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Abstract
The complex changes of target and its surroundings introduce several tracking challenges,
such as occlusion, deformation and so on. Many challenges coexist in a video which makes
tracking still under successfully solved. The present trackers deal with coexisting challenges in
a common model for all components of target. However, different components often undergo
different challenges at the same time, while some with deformation and others with occlusion.
The common model cannot adapt to these challenges simultaneously. An effective method is
to separately deal with the challenges. This paper proposes a new robust tracker via separately
tracking and identifying the multi-scale patches of target to cope with the coexisting chal-
lenges. It is achieved by three respects. Firstly, we define a new basic tracker by introducing
the gaussian mixture model into Kernelized Correlation Filters (KCF). For the KCF is very
sensitive to the similar surroundings, we construct a regular term and a loss function via the
gaussian mixture model to optimize the classifier formed by KCF. Secondly, we define a new
appearance representation model of target by multi-scale patches. To deal with the different
variations of patches, we separately construct and update their appearance representations.
Thirdly, with the tracked result of each patch computed by our basic tracker, we use the
structure information and the Hough Vote to decide the target. Then, our method improves the
accuracy by rejecting the failed tracked patches. Many experiments have been achieved on the
Tracking Benchmark, and the quantitative and qualitative evaluations show that the proposed
tracker performs better than most of the present trackers.

Keywords Multi-scalepatches .Visual tracking .Kernelizedcorrelation filters .Gaussianmixture
model . Hough vote

1 Introduction

Visual Tracking plays an important role in computer vision for its ability of identifying the
moving target in videos [35, 37]. From the tracked results, people can predict the action and
even the activity of moving object [25, 26], which helps intelligent devices to understand the
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high-level semantic information. Therefore, visual tracking has been widely used in automatic
drive, video surveillance, drone navigation, virtual reality and so on. Recently, many visual
tracking methods are proposed such as the methods based on deep learning [8, 10, 30, 33, 38,
45] and the methods based on correlation filters [2, 6, 7, 15, 17, 20, 27, 31]. However, the
unpredictable and continuous changes of target object and its surroundings bring many
tracking challenges, including illumination variation, target deformation, occlusion, motion
blurs and so on. Furthermore, some challenges usually come out at the same time, which lead
to the present trackers fail in producing robust results. The main reason is these trackers
propose a common model to deal with the different challenges from different components of
target. The common model may produce good results on one challenge but bad results on
another challenge. Therefore, the tracked results often are drifted from the accurate position by
the wrongly tracked components of target. The effective method is to separately deal with the
challenges from different components of target. Recently, many researchers prefer to utilize
local features of target computed by the correlation filters to detect an object [16, 39], which
can help trackers to adapt to the appearance change of target by verifying the representations of
its local regions. However, as demonstrated in the previous work [15], the kernelized corre-
lation filters is very sensitive to the similar surroundings and usually produces more than one
peaks in tracking which lead to tracking drift and failure. Furthermore, for without the structure
constraint between regions and the target, the trackers [13, 44] based on local features often
introduces and expands the tracking errors from target region which lead to the finally tracking
failure or drifting. In addition, for the high speed and good performance in solving photometric
or geometric variations, the correlation filters especially its improved version the kernelized
correlation filters [15] are often used to achieve the tracking of local patches.

Therefore, this paper proposes a robust visual tracker by introducing gaussian mixture
model into kernelized correlation filters to deal with the challenges from similar surroundings,
and using the structure information with the separating tracking of the multi-scale patches of
target. The contributions of this paper are as follows:

1) A new basic tracker is defined to track the multi-scale patches of target. This tracker is
defined by introducing gaussian mixture model into the kernelized correlation filters. A
new regular term and loss function is constructed to optimize the classifier from
kernelized correlation filters to form our tracker. This tracker effectively deal with the
simultaneously emerging peaks which leads to tracking failure and are introduced by the
surroundings of target.

2) A new appearance representation of target is proposed based on multi-scale patches. To
satisfy the complex changes brought by the different variations of local target regions, we
separately construct and update the appearance representations of multi-scale patches to
get the appearance representation of target. This method successfully and flexibly repre-
sents the challenging appearance change of target by differently updating its representa-
tions of patches.

3) The structural information between patches and target is defined and updated to comput-
ing the final tracking results. After using our new basic tracker to track all the patches of
target, we employ the structural information and Hough Vote to compute target region.
The structural information describes the relative layouts between patches and target, and
rejects the failed tracked patches to take part in detecting target to improve the tracking
accuracy. It is updated in tracking to satisfy the relative motions and the different
variations between patches and target.
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In summary, the proposed tracker exploits multi-scale patches to satisfy the complex and
drastic appearance changes of target, and combines the gaussian mixture model with
kernelized correlation filters to cope with the challenge of similar surroundings of target. As
shown in Fig. 1, our tracker produces favorable results when deals with some unpredictable
and coexisting challenges. The quantitative and qualitative evaluations on the TB-50 (50
videos) in Tracking Benchmark [42], demonstrate that the proposed tracker performs better
than most of the present trackers.

2 Related work

The key problem of robust visual tracking is to construct a good appearance representation
model of target which can accurately describe the unpredictably changing appearance of target
[37]. According to how to construct the appearance representation model of target, there are
generally two kinds of tracking methods. One method is to construct the model based on the
global features extracted from the whole target region [1, 5, 14, 29, 32, 34, 40, 41]. The other
method is to build the model based on the set of local features computed from the local patches
of target region [4, 11, 16, 18, 21, 22, 39, 44].

Tracking methods based on the global features For this kind of tracking methods, it uses
the differences between the candidates of target region and the appearance representation
model to predict target [1, 34]. For example, Wang et al. [40] proposed to use the circulant
feature maps about target computed by correlation filters to represent the tracking object. Wang

Fig. 1 The proposed tracker performs more favorable in dealing with “Shaking” (first row, with 5 challenges: IV,
SV, IPR, OPR, BC), “Diving”(second row, with 3 challenges: SV, DEF, IPR), “Shocker”(third row, with 8
challenges:IV, SV, OCC, MB, FM, IPR, OPR, BC) and David (fourth row, with 7 challenges: IV, SV, OCC, DEF,
MB, IPR, OPR)
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et al. [41] suggested to use locality sensitive histogram of target and an adaptive Hamiltonian
Monte Carlo sampling to deal with the appearance variation and abrupt motion of target. Ning
et al. [34] tracked target based on the bilinear support vector machine (SVM), which improved
the accuracy and reduced computing complexity by analyzing the structural SVM and
extracting the global features of target. Bibi et al. [1] advised to utilize the global features
from color channel and LRT channel in an improved kernelized correlation filters.
Mohanapriya et al. [32] utilized the textural pattern analysis to define a novel background
normalization method to suppress the shadow influences.

