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Abstract—Instant messaging client (IMC) is now an essential
tool for mobile users. In the representative IMC WeChat,
cybercriminals deceive frauds, causing financial loss to normal
users. Through statistical analysis, we find that certain fraud
interactions commonly occur among WeChat users who are not
k-hop neighbors. Therefore, efficiently answering whether the
distance between two vertices is not longer than k at a certain
time point (i.e., k-hop reachability queries) over the dynamic
social graph of WeChat becomes a crucial task for fraud feature
extraction in the detection system: it can help human experts
quickly identify suspicious user interactions and the query results
can be further used as the input feature to the downstream
machine learning based detection methods. In this paper, we
illustrate Bidirectional k-hop Reachability Query Processing over
a Dynamic Graph (BREAD) that is used in WeChat for extracting
the k-hop reachability feature for fraud detection. BREAD adopts
the idea of estimating Personalized PageRank value. It first
conducts the backward search from the destination vertex to
construct an intermediate vertex set. Then, it performs a certain
amount of random walks from the start vertex to see whether
they can hit the intermediate vertex set, and the results are re-
turned to answer k-hop reachability queries. We further propose
BREAD++ that leverages the massive parallel processing power
of GPU to achieve a considerable performance gain. Experiments
on several large-scale dynamic graph benchmarks and the social
graph of WeChat have demonstrated that BREAD/BREAD++
is superior than existing index-free competitors: our methods
provide not only fast but also accurate responses and they are
of practical value to k-hop reachability feature extraction in
the fraud detection system of WeChat. Our implementation is
available at https://github.com/XMUDM/BREAD.

Index Terms—k-hop reachability, personalized pagerank,
fraud detection

I. INTRODUCTION

Instant messaging client (IMC) has become indispensable

to mobile users. WeChat1, developed by Tencent, is a repre-

sentative IMC with billions of active users. Attracted by the

massive number of users, cybercriminals perpetrate frauds in

WeChat for illegal profits, causing financial loss to normal

users and affecting user experience.

Much effort has been devoted to detecting frauds. A useful

feature to fraud detection is related to the k-hop reachability
query over a dynamic graph (KR query for short): given

the directed social graph G with n vertices (i.e., users) and

Work done when the first author was an intern at Tencent. Hui Li is the
corresponding author.

1https://www.wechat.com/en

m edges (i.e., WeChat friend relations occur at certain time

points), a KR query 〈s, t, k, T 〉 asks whether there is a path

from a source vertice s to a destination vertice t in G at time

point T and the path is not longer than k hops. Through

statistical analysis, we find that certain fraud interactions

commonly occur among WeChat users who are not k-hop

neighbors. Hence, the parameter k and the answer to KR

queries can be used by human experts to judge whether some

user interactions (e.g., chat and transactions) are suspicious.

They can also be used as an input feature to the downstream

machine learning based detection methods. Considering the

large size of WeChat social graph and the importance of KR

feature, efficiently answering KR queries becomes an vital task

in the fraud detection system of WeChat.

There are few works studying efficiently answering KR

queries [1], [2], [3], [4] and they rely on specially designed

indexes that are not appropriate for the social graph of WeChat

which is dynamically changing. On the other hand, a KR query

is a special case of the reachability query (R query) 〈s, t, T 〉
that asks whether a vertex s is reachable from another vertex

t at time point T . There are two inefficient ways to answer

such queries: (1) Traverse the entire graph using DFS or BFS.

Such methods incur a high cost of O(n+m) and are too slow

for large graphs. (2) Precompute and materialize the transitive

closure of the graph. Then, answer a R query by checking

whether it exists in the transitive closure. Although the query

can be answered in O(1), the storage consumption of the tran-

sitive closure is O(n2) and it is prohibitive for large graphs.

In the literature, some approaches try to balance query time

and storage cost [5]. These methods construct and leverage an

index that requires less space than the naive transitive closure-

based method, and they have query processing time in the

range of O(1) and O(n+m), where the former is the query

time using the transitive closure and the later is the query time

using DFS or BFS.

In this paper, we illustrate Bidirectional k-hop Reachability

Query Processing over a Dynamic Graph (BREAD) that is

used to extract KR feature in WeChat for fraud detection.

