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Abstract. Compound-Protein Interaction (CPI) prediction is a crucial task in
drug discovery. Modern CPI prediction models are mostly based on the attention
mechanism. However, the attention scores are often inaccurate, i.e., functionally
irrelevant substructures can still receive moderate attention scores, and attention
scores can not distinguish compounds with similar structural topology but differ-
ent pharmacological properties.We propose SPACPI to address this problem from
three perspectives, i.e., (1) identifies important compound substructures by inte-
grating auxiliary information from molecular fingerprints, (2) determines impor-
tant compound atoms by learning each atom’s tolerance to different perturbation
amplitudes, (3) obtains more robust model parameters by focusing on the topK
important atoms. Experiments on two benchmark datasets and two label-reversal
datasets show that SPACPI outperforms the state-of-the-art CPI prediction model
with an average increase of 5.02% across different datasets and evaluation met-
rics.Visualization verifies that SPACPI can producemore accurate and explainable
predictions.

Keywords: Compound-Protein Interaction Prediction · Drug Discovery ·
Perturbation-Aware Attention

1 Introduction

Compound-Protein Interaction (CPI) prediction is a crucial task in drug discovery, which
seeks to accurately predict the existence of compound-protein interaction without costly
vital trials and time-consuming development cycles. Recent CPI prediction methods
mostly adopt the attention mechanisms to capture the inherent relationships between
compounds and proteins [1–4].

However, previous attention-based approaches risk the overfitting problem because
the compound and protein data have a complex structure and the CPI labels are sparse
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[5, 6]. Therefore, it is challenging for the models to learn accurate attention scores.
Specifically, functionally irrelevant substructures can still receive moderate attention
scores, which is undesirable because the interactions only involve pharmacophores in
drug compounds and binding sites in protein sequences [7]. Attention scores for unseen
compounds in the testing set are indistinguishable from structurally similar compounds
in the training set, which can be biologically unreasonable because compounds with
similar structural topology may have dissimilar pharmacological properties.

For instance, as shown in Fig. 1(a)–(b), Cyproheptadine and Cyclobenzaprine are
structurally similar compounds with different pharmacological properties. Cyprohepta-
dine interacts with the Histamine H1 receptor, while Cyclobenzaprine does not. Thus,
in predicting interactions with the Hismanine H1 receptor, the attention distribution
of atoms in Cyproheptadine and Cyclobenzaprine should focus on the structurally dif-
ferent parts. Nonetheless, if we place the Cyproheptadine-Hismanine H1 receptor pair
into the training set, and the Cyclobenzaprine-Hismanine H1 receptor pair into the test-
ing set, after implementing the existing models, i.e., HyperAttentionDTI [8], Trans-
formerCPI [1], and CPGL [4], we can see from Fig. 1(c) that the attention distribu-
tions of atoms in these models are similar for Cyproheptadine and Cyclobenzaprine,
the 2-dimethylaminoethyl group (atom 0–6) which has the strongest effect is assigned
low weights, and functionally irrelevant atoms (atom 17–19) in Cyclobenzaprine are
assigned abnormally high weights. As a result, these models mistakenly predict the
Cyclobenzaprine-Hismanine H1 receptor pair as positive while the actual label is nega-
tive. On the contrary, our model’s learned attention distributions can highlight their dif-
ferent parts, and functionally irrelevant substructures are downweighed. The prediction
accuracy has been boosted (more details in Sect. 3).

Fig. 1. Atom-level attention scores for Cyproheptadine and Cyclobenzaprine in different models.

Naturally, to generalize CPI prediction to different datasets, we want the attention
values to be high on functional atoms related to compound-protein interactions and low
for unrelated atoms. This is challenging because of the insufficient labels. We propose
SPACPI (Sparse Perturbation-Aware Attention for Compound–Protein Interaction pre-
diction) that tackles the problem of inaccurate attention scores from three perspectives.
Firstly, SPACPI identifies important compound substructures by integrating auxiliary
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information frommolecular fingerprints. To our knowledge, SPACPI is the first CPI pre-
diction model to incorporate chemical information from MACCS and Pharmacophore
ErG fingerprints into structural topology information. Secondly, SPACPI proposes a
novel perturbation-aware attention mechanism to determine important compound atoms
in a self-supervision manner. SPACPI assumes that critical atoms are more sensitive to
noise. By applying a random perturbation to each compound atom and minimizing the
difference between predictions before and after perturbation, SPACPI learns each atom’s
tolerance to different perturbation amplitudes. Finally, SPACPI encourages the learned
compound attention to focus on a few important atoms to reduce compound features and
obtain more robust model parameters.