Recently, many trackers based on deep learning algorithms are proposed in [8, 10, 45].
They usually design a deep network to learn and control the action of target. These methods
often initialize the global representation of target depending on some pre-training models and
often update it in the learning and retraining process. For example, Fan et al. [8] utilized the
recurrent neural network (RNN) to model object structure, and incorporated it into CNN to
improve its robustness to similar distractors. Hamed et al. [10] proposed to exploit the real
background patches together with the target patch to learn the tracker defined by the correla-
tion filters. Yun et al. [45] proposed to use different sequences to achieve pre-training and tune
the deep network to achieve the appearance update of target and background.

In a word, for the kind of tracking methods via global features, it usually performs well in
tracking the target with rigid deformation which can preserve the global feature and structure
of target undergoing very little and simple change through a video. However, it suffers from
the local changes from the componets of target, and usually leads to tracking drift or failure.
Recently, many people try to improve this kind of method by introducing the local features of
target.

Tracking methods based on the local features For this kind of tracking method, it first
divides the target object into many local patches, then uses the appearance model of local
patches to represent and track target [21, 39]. This kind of method performs well when local
deformation and occlusion occurs, because they can locally change the representation of target
while greatly preserve the unchanged parts. Following this way, these methods can gradually
and accurately adapt to the change of target, which finally lead to less tracking failures and
drifts. Recently, many tracking methods based on local features are proposed [4, 16, 18, 21, 22,
39, 44]. For example, He et al. [13] suggested to represent patches by local histograms, Hare
et al. [11] proposed to present target by local feature points, Yang et al. [44] advised to present
target by superpixels, Wang et al. [39] suggested use patches in sparse coding scheme, Hu et al.
[16] defined midlevel cues on superpixels level to describe target based on target-background
saliency confidence map.

However, these present trackers usually represent target by its discrete local appearance
models which lose the globally constraints and description of the whole target. Therefore, the
multi-model technique is introduced to help people exploit both the global and local informa-
tion. For example, Liu et al. [28] utilized the multi-source learning framework with fused lasso
penalty to predict future career based on the people’s social network. In visual tracking, people
construct the multi-model technique by proposing the constraints between local appearance
representation of target to improve the accuracy [23, 36, 46]. Li et al. [22] achieved the
structural constraint between local patches of target by adjusting the relative positions between
local patches and the target object. Chen et al. [4] constructed the global constraint by defining
multi-scale layer representations of target, and different layer referred to the patch with
different size. Jia et al. [18] utilized the structural sparse representation of patches to achieve
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the global constraint. Xu et al. [43] proposed to combine the Low-Dimensional and High-
Dimensional approaches in one framework to deal with the challenges from various motions in
tracking human action. In addition, Liu et al. [24] suggested to use the Gaussian Process
Dynamical Model (GPDM) and the Annealed Particle Filtering (APF) to overcome the
challenges from action tracking of human.

From the above description and analysis, we can conclude that it is an effective approach to
design a tracker by using local features of target to construct its appearance model and
introducing the globally constraints which reflect the layout structure between target and its
local regions. Following this way, we propose a new robust tracker by identifying the multi-
scale patches of target, which represents target according to the appearance and structure
information of its multi-scale patches and tracks patches by defining a new basic tracker based
on the gaussian mixture model and kernelized correlation filters. There are two obvious
advantages of our method. First, it uses patches with different sizes and layout structure
between them to represent target, which makes the tracker utilize both the local and global
information of target to solve coexisting challenges in tracking. Second, it effectively reduces
tracking failure by dealing with the peaks’ disturbs introduced by kernelized correlation filters
and the similar surroundings of target. Many experiments on different kinds of videos and
tracking challenges have demonstrated that our method performs much better in dealing with
tracking challenges especially when these challenges emerge simultaneously.

3 The proposed tracker

The proposed tracker is constructed by three components according to the process order,
including constructing the appearance representation of target, defining the algorithm of this
tracker to get the position and the size of target based on the appearance representation, and
updating the appearance representation. The framework of the proposed tracker is shown as
Fig. 2. First, the proposed tracker constructs the target appearance representation by randomly
departing the target object into patches with multi-scale sizes and building the appearance
representation for each patch by the kernelized correlation filters. Second, a new basic tracker
is defined by introducing the gaussian mixture model into kernelized correlation filters to track
each patch. Then, the proposed tracker computes the target position and size by the Hough
vote under the global constraints of the tracked results of patches. Finally, it separately updates
the appearance representation of all patches by updating the preserved patches and initializing
the resampled patches to adapt to the changes of target and its surrounding background.

The overall flowchart of our proposed tracker is described by Fig.3. There are six main
processes in our tracking method. First, we extract many multi-scale patches around the target
region (the orange rectangle in Fig.3 (a)). Some patches cover the target region such as the
pink, red, purple, light blue and cyan rectangles in Fig.3 (a). Some patches cover the

Fig. 2 The framework of the proposed tracker
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surrounding background such as the green rectangles in Fig.3 (a). Second, we use our basic
tracker to construct the appearance representation of each patch by two matrix such as the
(y1,α1) for the first patch in Fig.3 (b). Third, we use our basic tracker to track each patch on the
coming frame as shown in Fig.3 (c). Fourth, for each patch, our tracker computes a response
map whose highest peak is the center location of a tracked patch such as point in red circle in
Fig. 3 (e). Fifth, we use the center of each tracked patch (as the white points in Fig.3) to vote
the center of target object (as the yellow point in Fig. 3(f)). Finally, our tracker updates the
appearance representation of each patch by updating its two matrixes such as the matrixes
ŷ1;α1ð Þ for the first patch in Fig.3 (g). Then, the updated appearance representation is used
to track the next coming frame. Our tracker repeats the processes from Fig.3(c) to Fig.3(g) to
compute all the tracking results of a video.

In details, our contributions are made by the above three components of the proposed
tracker. First, by our appearance model, the appearance representation of target supports the
different variations of each patch, which performs enough flexible and rich cues to adjust the
complex and unpredictable appearance changes of target and its surroundings. Second, the
new basic tracker suppresses the noises and disturbs from the surroundings of tracking patch
and boosts the response peak on the right target position, which finally leads to favorable
tracked result. Third, the voting scheme greatly utilizes the structure information between
patches and the whole target, which not only preserves the global structure of target but also
accurately satisfies the quickly and drastically changes of its local patches by preserving the
successful tracked patches and rejecting the failed tracked patches. The details about the
proposed tracker are described as follows.