BREAD adopts the idea of estimating Personalized PageRank

(PPR) value [6]. The PPR value π(u, v) of a vertex u with

respect to a vertex v is the probability that a random walk

starting from u terminates at v and it is a proximity measure

used in various graph-based applications [7]. The contributions
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of this paper are summarized as follows:

1) We propose BREAD for efficiently answering KR queries

over large dynamic graphs. BREAD firstly adopt backward

search from the destination vertex to extract intermediate

vertex set. Then it performs random walks from the source

to see whether they can hit intermediate vertices, and the

result are returned as the answer.

2) The time complexity of BREAD for large-scale graphs is

approximately O(
√
m log n). It is smaller than the com-

plexity of other competitors on large graphs.

3) We further propose BREAD++ that leverages the massive

parallel processing power of GPU to achieve a considerable

performance gain.

4) We have conducted extensive experiments on several large-

scale dynamic graph benchmarks including the social graph

of WeChat. Results show that our methods are superior than

existing index-free competitors, and they can be used to

efficiently assist fraud detection in WeChat.

II. PRELIMINARIES

A. Problem Definition

A dynamic directed graph G = (V,E) with |V | = n and

|E| = m is a sequences of graph snapshots, or in other words,

an initial graph along with a graph stream. If the graph is

weighted, each edge e = {u → v} has a positive weight

w(u, v); otherwise we define w(u, v) = 1
Nin(v)

where Nin(v)
is the neighbor set of v. Each edge/vertex is associated with a

set of time points indicating when they are valid. A KR query

〈s, t, k, T 〉 takes a dynamic graph G, a source s, a target t and

a timestamp T as input, and asks whether there exists a path

from s to t at T that is not longer than k. A R query 〈s, t, T 〉
is the general case of the KR query without the constraint on

path length.

B. Index-free Reachability Query Processing

In an evolving graph such as the social graph of IMC,

constructing indexes may not be an appropriate solution since

data changes require rebuilding some indexes. Consequently,

we mainly consider index-free methods:

(1) ARROW [8]. ARROW is the state-of-the-art index-free

method for answering R queries. At query time, ARROW

conducts multiple random walks of fixed length from both

source s and target t to construct two sets of ‘stops’: F (s) =
{u : s → u} of vertices that are reachable from s as well as

B(t) = {v : v → t} of nodes that can reach t. If there exists

a vertex w ∈ F (s) ∩ B(t) (i.e., s can reach t with a path

passing through w), the algorithm reports true, otherwise false.

The most crucial part in ARROW is how to set the number

of random walks and the fixed length of the random walks

to balance query efficiency and accuracy. With a thorough

theoretical analysis, ARROW chooses parameters walk length

l = cwalkLength×diam and walk times r = cnumWalks× 3
√
n2 lnn,

where cwalkLength and cnumWalks are both parameters, and diam
is the diameter of the graph. The size of sets F (s) and B(t),
and the time spent on their construction and intersection are all

rl. The time complexity of ARROW for answering R queries

is O(
3
√
n2 lnn · diam) [8]. To extend ARROW to answering

KR queries, we skip the preprocessing step of estimating

diameter in ARROW and set walk length l as k. It suggests

that k implies a possible distance between s and t if they are

connected and any path with length greater than k can not be

the answer.

After we deploy ARROW in our fraud detection system, we

find one shortcoming of ARROW: the walk length depends on

the diameter diam of the input graph, which is the maximum

distance between any pair of vertices. ARROW estimates the

diameter for the initial graph and uses it as the upper bound

on the diameter of the graph for all subsequent snapshots.

Unfortunately, there are no known, efficient algorithms that

can precisely estimate diam [9].

(2) RWBFS. We modify ARROW and propose an alternative

by constructing stop sets using both BFS and random walks.

We call it RWBFS (‘RW’ is short for random walk). More

specifically, we conduct random walks from the source vertex

s to retrieve the stop set F (s), and conduct BFS from the target

t to form the stop set B(t). This way, RWBFS increases the

probability of F (s) ∩B(t) �= ∅.

Conducting BFS without early stopping is rather ineffi-

cient. Therefore, we further adopt an early-stopping criteria in

RWBFS to achieve a balance between accuracy and efficiency.