Experiments on two benchmark datasets and two label-reversal datasets show that
SPACPI achieves superior performance. SPACPI outperforms the state-of-the-art CPI
prediction model with an average increase of 5.02% across different datasets and eval-
uation metrics. We also provide visualization to verify that SPACPI can produce more
accurate and explainable predictions.

2 Methodology

Inspired by previous work [8–10], we also treat CPI prediction as a binary classification
task, which takes the features of compound c and features of protein p as input, feeds
the input through three layers, i.e., encoding layer, interaction layer, and prediction
layer, and predicts the CPI label (Sect. 2.1). As shown in Fig. 2, SPACPI also adds a
perturbation-aware attention mechanism (Sect. 2.2) in the overall framework.

Fig. 2. Framework of SPACPI.

2.1 Prediction Backbone

The encoding layer is responsible for converting the input to the embedding matrix.

Protein Features. Since CPI depends on the protein substructures, substructure seg-
mentation is usually applied to the protein sequences. In order to decompose proteins
into substructures driven by domain knowledge, we follow the previous method [11].
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Specifically, we initialize a vocabulary to convert protein sequences to a set of pre-
defined sub-sequences and then translate all sub-sequences to real-valued embeddings
pv ∈ {R}m×d via a learnable dictionary lookup matrix, where m is the number of sub-
structure sequences for protein. Then, each real-valued embedding pvj is passed into
the Convolutional Networks with Conv1D layers to obtain the embedding for protein
substructures:

pj = Conv
(
pvj

)
, 1 ≤ j ≤ m (1)

where pvj ∈ {R}d is the embedding for the j-th substructure, Conv is the CNN function.

Compound Features. Graph Neural Networks are generally chosen to extract features
from molecular graphs. We adopt Graph Attention Networks (GAT) because they are
superior in learning the strength of the connection (i.e., chemical bonds) between dif-
ferent nodes (i.e., atoms) [12]. Specifically, we transform the SMILES formula of a
compound into an undirected graph by the RDKit toolkit [13], where the nodes repre-
sent atoms, and the edges represent the chemical bonds between nodes. Then, we utilize
GAT to update each node embedding by aggregating the information of itself and its
neighbors iteratively. The output is cgi ∈ {R}d , 1 ≤ i ≤ n, where n is the number of
atoms in the compound, and d is the embedding dimension.

Unlike previous studies, SPACPI incorporates molecular fingerprints in CPI because
they can holistically express molecular characteristics and supplement structural infor-
mation [14]. SPACPI incorporates two complementary fingerprints, namely theMACCS
fingerprint [15] and the Pharmacophore ErG fingerprint [16]. The MACCS (Molecu-
lar ACCess System) fingerprint contains most atomic properties, bond properties, and
atomic neighborhoods at diverse topological separations. The Pharmacophore ErG fin-
gerprint applies pharmacophore-type node descriptions to encode molecular properties.
We use RDKit to obtain the two molecular fingerprints, concatenate them, and then use
a learnable dictionary lookup matrix to translate all atomic properties to real-valued
embeddings, which can be represented as cf ∈ {R}l×d , where l is the number of atomic
properties extracted from the fingerprint.

Next, we incorporate chemical properties frommolecular fingerprints into structural
information by utilizing cross-attention:

ci = cgi + softmax (
QKT

√
d

)V (2)

where Q = cgi WQ;K = cf WK ;V = cf Wv, WQ,Wk and WV are learnable projection
matrices.

Interaction Layer. The encoding step outputs a set of atom embeddings c =
{c1, c2, ..., cn} of compound c and sub-structure embeddings p = {p1, p2, ..., pm} of
protein p. To capture the interaction activeness of each compound and protein, we apply
the dot-product attention,

γ c = Softmax

⎛
⎝ 1

m

m∑
j=1

γi,j

⎞
⎠, γ p = Softmax

(
1

n

n∑
i=1

γi,j

)

γi,j = ReLu(ciWc)ReLu
(
pjWp

)T
,

(3)
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where Wc and Wp ∈ {R}d×d are the learnable projection matrices. γi,j measures the
interaction between each compound atom ci and protein substructure pj, γ c

i is the atom
ci’s activeness aggregated over all protein substructures, and γ

p
j is the substructure pj’s

activeness aggregated over all compound atoms.
To represent the information of a compound, we should weigh each atom ci by its

interaction activeness. Similarly, we should combine the embeddings of each substruc-
ture of a protein by its interaction activeness. This gives us the final representations of
a compound and a protein:

c =
n∑

i=1

γ c
i ci, p =

m∑
j=1

γ
p
j pj, (4)