3.1 The appearance representation model of target via its multi-scale patches

For many changes of target appearances start and happen on its local regions, we represent the
appearance of target by defining the local appearance representations of its multi-scale patches
using the kernelized correlation filters. The proposed appearance representation model of
target is formed by three steps. First, we randomly extract patches with different sizes around
the given target region on the first frame. Figure 4 (a) shows an example of extracting multi-
scale patches. The yellow rectangle describes the target region, while the orange rectangle is
the extended target region and the red rectangles with dotted lines are the target patches. All the
centers of patches must locate in the orange rectangle.

Second, we compute the relative distance d between the center of each patch and the center
of target. In Fig. 4 (b), the Cp is the center of the green patch while the Ct is the center of target,
and the d between them is their distance. At the same time, each patch is denoted by a mark b
to describe it’s a positive or negative one for the target detection. If the center of patch locates
in the target region namely the yellow rectangle in Fig. 4 (a), its mark b is assigned to 1 to

Fig. 3 The overall flowchart of the proposed tracker. It repeats from (c) to (g) to achieve thewhole tracking of a video
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show it is a positive patch, such as the red patch and the pink patch in Fig.4 (b). Otherwise, if
the center of patch is in the extended region of target such as the region between the orange
rectangle and the yellow rectangle, its mark b is assigned to −1 to show it is a negative patch,
such as the green patch in Fig. 4 (b).

Third, we construct the initial appearance representation of each patch by the kernelized
correlation filters proposed in [15]. This method uses the cyclic matrix to extract samples with
same size around the center of a patch, and it utilizes these samples to train the classifier to
represent the patch. The process of training is achieved by the ridge regression which
successfully use the diagonalizing feature of cyclic matrix in the Fourier transformation to
reduce the computing complexity. Using this method, each patch is described by a feature
matrix y and a classifier matrix α. As proposed in [15], we use the Histogram of Oriented
Gradient (HOG) in a high dimension space to construct the feature matrix. For each video, the
feature matrix y on the first frame is the HOG of the given target region. However, in the
following frames, it is obtained by the method defined in section 3.2 because the target region
is unknown and need to be computed.

In addition, when a patch undergoes some great challenges such as complete occlusion, its
tracking will be failed but simultaneously the tracking of other patches maybe is successful.
Therefore, the times of being successful tracked for each patch is different. Here, we define
another parameter named the successful times v to record the times that a patch is continuously
and successfully tracked. In this paper, we define a tracking is successful when the intersection
of two adjacent results is more than half of their union region. Following the above processes,
the appearance representation of a patch includes five parameters, namely the relative distance
d, the mark b, the feature matrix y, the classifier matrix α, and the successful times v. For each
patch the parameters (d, b, y,α, v) of its appearance representation are initialized based on the
given target region on the first frame and will be updated in the subsequently tracking.

3.2 The basic tracker based on Gaussian mixture model and Kernelized correlation
filters

A new basic tracker is defined to track each patch of the target by introducing the gaussian
mixture model into kernelized correlation filters (KCF). As demonstrated in the present work
[15], the KCF produces rapid tracked results and perform favorable in dealing with simple and
rigid deformation of target. However, it is not robust because the surroundings about a patch
usually have similar appearances, and this makes the KCF to produce many peak values

Extracting multi-scale patches Denote the center, mark, distance of patches

a b

Fig. 4 To extract and denote the multi-scale patches of target object
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around the right target position of the patch. Unfortunately, the tracked result of a patch is
decided by the peak value of the filters. Therefore, the KCF usually mistakes the position with
a peak value but not the right position as the tracked result of a patch. A good way to reduce
such disturbs is to use gaussian mixture model to suppress the unimportant peaks.

Therefore, we construct the new basic tracker via introducing the gaussian mixture model
into the kernelized correlation filters to form an optimized classifier. A loss function and
regular term are defined to achieve this optimization based on the mix gaussian representation
and the peak values computed by the kernelized correlation filters. By minimizing this loss
function, an optimized classifier is formed to help us to obtain the right tracked result. The
details are as follows.

(1) The Kernelized Correlation Filters

The trackers based on the kernelized correlation filters achieve tracking by the following three
steps. First, it forms a classifier according to the present tracked result. Then for candidate
sampling around the last target region, it uses the trained classifier to evaluate the response
value of each pixel to be the target position. Finally, the position with biggest response is taken
as the target position, and the target size is assigned to the same values with the last ones. The
classifier is updated according the new tracked result to adapt to the appearance change of
target. In this paper, the candidate sample is extracted according to the result on the last frame
of the tracking patch.

For the i′th patch on frame t, if we use αt, i to denote the classifier computed by kernelized
correlation filters, use yt, ito denote the feature matrix of the appearance model, use xt, i to
denote the feature matrix of candidate sample, use k to denote the process of kernelized
correlation filters, the response matrix R(xt, i) of describing the possibility of each pixel to be
the target position is computed by:

R xt;i
� � ¼ k xTt;i; yt;i

� �
⊙αt;i ð1Þ

where xTt;i is the transformed matrix of xt, i, ⊙ is the dot product of matrixes.

According to kernelized correlation filters, if a pixel owns the biggest response value, this
pixel is the tracked center of the corresponding patch. However, the response matrix usually
has some redundant peak values, and sometimes the peak with the biggest value is not the right
tracked result. Therefore, if directly using the response values, the kernelized correlation filters
usually cannot obtain the ideal target result and lead to tracking drift or failure. In this paper,
we introduce the gaussian mixture model to optimize the classifier produced by kernelized
correlation filters to construct a more robust tracker by reducing the disturbs introduced by the
redundant peak values of the response matrix.

(2) The Proposed Basic Tracker based on Gaussian mixture model

As described above, the redundant peak values of response matrix lead the tracked result
drifting away from the ideal target position. So, to reduce such peak values and further
outstand the response value of the ideal target position, we construct an optimized classifier
by combining the gaussian mixture model and kernelized correlation filters.

Figure 5 is an example of using the optimized classifier produced by our proposed basic
tracker to get more accurate tracking result. In the left column of Fig. 5, the red rectangle is the
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target region of basketball man, and the blue rectangle is the tracking patch of this target while
the red point is its center. Just using kernelized correlation filters, it employs the traditional
gaussian model to compute the response matrix such as the top one in the middle column of
Fig.5. However, this matrix has many peaks, and the tracked result of the blue rectangle
located on the head of the basketball man as shown in the top one of the right column of Fig. 5.
This result drifts the tracking patch from the body of basketball man to his head, and
introduces obvious tracking errors. However, using the optimized classifier of our basic tracker
improved by gaussian mixture model, the response matrix becomes more reasonable and
accurate as shown in the bottom one of the middle column in Fig. 5. By this optimized
response matrix, the tracked result of the blue rectangle located on the ideal target position as
shown on the bottom of the right column in Fig. 5.