Intuitively, conducting BFS for a vertex with high degree is

time-consuming since it will push much more vertices to the

queue for future traverse. To alleviate this problem, during the

BFS process, if the degree of current visiting vertex is greater

than a given threshold, we stop subsequent BFS that starts

from this vertex. We choose c · d̄ as the threshold, where c is a

parameter to be set and d̄ is the average degree of vertices in

the graph. However, this design does not have any theoretical

guarantee for the preciseness of the query result and c still

needs to be tuned.

III. OUR PROPOSED METHOD BREAD

We first give an overview of BREAD in Sec. III-A. Then,

as answering KR queries can be viewed as the extension to

the classic reachability problem with a constraint on path, we

first illustrate the basic version of BREAD for answering R

queries in Sec. III-B. After that, we will illustrate how the basic

version can be extended to answer KR queries in Sec. III-C.

Finally, we analyze parameter selection and complexity of

BREAD in Sec. III-D.

A. Overview

At a high level, at query time, BREAD first conducts

backward search from the destination vertex t and then it

performs random walks forwards from the source vertex s
(i.e., forward search). The backward search starting from t
will find a suitably large set of intermediate vertices that are

near t. The purpose of forward search is to generate sufficient

amount of random walks from s to see whether they can hit

node(s) in the intermediate vertex set.
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Algorithm 1: BackwardSearch(t, rmax, α)

Input: Graph G with edge weights w(u, v), target t, probability α,
residue threshold rmax

Output: r(t, v), p(t, v) for all v ∈ V
1 r(t, t)← 1, r(t, v)← 0 for all v �= t;
2 p(t, v)← 0 for all v;
3 Candidate set S ← {t};
4 while S �= ∅ do
5 Temporary set S′ ← ∅;
6 for v ∈ S do
7 for u ∈ Nin(v) do
8 r(t, u)← r(t, u) + (1− α) · w(u, v) · r(t, v);
9 if r(t, u) > rmax then

10 S′ ← S′ ∪ {u};
11 p(t, v)← p(t, v) + α · r(t, v);
12 r(t, v)← 0;

13 S ← S′;

B. Answering R Queries

The reachability problem has connection with the definition

of PPR. The PPR value π(s, t) of vertex s with respect to t can

be viewed as the probability that a random walk starts from

s and terminates at t. From another perspective, if π(s, t) is

larger than zero, there exist random walks that can reach t,
i.e., s and t are connected. Moreover, ARROW [8] illustrated

in Sec. II-B actually resembles the Monte Carlo method to

estimate π(s, t). Thus, we are inspired to answer the R query

〈s, t〉 by approximating the PPR value π(s, t) and we adapt

the idea of the bidirectional PPR estimator [6] to this end.

The first step of BREAD for answering R queries is to

traverse backwards from the destination vertex t to construct a

set of intermediate vertices that are close to t. Alg. 1 illustrates

this process. This step is based on the Approx-Contributions

algorithm [10]. Given a target vertex t, we first initialize its

residual value r(t, t) as 1, then perform a while loop to spread

this value to its neighboring vertices (lines 4-13). For any

vertex v with non-zero residual value, we transfer its residual

value to its neighboring vertices u ∈ Nin(v) by an attenuation

factor (1 − α) · w(u, v) (line 8), and keep α · r(t, v) as its

own reserve value p(t, v) (line 11). The loop terminates when

there is no vertex of which the residual value is greater than

the predefined threshold rmax. The crucial part for this step

is how to choose a proper value for the residue threshold

rmax in order to cover a suitable amount of vertices while

maintaining efficiency. We set rmax = ε
√

d̄δ
ln(2/pfail)

, where pfail

is the failure probability, d̄ is the average degree of vertices in

the graph, ε is the relative error, and δ is the minimum PPR we

want to accurately estimate in the bidirectional PPR estimator.

δ can be viewed as a parameter to control the accuracy.

Then, BREAD leverages residual values r(t, v) and reserve

values p(t, v) for all vertices v �= t from the first step to

answer reachability queries. Alg. 2 depicts this step. BREAD

first checks whether the reserve value p(t, s) of the source

vertex is greater than zero (line 2). If p(t, s) is non-zero, it

indicates that the path(s) connecting s and t have already

been discovered in the backward search process. Otherwise,

we conduct random walks from the source s (forward search).