ThePredictionLayer Is a three-layer fully connected network to predict the interaction
state:

ŷc,p = FFN
([
c; p]), (5)

where [c; p] is the concatenation operation, the activation function is ReLu. The
parameters are optimized via the cross-entropy loss:

LCE =
∑
c,p

yc,plogŷc,p +
(
1 − yc,p

)
log

(
1 − ŷc,p

)
, (6)

2.2 Perturbation-Aware Attention

Although γ c measures the interaction activeness of a compound, as mentioned in Fig. 1,
it can be deficient in identifying the decisive substructures within compound sequences.

Intuitively, less critical atoms have a higher tolerance for noise, i.e., if we add a large
perturbation on less critical atoms, the prediction is unaffected. Thus, our goal is to learn
a perturbation vector εci and add εci to each compound atom ci and keep the predictions
before and after perturbation unchanged.

In practice, we first initialize εci ,∀i following a Gaussian distribution and optimize
εci ,∀i within a finite number of iterations (three iterations) to minimize LPA. . There are
two advantages: (1) we use a small number of update steps to speed up the training pro-
cess without expensive adversarial training, and (2) the random initialization introduces
randomness to avoid over-fitting.

LPA =
∑
c,p

(
ŷc,p − ỹc,p

)2
, (7)

where y
∧

c,p and
∼
yc,p represent the prediction between compound c and protein p before

and after perturbation. y
∧

c,p is obtained by Eq. 5, ỹc,p = FFN ([c̃; p]), and c̃i = ci + εci
is the atom representation after perturbation.



Compound-Protein Interaction Prediction with Sparse 77

After learning the perturbation ε, we can calculate the perturbation-aware atom-level
importance score by:

αc
i = 1 −

∥∥εc2i2

∥∥
maxj

∥∥∥εc2j2

∥∥∥
, (8)

It is well-regarded that feature selection can improve the generalization capability of
machine learningmodels [17–19]. Intuitively, to reduce the features, we should select the
most influential features. Thus, we sparsify the features by selecting the top K = n× β

influential atoms with the largest perturbation-aware attention, where β is the sparse
ratio. To downweigh the scores of irrelevant atoms, we set the atoms not in top−K(αc)

to 0:

α̃c
i =

{
αc
i , if αc

i ∈ top − K(αc)

0, otherwise
, (9)

We do not directly use α̃c as the final attention. Instead, as we want the model to
autonomously learn appropriate attention scores, we pull γ c closer to α̃c, which gives
the following objective:

LAE =
∑
c

KL(γ c||Softmax(α̃c)), (10)

The overall optimization function is defined as follows:

L = LAE + LCE, (11)

The optimization process is to alternatively update γ c, γ p and α̃c. In each epoch,
we first fix the values of γ c, γ p to obtain α̃c. To do so, we initialize εci , ∀i,∀c following
a Gaussian distribution and optimize εci within a finite number of iterations T = 3 by
Eq. 7. Then, we fix α̃c and update γ c by Eq. 11.

3 Experiments

3.1 Experimental Setup

Datasets. We follow [1] to evaluate SPACPI on two public datasets: i.e., the Human
dataset and the Caenorhabditis elegans dataset [20] and two label reversal datasets,
namely GPCR and Kinase. In the label reversal datasets, a ligand in the training set
appears in only one type of interaction (i.e., positive or negative pairs), while the same
ligand appears in samples of opposite categories in the test set. Statistics of the datasets
are summarized in Table 1.

Competitors. We compare SPACPI with five traditional approaches, such as K-Nearest
Neighbours (KNN), Random Forest (RF), L2-logistic (L2), Support Vector Machine
(SVM) and Graph Convolution Networks (GCN) [21]. We also compare SPACPI with
five recent CPI prediction models, including CPI-GNN [20], GraphDTA [22], Deep-
ConvDTI [5], TransformerCPI [1], HyperAttentionDTI [8] and CPGL [4]. For KNN,
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Table 1. Summary of the datasets.

Label
Reversal

Partition #Proteins #Compounds #Positives #Negatives

Human No Random-split 852 1,052 3,369 3,359

C.elegans No Random-split 2,504 1,434 4,000 3,786

GPCR Yes Well-designed 356 5,359 7,989 7,354

Kinase Yes Well-designed 229 1,644 23,190 88,047

RF, L2, SVM, CPI-GNN, GCN and GraphDTA, we copy the results [1]. For other com-
petitors, we use their original implementations. On Human and C.elegans datasets, we
randomly split the training/testing set, and conduct five runswith different random seeds.
On GPCR and Kinase datasets, we use the default training/testing split.

