example, a user
wants to buy a TV. He/she enters a query, and his/her purchase is
affected by the catchy phrase "impressive contrast of mini-LED" in
an ad. The other TV makers notice the trending phrase and start
to include this phrase in their product content. Thus, the phrase
"impressive contrast of mini-LED" implicatively participates in the
information propagation and is not present in the original query-
item graph.

We would like to point out that adding content information to
the original graph is non-trivial. For example, to our knowledge,
there is one recent work in cross-domain recommendation [41]
that adds word nodes (i.e., a node represents a word and connects
to the item nodes which use this word to describe them). However,
this approach has two major drawbacks in our scenario: (1) Firstly,
there will be a large number of extra links connecting to the word
nodes, which results in significant storage and computational costs;
(2) Secondly, word nodes that do not provide complete and clear se-
mantic information can hinder information propagation. Therefore,
in our work, we extract phrases from product titles and queries
and then prune phrases that are too vague and irrelevant to any
product feature.

To investigate the performance of different graph constructions,
we conduct experiments on the IPQS dataset. We have four differ-
ent graph constructions, including (1) original bipartite query-item
graph (BG), (2) adding word nodes to the original graph (WG),
(3) adding phrase nodes to the original graph (Tripartite query-
item-phrase graph, TG), and (4) adding pruned phrase nodes to
the original graph (Content Collaborative Graph, CCG). We use
LasGNN as the backbone and report the performance regarding
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Table 8: Performance of Counterfactual Data Supplement at
Contrastive Learning with different 𝜉𝑐 .

Vanilla Groups Recall@100 MRR@100 NDCG@100

BM3

vanilla 0.2079 0.0314 0.0621
𝜉𝑐 = 0 0.2041 0.0298 0.0610
𝜉𝑐 = 0.2 0.2106 0.0309 0.0622
𝜉𝑐 = 0.4 0.2102 0.0311 0.0623
𝜉𝑐 = 0.6 0.2110 0.0317 0.0631
𝜉𝑐 = 0.8 0.2131 0.0334 0.0648
𝜉𝑐 = 1 0.2122 0.0313 0.0629

FREEDOM

vanilla 0.2290 0.0336 0.0679
𝜉𝑐 = 0 0.2264 0.0333 0.0671
𝜉𝑐 = 0.2 0.2262 0.0337 0.0673
𝜉𝑐 = 0.4 0.2257 0.0335 0.0671
𝜉𝑐 = 0.6 0.2257 0.0338 0.0674
𝜉𝑐 = 0.8 0.2415 0.0363 0.0726
𝜉𝑐 = 1 0.2354 0.0352 0.0704

Table 6: Performance of LasGNN with different graphs

Graph Recall@100 MRR@100 NDCG@100 #Nodes #Edges
BG 0.4756 0.0986 0.1735 0 0
WG 0.3410 0.0611 0.1141 4.0 million 1,220 million
TG 0.4691 0.0935 0.1678 16.4 million 127 million

CCG (𝜉𝑠 = 6) 0.4820 0.1058 0.1831 6.0 million 24 million

Table 7: Performance of MGMP with different graphs

Graph Recall@100 MRR@100 NDCG@100 #Phrases
BG 0.4805 0.1038 0.1759 0

TG (𝜉𝑠 = 0) 0.4763 0.0981 0.1734 16.4 million
CCG (𝜉𝑠 = 2) 0.4832 0.1015 0.1753 14.7 million
CCG (𝜉𝑠 = 4) 0.4887 0.1056 0.1782 12.9 million
CCG (𝜉𝑠 = 6) 0.4981 0.1079 0.1838 6.0 million
CCG (𝜉𝑠 = 8) 0.4942 0.1066 0.1819 2.9 million

𝑅𝑒𝑐𝑎𝑙𝑙@100,𝑀𝑅𝑅@100, and 𝑁𝐷𝐶𝐺@100. We also report the num-
ber of nodes (#Node) and the number of edges (#Edges) added to
the original graph.
Results and Analysis. We have the following observations: (1)
The number of edges greatly increases on WG and BG, but the
performance on WG and TG is worse than BG. This shows that
adding auxiliary information to the original graph is difficult. Words
and unpruned phrases significantly increase the storage and com-
putational cost, but do not provide complete and clear semantic
information and hinder information propagation. (2) CCG outper-
forms BG. This shows that adding auxiliary information via virtual
phrase nodes is effective.