Algorithm 2: Answer R Queries

Input: Graph G, teleport probability α, source s, target t, residue
threshold rmax

Output: Answer to the R query 〈s, t, T 〉
1 r(t, v), p(t, v) = BackwardSearch(t, rmax, α);
2 if p(t, s) > 0 then
3 answer ← true;

4 else
5 number of walks ω ← c · rmax/δ, answer ← false;
6 for index i ∈ [ω] do
7 cur ← s;
8 while true do
9 if rand() < α then

10 break;

11 Sample v from cur’s out-neighbor;
12 if r(t, v) > 0 then
13 answer ← true;
14 break;

15 cur ← v;

Once a random walk visits a vertex v with non-zero residual

value, BREAD returns true, indicating the source vertex s
can be connected to target t via vertex v. The core part of

this process is how to set a proper value for the number of

random walks ω to maintain a balance between accuracy and

efficiency. We set ω = c · rmax/δ, where c is a parameter

controlling the accuracy. Note that BREAD performs random

walks under the specific temporal constraint T of the query,

i.e., edges along the path that a random walk traverse should

exist at the time point T . Compared to ARROW, BREAD does

not require the exact value or the estimation of the diameter

when performing random walks, and thus it avoids the time-

consuming preprocessing step in ARROW.

C. Answering KR Queries

The difference between KR queries and R queries is the

constraint on the length of path(s) connecting the source s
and the target t. Answering KR queries is more challenging

since there may exist multiple viable paths between s and t
but only part of them satisfy the constraint that the path length

is not longer than k.

To answer KR queries, we modify the basic version of

BREAD in Sec. III-B. As illustrated in Alg. 3, in order to

examine whether a path found by BREAD satisfies the hop

constraint, BREAD maintains an extra variable d(t, v) for each

vertex v in the backward search process. It records the shortest

distance seen so far between v and t (line 10). When BREAD

conducts random walks forwards (Alg. 4), once a random

walk with length l visits a vertex v with a non-zero residual

value, BREAD additionally checks whether the sum of length

l and the shortest distance from v to t is greater than the

given constraint k (line 12). If so, the algorithm returns true,

otherwise false. Although the hop constraint in KR queries

brings additional challenges, we can utilize the constraint to

guide the random walk to improve efficiency. Once the length

of a random walk exceeds k, BREAD terminates the process

as it is impossible for the current random walk to find a path

that conforms to the hop constraint (lines 17-18).
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Algorithm 3: KBackwardSearch(t, rmax, α)

Input: Graph G with edge weights w(u, v), target t, probability α,
residue threshold rmax

Output: r(t, v), p(t, v), d(t, v) for all v ∈ V
1 r(t, t)← 1, r(t, v)← 0 for all v �= t;
2 p(t, v)← 0 for all v;
3 Candidate set S ← {t};
4 d(t, t)← 0, d(t, v)← inf for all v �= t;
5 while S �= ∅ do
6 Temporary set S′ ← ∅;
7 for v ∈ S do
8 for u ∈ Nin(v) do
9 r(t, u)← r(t, u) + (1− α)w(u, v)r(t, v);

10 d(t, u)← min
(
d(t, u), d(t, v) + 1

)
;

11 if r(t, u) > rmax then
12 S′ ← S′ ∪ {u};
13 p(t, v)← p(t, v) + αr(t, v);
14 r(t, v)← 0;

15 S ← S′;

The hop constraint k is also beneficial to guiding the

random walks in ARROW. When answering KR queries using

ARROW, we omit the preprocessing step for estimating the

graph diameter and directly use k as the walk length l. Since

k may be larger than the diameter estimated by ARROW, it

may increase the probability that, when answering the KR

query 〈s, t, k, T 〉, the two stop sets F (s) and B(t) have an

intersection. Similar strategy can be used in RWBFS.