3.2 Implementation Details

We set the number of GAT layers to 3, the number of CNN layers to 3, the CNN kernel
size to 3, the vector dimension to 32, and the sparse ratio to 0.5. We use Adam [23]
optimizer. The learning rate and weight decay are set to 1e−4 for all the datasets. The
dropout rates are set to 0.2, 0.2, 0.2, and 0.5 for Humans, C.elegans, GPCR, and Kinase,
respectively. The number of training epochs is set to 200. Our codes are available at1.

3.3 Comparative Performance

From Table 2 and Table 3, we have the following observations: (1) SPACPI outperforms
all competitors, achieving an improvement of 1.13%, 0.92%, 0.23% and 4.92% over
the best competitor in terms of AUC in Human, C.elegans, GPCR and Kinase datasets,
respectively. These results demonstrate the effectiveness and generalization ability of
SPACPI on different datasets. (2) On GPCR dataset, SPACPI achieves slightly better
performance than the second best model, which is TransformerCPI, in terms of AUC,
while SPACPI’s AUPR result is significantly higher than TransformerCPI. For classifi-
cation tasks, AUC considers the overall performance of positive and negative examples,
while AUPR focuses more on identifying positive examples. Given the importance of
recognizing positive CPI, SPACPI is significantly more effective than TransformerCPI.
(3) SPACPI achieves a remarkable improvement of 30.00% in terms of AUPR and 4.92%
in terms of AUC on Kinase dataset, compared with the SOTA CPGL. Most ligands in
the Kinase dataset possess nearly ten times more non-interacting than interacting pairs.
The high imbalance between positive and negative samples increases the risk of models
memorizing ligand patterns and overfitting the training set. SPACPI’s remarkable per-
formance on the Kinase dataset demonstrates its ability to extract a limited amount of
influential features and generalize well to imbalanced datasets.

1 https://github.com/xmudm/spacpi

https://github.com/xmudm/spacpi
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Table 2. Comparative performance of different methods in Human, C.elegans datasets.

Human C.elegans

AUC Precision Recall AUC Precision Recall

KNN 0.860 0.927 0.798 0.858 0.801 0.827

RF 0.940 0.897 0.861 0.902 0.821 0.844

L2 0.911 0.913 0.867 0.892 0.890 0.877

SVM 0.910 0.966 0.969 0.894 0.785 0.818

CPI-GNN 0.970 0.918 0.923 0.978 0.938 0.929

GCN 0.956 ± 0.004 0.862 ± 0.006 0.928 ± 0.010 0.975 ± 0.004 0.921 ± 0.008 0.927 ± 0.006

GraphDTA 0.961 ± 0.004 0.879 ± 0.040 0.910 ± 0.020 0.970 ± 0.006 0.930 ± 0.010 0.921 ± 0.010

TransformerCPI 0.971 ± 0.002 0.913 ± 0.003 0.923 ± 0.004 0.978 ± 0.004 0.933 ± 0.005 0.935 ± 0.005

HyperAttentionDTI 0.970 ± 0.004 0.907 ± 0.010 0.922 ± 0.010 0.974 ± 0.005 0.937 ± 0.004 0.933 ± 0.010

CPGL 0.973 ± 0.003 0.911 ± 0.010 0.923 ± 0.006 0.982 ± 0.003 0.939 ± 0.005 0.940 ± 0.005

SPACPI(w/o
fingerprint)

0.970 ± 0.004 0.911 ± 0.004 0.939 ± 0.005 0.979 ± 0.001 0.923 ± 0.003 0.941 ± 0.005

SPACPI(w/o SPA
attention)

0.979 ± 0.004 0.919 ± 0.004 0.961 ± 0.004 0.987 ± 0.002 0.946 ± 0.003 0.949 ± 0.005

SPACPI 0.984 ± 0.002 0.921 ± 0.004 0.964 ± 0.003 0.991 ± 0.002 0.957 ± 0.003 0.965 ± 0.006

Table 3. Comparative performance of different methods in GPCR, Kinase datasets.