We design the proposed basic tracker to get the optimized classifier by the following four
steps:

1) Getting some particles based on the peak values of response matrix. Using the Eq. 1, we
compute the response matrix of the candidate sample of a tracking patch. Usually this
matrix has many peaks as shown in the top image of the middle column in Fig. 5. We
order these peaks from big to small and take the first p positions as the centers of particles.
In our experiments, p is assigned to be 9. The size of the particles is the same with the
tracking patch.

2) Using particles to achieve the representation of gaussian mixture model. After getting the
particles for a patch, we use the classifier of kernelized correlation filters to compute the
response matrix of each particle. Therefore, we compute p response matrixes for one
patch. For each matrix of the patch, we extract its biggest response value. Then, using all
the biggest responses of a patch as input, we construct the mixed gaussian representation
for the patch. Figure 6 is an example of mixed gaussian representation. In the left image in
Fig. 6, the red rectangle and the yellow rectangle are the target region and its extended
region separately. We use 8 biggest response values from 9 particles to interpolate the

Fig. 5 The Tracking results of classifiers with Gaussian Mixture Model
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gaussian mixture model formed by the biggest value of the 9 response matrixes. Then, we
get the gaussian mixture model as the right image of Fig. 6.

3) Constructing a new loss function for our basic tracker. After obtaining the gaussian
mixture model of a tracking patch, we introduce it as a regular term into kernelized
correlation filters to define a new loss function. The loss function for the i′th patch on
frame t is defined as:

min
wt;i;yt;i

x̂̂t;iwt;i−yt;i
�� ��2

2
þ λ1 wt;i

�� ��2
2
þ λ2 yt;i−yt;i0

�� ��2
2

ð2Þ

Where x̂t;i is the corresponding matrix in the Fourier field of the feature matrix xt, i about the
present candidate region of the tracking patch, wt, i is defined as the following Eq. 4 by α̂t;i, and
α̂t;i is the corresponding matrix in the Fourier field of the classifier matrix αt, i. The yt, i follows
the noise model yt;i∼N yt;i0 ; diag

−1 1= 2λ2ð Þð Þ� �
, and yt, k is the k′th model of the gaussian

mixture model:

yt;k∼Nk ~xt;k ; uk ;σ2
k

� �
ð3Þ

Where ~xt;k is the samples of patch xt, i, uk and σ2
k are the expectation and variance of the

k′th gaussian model. All the gaussian models for patches form the gaussian mixture
model of Eq. 2. We compute the matrix yt;i0by the gaussian interpolation and the

correlations between the tracked results of patch xt, i from the last two frames. The first
feature map of yt, i namely its value on the first frame is the HOG extracted from the user
given target region. However, in tracking process, the target region of the tracking patch
is unknown. Therefore, yt, i is computed by Eq.2 and Eq.3. We use the multiple template
solution method proposed in [1] to solve the Eq.2.

4) Calculating the optimized classifier of our basic tracker. The optimized classifier of our
basic tracker is defined based on the loss function. The computation of Eq. 2 belongs to
the problem of ridge regression. As all the related parameters from the Fourier field, we
need transfer the solution of Eq. 2 into the dual domain.

Fig. 6 To construct the Gaussian mixture model
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The wt, i in the dual domain is computed by:

wt;i ¼ xTt;i⊙α̂̂t;i ð4Þ

Therefore, by the Eq. 2 and Eq. 4, we compute the optimized classifier in the Fourier field α̂t;i

by:

α̂t;i ¼
λ2

λ1
x̂t;i1⊙ŷt;i1

� �
þ λ2

� �
⊙ŷt;i0

λ2

λ1
x̂t;i1⊙ŷt;i1⊙x̂t;i1⊙ŷt;i1

� �
þ 1þ 2λ2

λ1
x̂t;i1⊙ŷt;i1

� �
þ 1þ λ2ð Þ

ð5Þ

where λ1 and λ2 are the parameters of the normal terms, and set to be (10−3, 10−4) in our
experiments. x̂t;i1 and ŷt;i1 are separately the FFT of the first row of xt, i and yt, i, where all the
operations are element wise to reduce time cost. In this paper, we utilize the same method
proposed in [1] to compute x̂t;i1 , ŷt;i1 based on the xt, i, yt, i. Here, xt, i is the present candidate and
the feature matrix yt, i is the appearance model of the tracking patch.

(3) The Tracked Result of a Patch

Using Eq. 2 and Eq. 4, we use Eq. 6 to train the new optimized classifier α̂t;i. Then according
to the theoretical basis of Eq. 1, we use the optimized classifier to construct the new response
map R′(xt, i) for patch xt, i by:

R
0
xt;i
� � ¼ k xTt;i; yt;i

� �
⊙α̂̂t;i ð6Þ

where α̂t;i is the optimized classifier, yt, i is the feature matrix of the appearance model for the

i′th patch on frame t, and xTt;i is the transformed matrix of feature matrix of the candidate sample

xt, i. The position with biggest value in R′(xt, i) is the center of the tracked result post, i of the i′th
patch on frame t.

3.3 Computing the final tracked result of the whole target

Our proposed tracker computes the target region based on the tracked results of all its patches.
Three factors decide the target region of a tracking object. One is the probability value of each
patch which describes the probability that the patch’s result belonging to the target patch.
Another one is how to deal with the failed tracked patches which can introduce tracking drift or
failure if they are used in a wrong way. The third one is how to use the Hough vote to compute
the final tracked result of the whole target when the above two factors have been solved.

(1) The Probability Value of a Patch

Having the tracked result of each patch, we calculate the probability value of its result
belonging to target patch by:

p xt;ijyt;i
� � ¼ pt xt;ijyt;i

� �
p0 xt;ijyt;i
� � ð7Þ

where xt, i, yt, i have the same meanings as above, pt, p0 are the patch confidence and patch
target probability.

Multimedia Tools and Applications (2019) 78:14195–14230 14205



The patch confidence pt is based on the response value of its tracked result. As proposed in
[3], we still use the Peak-to-Sidelobe Ratio (PSR) to compute the patch confidence. For patch
xt, i, its patch confidence is defined by:

pt xt;ijyt;i
� � ¼ max R

0
xt;i
� �� �

−μΦ R
0
xt;i
� �� �

σΦ R
0
xt;i
� �� �

 !2

ð8Þ

where R′(xt, i) is the response matrix computed by Eq. 6, Φ is the surrounding region of the
biggest value in R′(xt, i), μΦ, σΦ are the mean value and the standard deviation of the response
values in R′(xt, i) out of region Φ.