D. Analysis of Parameters and Complexity

In Alg. 2, once a random walk from s finds a vertex

v marked by t in the previous backward search stage, the

algorithm will terminate and return true as the answer to the

current reachability query. As mentioned above, answering

R queries resembles the calculation of PPR values. BREAD

maintains an extra backward reserve vector p(t) for t in

backward search process. Every time BREAD sees a vertex v
satisfying the push condition, BREAD increases v’s backward

reserve by α·r(t, v). During the Monte Carlo process, BREAD

terminates once we found a vertex with residual value greater

than zero. If we change it to record the residual value of the

final node of the i-th random walk Xi as the bidirectional PPR

estimator [6], then the following theorem is satisfied (Detailed

analysis can be found in [6]):

Theorem 1: Given a start node s (or source distribution

σ), a target node t, minimum PPR δ, maximum residual

rmax > 2eδ
αε , relative error ε ≤ 1, and failure probability pfail,

the bidirectional PPR estimator ouputs an estimation π̂(s, t)
with probability at least 1− pfail the following hold:

• If π(s, t) ≥ δ: |π(s, t)− π̂(s, t)| ≤ επ(s, t)
• If π(s, t) ≤ δ: |π(s, t)− π̂(s, t)| ≤ 2eδ

where π̂(s, t) = p(t, s) + 1
ω

∑ω
i=1 Xi.

With c = 3
ε2 ln

2
pfail

and ω = c rmax

δ that are later used in our

experiments, Theorem 1 ensures that |π(v, t)−π̂(v, t)| < rmax

for any v in the graph. Therefore, for a reachable vertex s
from t, π(s, t) is greater than zero and the approximation error

for π̂(v, t) is less than rmax, which is a strong guarantee for

answering the k-hop reachability query accurately.

Algorithm 4: Answer KR Queries

Input: Graph G, teleport probability α, source s, target t, hop k,
residue threshold rmax

Output: Answer to the k-hop reachability query 〈s, t, k〉
1 r(t, v), p(t, v), d(t, v) = KBackwardSearch(t, rmax, α);
2 if p(t, s) > 0 and d(t, s) ≤ k then
3 answer← true;

4 else
5 number of walks ω ← c · rmax/δ, answer ← false, l← 0;
6 for index i ∈ [ω] do
7 cur ← s;
8 while true do
9 if rand() < α then

10 break;

11 Sample v from cur’s out-neighbor;
12 if r(t, v) > 0 and l + d(t, v) ≤ k then
13 answer ← true;
14 break;

15 cur ← v;
16 l← l + 1;
17 if l > k then
18 break;

Since BREAD adopts the idea of the bidirectional PPR

estimator [6] and it further maintains an extra variable d(t, v)
for each vertex v in the backward search process for later

use in the early stopping of forward search, the complex-

ity of BREAD is not larger than the complexity of es-

timating PPR value using the bidirectional PPR estimator,

i.e., O(
√

d̄
δ

√
log(1/pfail)

αε ). Since δ and pfail are usually set

as 1/n [6], the time complexity of BREAD is approxi-

mately O(
√
m log n), which is less than the time complexity

O(
3
√
n2 lnn · diam) of ARROW [8] in a large-scale graph.

IV. ENHANCED BREAD WITH GPU

We further propose BREAD++ that uses the massive parallel

processing power of the GPU to further boost BREAD.

Sparse representation. Backward search on the CPU can

be implemented utilizing data structures such as heaps, since

they can be efficiently updated. However, these complex data

structures are not available on the GPU. The prevalent data

structure used on the GPU is array. In order to efficiently

leverage GPU memory, we adopt the Compressed Sparse Row

(CSR) format to store graph data.

Parallel Backward Search. The key of the backward search

algorithm is to maintain a candidate set S with vertices

satisfying the push condition and update the corresponding

values based on Alg. 1. While on the CPU we can use data

structure like priority queue to efficiently maintain S and

terminate the procedure when there are no vertices that satisfy

the condition, we need a new solution based on array for GPU.