GPCR Kinase

AUC AUPR AUC AUPR

CPI-GNN 0.490 0.524 0.434 0.173

GCN 0.820 0.809 0.447 0.186

GraphDTA 0.817 0.817 0.421 0.184

TransformerCPI 0.855 0.836 0.571 0.284

HyperAttentionDTI 0.825 0.827 0.488 0.311

CPGL 0.839 0.824 0.690 0.320

SPACPI(w/o fingerprint) 0.834 0.849 0.590 0.319

SPACPI(w/o SPA attention) 0.784 0.779 0.696 0.349

SPACPI 0.857 0.862 0.724 0.416

3.4 Impacts of Modules and Parameters

In Table 2 and Table 3, we also compare SPACPI with two variants: (1) w/o fingerprints
and (2) w/o the sparse Perturbation-Aware mechanism (w/o SPA attention). Based on
the outcomes, we have the following observations: (1) SPACPI can benefit from the
integration of auxiliary molecular fingerprints; (2) Removing perturbation-aware atten-
tion mechanism decreases SPACPI’s performance, which suggests that the sparsified,
perturbation-aware attention weights are effective in predicting CPI.
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Furthermore, we compare the performances under different values of the number of
iterations T of perturbation attention and sparse radio β on the Human dataset. Firstly,
we optimize εci within each epoch with a finite number of iterations T . We set the number
of iterations T from 1 to 6 and compare the experimental results as shown in Fig. 3(a).
We find that the optimal number of iterations T is 3. To achieve the highest AUC value,
T is insufficient for the model to be guided by the perturbation, while a large T will
significantly increase the time consumed to train one epoch. Nonetheless, even with
T = 1, SPACPI beats recent competitors such as GraphDTA and TransformerCPI. A
smaller number of iterationsWhenT is too small, themodel is unable to learn appropriate
perturbation attention to guide the original attention; when T is too large, the time
consumed to train one epoch increases significantly. Secondly, sparse radio β determines
the number of top K = n × β atoms. We change β in the range [0.1, 1.0] and report the
performances in Fig. 3(b). The best performance is obtained when β = 0.5. Retaining too
many features (i.e., β > 0.8) or removing too many features (i.e., β < 0.2) will degrade
the performance.

Fig. 3. AUC w.r.t. T and β on Human dataset.

3.5 Case Study

To exemplify the effectiveness of SPACPI, we visualize the molecular graphs of Cypro-
heptadine, Cyclobenzaprine and Citalopram in Fig. 4. The visualization of attention
weights of the compounds, Cyproheptadine, Cyclobenzaprine andCitalopram. The high-
lighted atoms are the areas that have a more significant impact on the CPI interaction
prediction. We can see that, before perturbation-aware attention mechanism, the high-
lighted atoms (i.e., with large attention weights) are concentrated in areas with similar
structures between the three molecules. The labels beneath each molecular graph rep-
resent their actual label/predicted label for whether they interact with Hismanine H1
receptor, for example, pos/pos indicates that the actual label is positive, and the pre-
dicted label is also positive. For molecules Cyclobenzaprine and Citalopram, which do
not interact with the Hismanine H1 receptor, the model focuses on the similar key atoms
as in Cyproheptadine, resulting in them being mistankenly assigned the same predicted
label as Cyproheptadine. After the attention enhancement, the highlighted atoms tend
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to be distributed in areas with differences. This showcases the model’s ability to cap-
ture genuine interaction features and identify key atoms involved in compound-protein
interactions.

Fig. 4. The visualization of attention weights of the compounds, Cyproheptadine, Cyclobenza-
prine and Citalopram. The highlighted atoms are the areas that have a more significant impact on
the CPI interaction prediction.

4 Related Work

Most related work is based on the attention mechanism. TransformerCPI [1] is the
first work that adapts the Transformer architecture with a self-attention mechanism to
address sequence-based CPI classification tasks. DrugBAN [2] applies a bilinear atten-
tion network to explicitly learn CPI. CPGL [4] adopts a two-sided attention mechanism
to give different weights to different parts of the compound and protein. MolTrans [11]
adopts dot-product attention to measure the pair’s interaction. HyperAttentionDTI [8]
designs a hyperAttention module to generate an attention matrix. PerceiverCPI [3] uses
the cross-attention mechanism to model the semantic relevance between the protein and
compound.

5 Conclusion

This paper proposes SPACPI to predict compound-protein interaction, which includes
three novel strategies: (1) molecular fingerprints are integrated to supplement molecular
graphs, (2) atom importance is determined by learning each atom’s tolerance to differ-
ent perturbation amplitudes, (3) redundant features are filtered by sparsifying attention
scores. Extensive experimental results on two benchmark datasets and two label-reversal
datasets verify the effectiveness of SPACPI.
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