The patch target probability p0 describes the stability and continuity of a patch being
successfully tracked. If a patch can be continuously and successfully tracked as a positive
patch, it plays more important role in deciding the final target, and should have a big
probability value. In this paper, we use l(xt, i) to describe the situation that a patch being
continuously tracked as a positive patch. Then, we define patch target probability by:

po xt;ijyt;i
� � ¼ el xt;ið Þ ð9Þ

where l(xt, i) is defined based on the numbers of patch xt, i being continually and successfully
tracked, and its positive or negative mark. We calculate l(xt, i) by:

l xt;i
� � ¼ bt;i

1

n−
∑
j∈Ω−

v−v jð Þ�� ��
2
−

1

nþ
∑

i∈Ωþ
v−v ið Þ�� ��

2

 !
ð10Þ

where bt, i ∈ {+1, −1} is the positive or negative mark of patch xt, i.Ω+ is the set of patches with
positive mark, namely their marks are equal to 1, and n+ is its number of patches. Ω− is the set
of patches with negative mark, namely their marks are equal to −1, and n− is its number of
patches. The v is the times of patch xt, i being continuously and successfully tracked.

(2) Dealing with the failed tracked patches

For the tracking challenges emerge randomly and unpredictably, the tracking failure or drift of
patches usually cannot be avoided. If the failed tracked patches are used in compute the final
tracked result of the whole target, they will bring great tracking errors. Therefore, we propose
to resample the failed tracked patches to avoid such errors.

In this paper, we search the failed tracked patches according to the following three steps.
First, we select the patch whose tracked center is not in the extended region of the last target
result. Because such patches cannot represent the local region of target or the its surrounding
background. We delete this kind of patches. Second, we compute the ratio between the positive
tracked patches and the negative tracked patches. If the ratio is too big, we delete some positive
patches with smaller response values. If the ratio is too small, we delete some negative patches
with smaller response values. The smaller response value means the less probability that it
being successfully tracked. Third, we delete the patches whose response values are too low,
because the tracked results of these patches usually have great errors.

After deleting the failed tracked patches, we resample some new patches to make a
supplementary. We first select the tracked center of the patch owning the biggest probability
value based on Eq. 6. Then, we resample new patches around this center. The number of
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resampled patches is the same with the deleted ones. Finally, we use the Eq. 1 to build the
appearance representations of the new patches and use Eq. 7 to compute these probability
values.

(3) Computing the final tracked result of the whole target

With the probability values of the reserved and resampled patches, we compute the final
tracked result of the whole target by Hough vote [9]. Figure 7 demonstrates an example
of the vote from patch centers to target center. In Fig. 7, the yellow point is the target
center, while the white, green and blue points are its patch centers. The yellow rectangle
describes the target region from last frame, and the orange rectangle is the extended
region of this region. The green, red, pink and blue rectangles are the patches with
different sizes. As shown in Fig. 7, the two centers in the blue dotted rectangles locate
outside the extended region, they are failed tracked and rejected to do vote. But we
resample two new patches as the blue solid rectangles to supplement them. In addition,
as the centers of red and pink patches locate in target region, they are the positive and
successful patches. Similarly, as the centers of the green patches locate outside the target
region but inside the extended region, they are the negative and successful patches. All
the successful patches and resampled patches take part in the vote of the final tracked
result. Figure 7 (b) uses the black lines with narrows to demonstrate the support vectors
of Hough vote from patch centers to target center.

According to the Hough vote process, the target center is decided by three factors, namely
the patch centers, the relative distance between patch center and target center, the probability
value of each patch. In details, the target center on frame t is computed by:

Tpos tð Þ ¼ ∑n
i¼1 post;i þ dt;i
� �� p xt;ijyt;i

� � ð11Þ

where Tpos(t) is the target center on frame t, p(xt, i| yt, i) is computed by Eq. 7 and denotes the
probability value of patch xt, i,post, i is the patch center of xt, i decided by biggest response value
from Eq. 6. dt, i is the relative distance between the patch center of the i′th patch and target
center, but it is computed based on the results on the last frame.

the centers of target and patches the vote from patches to target

a b

Fig. 7 The Hough vote from patch centers to target center. The yellow point is the target center, while the white,
green and blue points are the patch center. The yellow rectangle is target region while the orange one is its
extended region
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3.4 Appearance representation model update

To adapt to the unpredictable and complex changes of target object and its surroundings, we
separately update the appearance representations of all patches according to their tracked
results. This update is classified into two kinds. One is to update the failed tracked patches, and
the other is to update the successful tracked patches.

(1) Updating the failed tracked patches

For the failed tracked patches, we first delete them and then resample new patches with equal
number by the approach proposed in section 3.3 to supplement them. Finally, we use
kernelized correlation filters to build the appearance representations of the new resampled
patches. When we go on tracking target in subsequence images, these appearance representa-
tions of new patches are employed as the local representations of target, while the failed
tracked patches and their appearance representations are discarded.

(2) Updating the successful tracked patches

For the successful tracked patches, we define the algorithm to compute its updated appearance
representations via two steps. First, we use the kernelized correlation filters and the new
tracked result of each patch to compute its new feature matrix and its new classifier matrix.
These two new matrixes describe the new appearance information coming from the recent
result of the patch. Second, we combine the new appearance representation with the old
appearance representation to get the updated appearance representation of each patch. Equa-
tion 12 describes the process about this kind of update.

ytþ1;i ¼ ωyt;i þ 1−ωð Þy0
tþ1;i

αtþ1;i ¼ ωαt;i þ 1−ωð Þα0
tþ1;i

(
ð12Þ

where yt + 1, i and αt + 1, i are the updated feature matrix and updated classifier matrix to represent
the appearance of the i′th patch on frame t + 1, yt, i and αt, i are the feature matrix and classifier

matrix of the i′th patch on frame t, y
0
t;i and α

0
t;i are the new feature matrix and the new classifier

matrix computed based on the new tracked result on frame t of the i′th patch. The ω is a
constant coefficient and we set ω = 0.3 in our experiments.

As described in Section 3.1, the appearance representation of each patch has six parameters.
Therefore, after updating the feature matrix and classifier matrix, we need to update the other
four parameters of the appearance representation for each patch, including the relative distance,
the negative or positive mark and the successful times. These parameters are computed based
on the new tracked results of each patch and tracking target.