When implementing backward search on the GPU, we di-

vide the whole procedure into three steps which are illustrated

in Alg. 5. Prior to the residual push procedure, we first allocate

the memory for the residue vector and the reserve vector on

the GPU and then use the same initialization as on the CPU.
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Algorithm 5: Parallel BREAD

Input: Graph G with edge weights w(u, v), source s, target t,
teleport probability α, residue threshold rmax

Output: Dynamic reachability answer for query s→ t
1 r(t, t)← 1, r(t, v)← 0 for all v �= t;
2 p(t, v)← 0 for all v;
3 candidate set S ← {t};
4 while S �= ∅ do
5 F = UpdateNextFrontierSetFlags(r(t, v), rmax);
6 S = GetNextFrontierSet(F );
7 for v ∈ S do
8 p(t, v)← p(t, v) + αr(t, v);
9 for u ∈ Nin(v) do

10 atomicAdd(r(t, u), (1− α)w(u, v)r(t, v))

11 r(t, v)← 0;

12 if p(t, s) > 0 then
13 answer ← true;

14 else
15 number of walks ω ← c · rmax/δ, answer ← false;
16 parallel for index i ∈ [ω] do
17 cur ← s;
18 while true do
19 if rand() < α then
20 break;

21 Sample v from cur’s out-neighbor;
22 if r(t, v) > 0 then
23 answer ← true;
24 break;

25 cur ← v;

The first step in each iteration is to obtain the candidate set

S prepared for the next step residual push. There are multiple

ways to implement it in parallel: (1) One possible method is

to use an array F with size n where each element represents a

candidate flag for each vertex v in the graph. Once the residual

value r(t, v) becomes larger than the residual threshold rmax

during backward search, we set its corresponding flag to 1.

We then adopt a standard parallel select to collect all the

flagged vertices in F and add them to the candidate set S. (2)

Another way to achieve this is using the assistance of atomic

operations. We can dynamically detect and insert candidate

vertex into set S during backward search. In order to do so,

an index is used to point to the next available position for

insertion. If a vertex v satisfies the push condition, the thread

handling v will atomically place it at the index position and

increase the index by 1. The second implementation involves

atomic operations, which may affect the efficiency if there

exist many vertices to push. Considering that real-world graphs

are mostly in a large scale, we decide to retrieve the candidate

set in parallel using the first method.

The last step is to update the residual value of each candi-

date’s neighboring vertices as well as its own reserve value.

Here, we utilize atomic operations to ensure that the residual

values are correctly transferred. We do not require atomic

operations when updating candidate’s reserve value as it will

not cause any conflict that incurs an error. An alternative way

to avoid using atomic operations is to make use of the sort and

reduce algorithm. Given key-value pairs consisting of neighbor

vertex ids and their corresponding residual values, the sort and

TABLE I
STATISTICS OF DATASETS.

Name |V| |E| dmax D D90

Digg 279.6K 1.7M 12.2K 18 4.96
BibSonomy 210.4K 2.5M 428.4K 12 4.01

Flickr 2.3M 33.1M 34.1K 23 6.88
Stackoverflow 2.6M 63.4M 194.8K 11 4.41

Delicious 5.3M 301.1M 4.3M 14 4.58
Wiki 6.9M 129.8M 1.8M 16 4.47

Google 28.9M 462.9M 452K 22 6.16
WeChat 15.9M 627.8M 11.9K 30 7.94

reduce algorithm first runs a parallel sort on pairs. Then, it

conducts a parallel reduce to aggregate the residual values with

the same key and transfer results to corresponding vertices.

However, this method will lead to significant overhead when

encountering large frontiers [11]. Therefore, we take advantage

of atomic operations in our implementation.

Parallel Monte Carlo Process (Forward Search). After

obtaining the intermediate vertices near the destination vertex

t, we perform random walks from the start vertex s in parallel

to examine whether any random walks can hit the intermediate

vertices found in backward search. We omit the details here

as the procedure is similar to conducting random walks on the

CPU. To reduce the time spent on transferring data between

CPU and GPU, we initialize the data and transfer them to

the GPU before processing the query. After processing, query

response is transferred back to the CPU.

Based on the above three solutions to answering R queries

using GPU, we make some modifications to handle KR queries

and propose BREAD++. During the procedure of parallel

backward search, we maintain an extra array d of size n where

each element d(t, v) records the shortest distance for each

vertex v from target t. When a random walk with length l
visits a vertex v with non-zero residual value, BREAD++ will

return true only if the sum of l and d(t, v) is not greater than

the given hop k. We are aware that some advanced techniques

estimate PPR values in parallel on the CPU or the GPU [12],

[11]. They are orthogonal to our work for KR queries and we

may use them to further improve our methods. We leave these

improvements as the future work.