A.3 The impact of phrase pruning on CC-GNN
The threshold 𝜉𝑠 in Section 3.2.2 controls the number of phrases
to be pruned. Thus we experiment with different values of 𝜉𝑠 . For

example, as shown in Table 7, TG can be considered as CCG with
𝜉𝑠 = 0. When 𝜉𝑠 = 6 CCG removes 10.4 million phrase (7.5%) nodes
and 103 million edges (12.3%) in TG.We run the basic building block
of CC-GNN, i.e., MetaPath-guided Message Passing (MGMP), on
the different graphs. Note that running MGMP on BG is equivalent
to running LasGNN on BG, because BG does not contain phrase
paths.
Results and Analysis. We have the following observations from
Table 7. (1) Phrase pruning are important. On one hand, the perfor-
mance of WG and TG is worse than BG. This implies that simply
including phrases in the graph is not helpful. Since the threshold
𝜉𝑠 is positively correlated to the length of phrases, this result also
indicates that short phrases have insufficient information and they
occupy many computing and storage resources. On the other hand,
when the threshold 𝜉𝑠 < 6, increasing threshold 𝜉𝑠 significantly
reduces the number of phrases in the graph and gradually improves
𝑅𝑒𝑐𝑎𝑙𝑙@100,𝑀𝑅𝑅@100 and 𝑁𝐷𝐶𝐺@100. This trend suggests that
phrase pruning can increase both storage efficiency and search
effectiveness. (2) The best performance is achieved on 𝜉𝑠 = 6, when
MGMP achieves the best results while reducing 7.5% nodes com-
paring to TG. (3) When the threshold 𝜉𝑠 = 8, the number of phrases
is greatly reduced, but the performance slightly decreases. The
underlying reason is a high threshold will incorrectly prune some
meaningful short phrases.

A.4 The impact of content threshold 𝜉𝑐
The content threshold 𝜉𝑐 controls the content similarity in Coun-
terfactual Data Supplement (CDS). 𝜉𝑐𝑖𝑛[0, 1] suggests that only the
item content similarity higher than 𝜉𝑐 will be selected as a positive
sample in CDS. To investigate the impact of 𝜉𝑐 , we implement a
recommendation task on the Amazon Sports Dataset. We apply
CDS-CL with different values of 𝜉𝑐 on the BM3 and FREEDOM
models and report the recommendation performance regarding
𝑅𝑒𝑐𝑎𝑙𝑙@100, 𝑀𝑅𝑅@100, and 𝑁𝐷𝐶𝐺@100. Note that the vanilla
version is the original BM3 and FREEDOM.
Results and Analysis. We have the following observations: (1) An
intermediate value of 𝜉𝑐 can significantly increase the performance
on both models. 𝜉𝑐 = 0.8 achieves the best performance, and the
𝑅𝑒𝑐𝑎𝑙𝑙@100, 𝑀𝑅𝑅@100, and 𝑁𝐷𝐶𝐺@100 are increased by 2.5%,
6.4%, 4.3% on BM3, 5.5%, 8.0%, 6.9% on FREEDOM. (2) For 𝜉𝑐 < 0.8,
smaller 𝜉𝑐 leads to worse performance. This phenomenon suggests
that head and tail items with a low content similarity should not be
considered as positive samples in CDS, which verifies the necessity
of using the content similarity threshold 𝜉𝑐 . (3) The performance
drops at 𝜉𝑐 = 1. The reason is that we only utilize a small number
of item pairs with identical content and miss the opportunities to
further enhance the performance with less similar tail/cold items.
However, as CDS-CL alone can enhance the content representation
learning and eliminate the prediction dependence on click numbers,
the performance is still better than the vanilla models.
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