4 Experiments and evaluations

The proposed tracker was implemented using Matlab R2014a (64bit) on a PC with an Intel(R)
Core(TM) @2.5GHz 2.5GHz processor, RAM 16GB DDR3 memory on Windows 8.1
version. We use the TB-50 database proposed in the Tracking Benchmark [42] to verify the
proposed tracker. 8 trackers are used to do comparisons, including the recent famous trackers
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DLSSVM (CVPR’16) [34], KCF(PAMI’ 15) [15], RPT (CVPR’ 15) [22], LSHT(CVPR ‘13)
[13], LSST(CVPR’ 13) [11] and the top three ranked trackers from the Tracking Benchmark
namely the STRUCK (PAMI’16) [12], ALSA (CVPR’12) [19], SCM (CVPR’12) [47].
Table 1, Table 2, Fig.7 and Fig.8 describe the quantitative evaluation, while Fig.9 shows the
qualitative evaluation. More comparisons about all the videos and challenges are attached in
the supplement files. The evaluations and comparisons demonstrate that the proposed tracker
produces more accurate result and performs much more favorable in dealing with coexisting
challenges such as occlusion, deformation and so on.

4.1 Database and trackers

The TB-50 data used in our experiments include 50 videos and including many different
tracking challenges. Each video has more than one challenges, and the situation that some
challenges emerge at the same time is very common in these videos. All the tracking challenges
can be divided into 11 classifications according to the method proposed in [42], including object
deformation (DER), occlusion (OCC), illumination variation (IV), fast moving (FM), back-
ground clutter (BC), in-plane rotation (IPR), low resolution (LR), out-plane rotation (OPR),
out-of-view(OV), moving blurs (MB), scale variation (SV). In the tracking benchmark [42],
there is a TB-100 data which includes 100 videos to evaluate trackers. However, we just use the
50 videos in the TB-100, namely the TB-50 to do evaluation. The main reason is that as
described in [42] these 50 videos have been repeatedly verified its effectiveness in evaluating
trackers and most of the present trackers supplied the tracked results of these 50 videos for
comparison such as the LSST, ALSA and so on. For each video in TB-50, the tracking object is
specified on the first frame by the people who firstly provide the video. In our evaluation, we
use the David (300:770) and Freeman4(1:283) to do comparison. For the other 48 videos, we
employ all the frames of the videos to achieve the tracking and comparing.

As popular in the recent work [35, 37, 42], we choose the precision plot and the success
plot to do the quantitative evaluations of our tracker. The success plot describes the percentage
of successfully tracked frames which is decided by the Intersection Over Union (IOU). Bigger
success plot means better results. The IOU is computed by (RT∩ RG)/(RT ∪ RG) where ∩ and ∪
are the intersection and union of tracked box (RT) and ground truth (RG), respectively. In our
experiments, when the IOU of a frame is bigger than 0.5, we denote it is successfully tracked.
The precision plot is defined by the percentage of successfully tracked frames based on the
Center Location Error (CLE) with a given threshold TC (TC = 20 in our experiments). Bigger

Table 1 The success plot of the 9 trackers on the TB-50 with 11 challenges

Trackers ALL FM BC MB DEF IV IPR LR OCC OPR OV SV

OURS 0.435 0.411 0.462 0.401 0.398 0.442 0.430 0.340 0.384 0.420 0.359 0.404
KCF 0.400 0.361 0.388 0.380 0.415 0.398 0.397 0.313 0.375 0.380 0.294 0.350
RPT 0.437 0.428 0.462 0.423 0.406 0.463 0.413 0.350 0.388 0.420 0.368 0.406
DLSSVM 0.424 0.400 0.428 0.466 0.387 0.405 0.438 0.384 0.420 0.407 0.465 0.379
LSHT 0.338 0.362 0.374 0.393 0.310 0.312 0.341 0.327 0.339 0.347 0.381 0.310
LSST 0.280 0.247 0.244 0.239 0.219 0.242 0.259 0.254 0.287 0.255 0.274 0.280
STRUCK 0.384 0.409 0.362 0.406 0.323 0.330 0.381 0.319 0.336 0.335 0.340 0.362
SCM 0.371 – 0.385 – 0.322 0.416 0.340 0.461 0.374 0.365 0.316 0.383
ASLA 0.334 – 0.347 – 0.291 0.365 0.315 0.440 0.341 0.328 – 0.344

Multimedia Tools and Applications (2019) 78:14195–14230 14209



precision plot means better tracking results. For more details about CLE, IOU, please review
the work in [42].

4.2 Quantitative evaluation

The average values of the precision plot and success plot about TB-50 are the important factors
to evaluate the effectiveness of a tracker. Table 1 describes the average success plot about the
50 videos in TB-50 of our tracker and the present and famous 8 trackers. The red, green and
blue numbers separately describe the best, second and third tracker. As shown in Table 1, our
tracker always performs as the top three in all tracking challenges. Especially, when dealing
with the background clutter (BC) and out-plane rotation (OPR), it performs as the best tracker
among the 9 trackers. It demonstrates that our method can accurately track the whole target by
combing the gaussian mixture model and kernelized correlation filters.

Table 2 describes the precision plot about the 50 videos in TB-50 of our tracker and the
present and famous 8 trackers. As Table 1, the red, green and blue numbers separately describe
the best, second and third tracker. According to the values, we conclude that for all the 11
tracking challenges, our tracker performs as the first top three one. The average precision of all
total 50 videos is 0.592, which is biggest one among all 9 trackers. It means that our tracker
can robustly produces more favorable results on all the test videos than the 8 trackers. In
addition, our tracker is ranked as the first one in dealing with the background clutter (BC), in-
plane rotation (IPR) and scale variation (SV). It demonstrates that our proposed appearance

Table 2 The precision plot of the 9 trackers on the TB-50 with 11 challenges

Trackers ALL FM BC MB DEF IV IPR LR OCC OPR OV SV

OURS 0.592 0.537 0.581 0.557 0.534 0.604 0.589 0.537 0.539 0.564 0.460 0.568
KCF 0.556 0.483 0.487 0.501 0.558 0.545 0.534 0.510 0.527 0.527 0.374 0.511
RPT 0.590 0.555 0.571 0.572 0.525 0.631 0.558 0.549 0.529 0.553 0.441 0.567
DLSSVM 0.574 0.516 0.541 0.597 0.538 0.546 0.585 0.589 0.579 0.569 0.612 0.533
LSHT 0.444 0.452 0.458 0.480 0.395 0.389 0.445 0.508 0.466 0.474 0.517 0.419
LSST 0.379 0.304 0.333 0.290 0.315 0.332 0.346 0.400 0.405 0.361 0.374 0.374
STRUCK 0.384 0.409 0.363 0.406 0.323 0.330 0.381 0.319 0.336 0.335 0.340 0.362
SCM 0.371 – 0.385 – 0.322 0.416 0.340 0.462 0.374 – 0.316 0.383
ASLA 0.334 – 0.347 – 0.291 0.381 0.315 0.441 0.341 0.328 – 0.344

Fig. 8 The overall precision plot and success plot on TB-50 from the Tracking Benchmark [42]
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representation model based on multi-scale patches is very effective and efficient in adapting to
the complex or drastic target changes.