V. EXPERIMENTS

A. Experimental Settings

Data. We use eight real-world large dynamic graphs. Tab. I

shows statistics of the data. D90 means the 90-percentile

effective diameter and D denotes the graph diameter. Datasets

except WeChat are from the Konect repository [13]. WeChat

dataset contains part of the social graph of WeChat users from

Fujian province in China and we use it to evaluate whether

BREAD/BREAD++ can provide effective support to fraud

detection in WeChat. Test queries are generated using BFS.

For a vertex s, performing BFS can obtain the subgraph Gs

of s. The shortest distance d(s, t) for every vertex t inside Gs

is also stored during BFS. These information are then utilized

for query generation in different task.
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++

Fig. 1. Running time for answering k-hop reachability queries: varying k.

Fig. 2. Accuracy for answering k-hop reachability queries: varying k.

++

++

Fig. 3. Running time for the challenging task on different datasets.

Metrics. We use average query time and accuracy for evalua-

tion. Note that, if the total query time of a method on a dataset
exceeds 2 hours, its results will not be reported.

Methods. We compare BREAD/BREAD++2 with ARROW3

and RWBFS illustrated in Sec. II-B. For ARROW, follow-

ing the original paper, we set cwalkLength to 1 and select

cnumWalks among [0.01, 0.05, 0.1, 0.5] to achieve good per-

formance. For RWBFS, we use the same parameter setting

as ARROW. For BREAD, we find that multiplying rmax by

a factor crmax = 1/16 achieves a good balance between

efficiency and accuracy.

Environment. We implement BREAD in C++ and compile

it using GCC 7.5 with -O3 flag. BREAD++ is implemented

and compiled using Nvidia CUDA 10.1 with -O3 flag. All ex-

periments are performed on a Linux machine with 48 threads

powered by one 12-core Intel Xeon(R) E5-2678 v3@2.50GHz,

256GB memory, and a Nvidia RTX2080Ti-12GB GPU.

2Implementation is available at https://github.com/XMUDM/BREAD.
3https://github.com/senguptaneha/temporalReachabilityC

B. Answering KR queries

Normal KR queries. We first show the effectiveness of

BREAD/BREAD++ in answering normal KR queries. As the

90-percentile effective diameter D90 for all eight datasets lies

approximately within [4, 8], we choose k from [4, 5, 6, 7, 8] and

generate 100 queries for each k on each dataset. Fig. 1 and

Fig. 2 report the average running time and accuracy of each

method for answering 100 queries on four datasets: Flickr,

Delicious, Google and WeChat. Note that the y-axis is in log-

scale. We can see that RWBFS sometimes achieves similar

accuracy as ARROW and it requires less time. However, the

naive early-stopping criteria used in RWBFS does not perform

well on large graphs like Google and WeChat: the running time

exceeds 2 hours and it is not shown in Fig. 1. This is probably

because that RWBFS treats vertices with larger degree equally,

regardless of their distance from the target vertex t. BREAD

overcomes this issue through spreading the residual value of

t by an attenuation factor. Observe that BREAD achieves

better performance than ARROW on all four datasets, which

is consistent with our analysis on the time complexity of these
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Fig. 4. Accuracy for the challenging task.

Fig. 5. Hop statistics for positive queries.

two algorithms in Sec. III-D. BREAD can achieve comparable

or better accuracy than ARROW while it is an order of

magnitude faster than ARROW. Finally, the GPU version of

BREAD, BREAD++, achieves speedup over BREAD by using

the massive computation power of the GPU. It is worthy

pointing out that, in WeChat data, BREAD/BREAD++ is

much faster than ARROW while their accuracy is comparable.

Hence, we can conclude that BREAD/BREAD++ provides not

only fast but also accurate responses and it is of practical value

to KR feature extraction in fraud detection system.