Figure 8 shows the variation of the overall precision plot (the left one) and success plot (the
right one) on TB-50 with different threshold. It is clearly that the bigger threshold leads to
bigger precision plot or success plot. We select 6 trackers (including RPT, DLSSVM, KCF,
LSHT, LSST) to do comparison, and they perform better in the 8 trackers and proposed in
recent years. Compared with the 6 trackers, the precision plot of our results has the biggest
precision plot value which demonstrates that according to this evaluation our method is the
best tracker. Meanwhile, the success plot of our method is ranked as the second one. As shown
in Fig. 8 (b), our success plot is 0.435 while the one of the best tracker (RPT) is 0.437, which
means that our method only has a little lower value (0.2%) than the best one. The values and
ranks in Fig. 8 successfully demonstrate that our method produces more accurate and robust
results based on the precision and success on the total 50 videos of TB-50 provided in the
Tracking Benchmark [42].

Figure 9 shows the precision plot about four kinds of tracking challenges, including the
illumination variation (IV), background clutter (BC), in-plane rotation (IPR) and scale varia-
tion (SV). The precision plot about the other seven kinds are demonstrated in the attached file.
We still use the 6 trackers (including RPT, DLSSVM, KCF, LSHT, LSST) to do comparison
for their better performances. As shown in Fig. 9, our method has the biggest precision value in

Fig. 9 The comparison of precision plot on the four kinds of tracking challenges, including the in-plane rotation,
background clutter, scale variation and illumination variation
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dealing with IPR (in-plane rotation), BC (background clutter) and SV (scale variation), which
demonstrates that it is the best tracker in dealing with these challenges. For the challenge of IV
(illumination variation), our method performs as the second tracker which means that it can
gradually adapt to the change of target size. These evaluations demonstrate that our tracker can
successfully transform the tracking challenges from the whole target onto its local patches.
Therefore, our tracker greatly improves the precision plot and success plot by using the
accurate tracked results of patches and the structure information between them.

4.3 Qualitative evaluation

Figure 10 demonstrates the tracked results of 6 trackers by the frame-to-frame comparison.
The first and second rows of Fig. 10 show that our tracker produces more favorable results
than the other 5 trackers in dealing with the scale variation and target shaking. The main reason
is we uses kernelized correlation filters to track the multi-scale patches of target, which
successfully adapt to the target scaling and the moving blurs. The third row of Fig. 10 shows
that when the target is disturbed by the similar object, our tracker has not introduced tracking
drift or failure. This good character is benefitted from the gaussian mixture model, because
when it is introduced in kernelized correlation filters it can effectively reduce the disturbs from
the adjacent surroundings and finally improve the tracking accuracy.

The fourth row in Fig.10 shows that our tracker successfully tracking the target in
background cluster. That is because we update the appearance representation of target by
separately updating the appearance representation of its patches. This process greatly preserves
the appearances of patches with no or little changes, and quickly update the appearances of
patches with drastic changes. Following this, our tracker not only successful adapts to the
appearance change of target but also reduce the disturbs from background. This update scheme
also makes our method can flexible and effectively adapt to the illumination variation as
shown in the fifth row of Fig. 10. The sixth and seventh rows of Fig. 10 show that our tracker
successfully deal with the great change or rotation of target. The reason is we detect target by
tracking its patches, which leads the deformation of target shared by all the patches. The eighth
row of Fig. 10 shows that our tracker produces ideal results in occlusion and disocclusion. That
is because we track the patches with heavy occlusion by rejecting them and resampling new
ones to supplement them. In a word, all these experiments in Fig. 10 demonstrate that our
tracker is more reasonable and effective than many present trackers by introducing the
gaussian mixture model into kernelized correlation filters, and by defining the scheme to track
target based on identifying its multi-scale patches.

4.4 Implement efficiency

The implementing time of trackers is an important factor to evaluate them. Usually, people use
the frames processed per second (fps) to describe the implement efficiency. However, for many
trackers, its accuracy and efficiency are often restricted with each other. For example, to
improve accuracy, their time cost will increase, while to reduce accuracy the time cost will
decrease. In fact, people usually use the IOU > 0.5 and the CLE < 20 to denote the successful
tracked result. They measure the implementing time while obtaining the maximus tracked
results. Table 3 describes the fps of some most related trackers. The KCF produces online
tracked results because it uses cyclic matrix to predict target. Our method and the RPT use
KCF as the basic operator to track many local patches to vote the final tracked result.
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Fig. 10 The comparisons of different trackers with good performances on 8 videos
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Therefore, both the RPT and our method produce 4–6 frames per seconds. Our method is a
little faster than RPT. The reason is that we reduce the number of patches while using the
gaussian mixture model to improve the tracking accuracy of each patch. In addition, our
tracker is robust and convergent in long-term tracking, because it overcomes the challenges
which can lead to no convergence by separately and accurately deal with the challenges from
patches.

5 Conclusion

Visual tracking is a hot topic in computer vision, it is widely used in automatic driving, virtual
reality, augmented reality, video surveillance, robotics and so on. However, the unpredictable
and complex tracking challenges often emerge at the same time which usually lead to tracking
failure or drift. In this paper, we propose a new robust tracker by identifying and tracking the
multi-scale patches of target. This method defines the tracking scheme by combing the
gaussian mixture model and the kernelized correlation filters, and it constructs a loss function
with a normal term to track target patches. With the new loss function, the proposed tracker
accurately tracks each patch by getting a response matrix with one outstanding peak. In
addition, it uses the Hough vote to detect target based on its patches, which successfully
preserve and inherit the structure constraints between them to gradually adapt to the photo-
metric and geometric variations of target. Many quantitative and qualitative evaluations on
TB-50 of the Tracking Benchmark have demonstrated that the proposed tracker has bigger
success rate and less center locations errors. Therefore, compared with some famous present
trackers, our tracker produces much more robust and accurate results in dealing with the
coexisting tracking challenges.

However when tracking a frame, the proposed tracker implements our basic tracker for
many times, because each patch requires a process. For example, if we extract 30 patches to
represent the target, the proposed tracker will use 30 basic tracker to track these patches.
Although the basic tracker is based on the high-speed KCF, so many processes leads to great
time cost. Therefore, the proposed tracker cannot achieve the on-line tracking. In the future, we
plan to introduce many constraints to reduce the number of patches while preserving the
tracking accuracy.
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Table 3 The amount of frames processed per second (fps) with different trackers

Tracker LSHT ASLA DLSSVM STRUCK SCM KCF RPT OURS

FPS 25.6 1.5 25 10 0.42 321 4.5 6
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Appendix 1: The experiments on 50 videos of TB50 from Tracking
Benchmark by frame-to-frame comparison

8 trackers are used to do comparisons, including the recent famous trackers DLSSVM
(CVPR’16) [29], KCF(PAMI’ 15) [27], RPT (CVPR’ 15) [32], LSHT(CVPR ‘13) [39],
LSST(CVPR’ 13) [5] and the top three ranked trackers from Tracking Benchmark [13] namely
the STRUCK (PAMI’16) [9], ALSA (CVPR’12) [3], SCM (CVPR’12) [12]. We select 6
trackers (RPT, DLSSVM, KCF, LSHT, LSST) to demonstrate the results, and they perform
better in the compared 8 trackers and proposed in recent years. The references of these trackers
are described at the end of this file.

Video 1: BasketBall

Video 2: Biker

Video 3: Bird1

Video 4: BlurBody

Video 5: BlurCar2
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Video 6: BlurFace

Video 7: BlurOwl

Video 8: Bolt

Video 9: Box

Video 10: CarScale

Video 11: Deer

Video 12: Dudek
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Video 13: FootBall

Video 14: Ironman

Video 15: Matrix

Video 16: MotorRolling

Video 17: Shaking

Video 18: Singer2

Video 19: Skating1

Video 20: Tiger2
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Video 21: DragonBaby

Video 22: Liquor

Video 23:  Soccer

Video 24: Car1

Video 25:  CarDark

Video 26:  Couple

Video 27:  David1
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Video 28:  Freeman4

Video 29:  Girl

Video 30:  Human3

Video 31: Human6

Video 32: Jump
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Video 33: Jumping

Video 34: Panda

Video 35: RedTeam

Video 36: Surfer

Video 37: Sylvester

Video 38: Trellis
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Video 39: Woman

Video 40: Car4

Video 41:  ClifBar

Video 42:  Human9

Video 43:  Walking2

Video 44:  Skiing
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Video 45:  Human4

Video 46:  Skating2-1

Video 47:  Skating2-2

Video 48:  Walking

Video 49:  Crowds

Video 50:  Diving
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The references used in the above comparisons:
[27] Henriques J F, Caseiro R, Martins p, Batista J. High-speed tracking with kernelized

correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015,
37(3): 583–596.

[39] He S, Yang Q X, Lau R, Wang J, Yang M H. Visual tracking via locality sensitive
histograms, Proc of the 26th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Portland, 2013: 2427–2434.

[13] Wu Y, Lim J, Yang M H. Online object tracking: A benchmark, Proc of the 26th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Portland, 2013: 2411–
2418.

[29] Ning J, Yang J, Jiang S, Zhang L, Yang M H. Object tracking via dual linear structured
SVM and explicit feature map, Proc of the 29th IEEE Conference on Computer Vision and
Pattern Recognition. Las Vegas, 2016: 4266–4274.

[5] Hare S, Saffari A, Torr P H S. Efficient online structured output learning for key point-
based object tracking, Proc of the 25th IEEE Conference on Computer Vision and Pattern
Recognition. Providence, 2012: 1894–1901.

[32] Li Y, Zhu J, Hoi S C H. Reliable patch trackers: robust visual tracking by exploiting
reliable patches, Proc of the 29th IEEE Conference on Computer Vision and Pattern Recog-
nition. Boston, 2015:353–361.

[9] Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels, IEEE
Transactions on Pattern Recognition and Machine Intelligence, 2016, 38(10): 2096–2109.

[3] Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance
model, Proc of the 25th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Providence, 2012:1822–1829.

[12] Zhong W, Lu H, Yang M H. Robust object tracking via sparsity-based collaborative
model, Proc of the 25th IEEE Conference on Computer Vision and Pattern Recognition.
Providence (CVPR), 2012: 1838–1845.

Appendix 2: The Evaluations on 50 videos of TB50 from Tracking
Benchmark

8 trackers are used to do comparisons, including the recent famous trackers DLSSVM
(CVPR’16) [29], KCF(PAMI’ 15) [27], RPT (CVPR’ 15) [32], LSHT(CVPR ‘13) [39],
LSST(CVPR’ 13) [5] and the top three ranked trackers from Tracking Benchmark [13] namely
the STRUCK (PAMI’16) [9], ALSA (CVPR’12) [3], SCM (CVPR’12) [12]. We select 6
trackers (RPT, DLSSVM, KCF, LSHT, LSST) to demonstrate the results, and they perform
better in the compared 8 trackers and proposed in recent years. The references of these trackers
are described at the end of this file.
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The precision plots of 11 tracking challenges on TB50:

Fig. 11 The precision plots of 11 tracking challenges on TB50
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The success plots of 11 tracking challenges on TB50:

The references used in the above comparisons:
[27] Henriques J F, Caseiro R, Martins p, Batista J. High-speed tracking with kernelized

correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015,
37(3): 583–596.

[39] He S, Yang Q X, Lau R, Wang J, Yang M H. Visual tracking via locality sensitive
histograms, Proc of the 26th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Portland, 2013: 2427–2434.

[13] Wu Y, Lim J, Yang M H. Online object tracking: A benchmark, Proc of the 26th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Portland, 2013: 2411–
2418.

Fig. 12 The precision plots of 11 tracking challenges on TB50
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[29] Ning J, Yang J, Jiang S, Zhang L, Yang M H. Object tracking via dual linear structured
SVM and explicit feature map, Proc of the 29th IEEE Conference on Computer Vision and
Pattern Recognition. Las Vegas, 2016: 4266–4274.

[5] Hare S, Saffari A, Torr P H S. Efficient online structured output learning for key point-
based object tracking, Proc of the 25th IEEE Conference on Computer Vision and Pattern
Recognition. Providence, 2012: 1894–1901.

[32] Li Y, Zhu J, Hoi S C H. Reliable patch trackers: robust visual tracking by exploiting
reliable patches, Proc of the 29th IEEE Conference on Computer Vision and Pattern Recog-
nition. Boston, 2015:353–361.

[9] Hare S, Saffari A, Torr P H S. Struck: Structured output tracking with kernels, IEEE
Transactions on Pattern Recognition and Machine Intelligence, 2016, 38(10): 2096–2109.

[3] Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance
model, Proc of the 25th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Providence, 2012:1822–1829.

[12] Zhong W, Lu H, Yang M H. Robust object tracking via sparsity-based collaborative
model, Proc of the 25th IEEE Conference on Computer Vision and Pattern Recognition.
Providence (CVPR), 2012: 1838–1845.
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