Challenging queries simulating fraud feature extraction.
Next, we investigate a more challenging task. We simulate the

scenario in the real scenario of fraud detection. Let dmax be

the farthest distance that vertex s can reach in the subgraph

Gs, we randomly choose a value d within [1, dmax] and set k
with a value greater than d for this task. As dmax is correlated

to the diameter D of the graph and large-scale graphs like

Google and WeChat may involve queries with much larger k
than previous experiments, this task is more challenging. We

generate 1,000 queries for each dataset, consisting of positive

and negative queries (ratio is 3:2). The negative queries include

(1) target vertices that are outside Gs, and (2) target vertices

that are inside Gs but can not be reached under the given hop

k. Due to the space limit, we only show the statistics of the hop

of generated positive queries on two large graphs Google and

WeChat in Fig. 5(a) and Fig. 5(b), respectively. The average

running time and the accuracy of each method in such setting

is reported in Fig. 3(a) and Fig. 4(a). Observe that ARROW

suffers from a significant performance degradation on Flickr,

Google and WeChat w.r.t. accuracy. This is consistent with our

design of the challenging task: queries on these graphs that

have larger diameter come with a larger k than other graphs.

Since ARROW chooses k as the walk length of random walks

in answering KR queries, it may deviate from its target when

performing such longer random walks. On the contrary, the

performance of BREAD/BREAD++ remains relatively stable

on all datasets.

C. Answering R queries

In our last sets of experiments, we test the effectiveness of

BREAD/BREAD++ on the classic reachability problem. We

remove the hop constraint of queries used in KR queries and

use them as queries for this task. The results are reported in

Fig. 3(b) and Fig. 4(b). Similar to the experiments reported in

Sec. V-B, BREAD/BREAD++ consistently provides not only

fast but also accurate responses than other methods on both

the basic task and the challenging task. Moreover, BREAD++

can further improve the efficiency of BREAD while retaining

comparable accuracy.

VI. RELATED WORK

A. Reachability on Graphs

Index-based reachability query processing methods can be

divided into two categories. The first category applies different

data structures (e.g., chains [14], trees [15] and intervals [16])

to compress the complete transitive closure. The second cate-

gory tries to encode the reachability using a subset of vertices

which serve as intermediaries. 2-hop labeling [17] is the most

representative technique in this category.

Some works [18], [19], [20], [8] study index-free meth-

ods that do not construct indexes for facilitating R queries.

Random walk is the prevalent method used for answering

index-free R queries. Index-free methods are more flexible to

scenarios where maintaining indexes is not feasible or indexes

require frequent updates (i.e., dynamic graphs).

There are a few works on answering KR queries [1], [2],

[3], [4]. But they are index-based, which is inappropriate for

the dynamic graphs such as the social graph of an IMC.

B. Personalized PageRank

Various methods have been proposed in the literature for ef-

ficient PPR computation. Fogaras et al. [21] propose the Monte

Carlo (MC) approach which conducts a sufficiently large

number of random walks to estimate PPR values. Another line

of works use the local push algorithm, including Forward Push

(for single-source PPR query) [22] and Backward Push (for

single-target PPR query) [10], e.g., Zhang et al. [23] extend

Forward Push and Backward Push to dynamic graphs, and
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Wang et al. [24] design Randomized Backward Search for

single-target PPR queries.

There are several works hybridizing MC approach and

local push methods to achieve better PPR query efficiency.

Lofgren et al. [25], [6] propose FAST-PPR and BiPPR for

pairwise PPR computation (i.e., single-source single-target

PPR) which adopts Backward Push to reduce the number of

random walks that MC requires to estimate π(u, v). Wang et

al. [26] design HubPPR, an indexing scheme based on BiPPR,

for the single-source top-k PPR query. Wang et al. [27], [28]

combine Forward Push and MC, and propose FORA, an index-

based method, for single-source top-k PPR computation. The

Forward Push phase in FORA is further improved by Lin et

al. [29]. Wei et al. [30] combine Forward Push, Backward

Push and MC to answer single-source top-k PPR queries.

Besides, numerous works parallelize PPR computation in

share-memory [12], distributed [31], [32], [33], [34] or GPU-

based [35] settings to achieve higher computation efficiency.

VII. CONCLUSION

In this paper, we study efficiently answering KR queries in

large dynamic graphs for fraud feature extraction in WeChat.

We propose BREAD/BREAD++ that adopt the idea of esti-

mating PPR value. They have a lower time complexity than

existing methods in large-scale dynamic graphs. Experiments

on several large graphs including WeChat graph have demon-

strated the superiority of our methods. In the future, we plan

to exploit more advanced techniques proposed for estimating

PPR values in parallel on the CPU or the GPU [12], [11], and

further improve our methods.
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