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Recommender system has recently received a lot of attention in the information service
community. In many application scenarios, such as Internet of Things (IoTs) environments,
item multimodal auxiliary information (such as text and image) can be obtained to expand
their feature representation and to increase user satisfaction with recommendations.
Motivated by this fact, this paper introduces a novel two-stage embedding model
(TSEM), which adequately leverage item multimodal auxiliary information to substantially
improve recommendation performance. Specifically, it encompasses two sequential stages:
graph convolutional embedding (GCE) and multimodal joint fuzzy embedding (MJFE). In
the former, we first generate a bipartite graph for user-item interactions, and then utilize
it to construct user and item backbone features via a spatial-based graph convolutional
network (SGCN). While in the latter, by employing item multimodal auxiliary information,
we integrate multi-task deep learning, deterministic Softmax, and fuzzy Softmax into a
convolutional neural network (CNN)-based learning framework, which is optimized to
obtain user backbone features and item semantic-enhanced fuzzy (SEF) features accu-
rately. After TSEM converges, user backbone features and item SEF features can be utilized
to calculate user preferences on items via Euclidean distance. Extensive experiments over
two real-world datasets show that the proposed TSEM model significantly outperforms the
state-of-the-art baselines in terms of various evaluation metrics.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of mobile communication and Internet of Things (IoTs) technology, the amount of informa-
tion on the Internet has grown exponentially, which makes it difficult for users to find useful items such as products or ser-
vices by themselves [1]. Recommender system can effectively solve this issue, which predicts users’ potential interested
items based on their preference history and recommends top-k items to them. According to the current practice, recommen-
dation model is the core of recommender system, and it determines the performance of recommender system [2].
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Recently, both industry and academia have considered using deep learning to improve the effectiveness of traditional rec-
ommendation models [3,4]. Their core task is to accurately extract user and item features by applying various deep neural
networks such as multilayer perceptron (MLP), convolutional neural network (CNN), and recurrent neural network (RNN),
which is known as embedding process [5,6]. The adequacy and accuracy of feature embedding is a pivotal factor to influence
recommendation effectiveness. According to our investigation, user feature embedding is relatively simple since recom-
mender systems usually only involve user demographic information such as user-ID, age, gender, etc. A popular practice
is to first map each attribute of an input user into a one-hot vector and then feed the concatenation of all one-hot vectors
into a deep neural network for learning her feature embedding [7,8].

Compared with user feature embedding, item feature embedding is more difficult and requires more elaborate design.
This is mainly because in a recommender system, besides descriptive information (such as item-ID, genre, price, etc.), items
may also have auxiliary information (e.g., instruction documents). Specifically, in IoT environments, recommender systems
usually can collect abundant multimodal auxiliary information for items such as text, image, video, etc. For instance, in a
smart shopping system, laptops on sale may have the following multimodal auxiliary information: user reviews, instruction
documents, pictures from different perspectives, promotional videos, sound samples, and semantic contents in knowledge
base (or knowledge graph). Clearly, these multimodal auxiliary information of items can be leveraged to optimize their fea-
ture embedding and to improve user satisfaction with recommendations.

However, most existing works do not adequately consider the use of itemmultimodal auxiliary information. They usually
only utilize item descriptive information [9–12] or text auxiliary information [13–17] for learning item feature embedding.
And according to our investigation, there are currently a few works have made additional use of image [18–21,28], audio
[22–24,26,27], video [25–27], and semantic contents in knowledge base [28,29]. They generally exploit a straightforward
way to incorporate different modal auxiliary information into the recommendation process. Concretely, for each item, the
features from its different modal information are separately extracted through deep neural networks, and all the extracted
features are concatenated as its final multimodal feature. On this basis, user features and item multimodal features are com-
bined for performing recommendations. Lately, the work [30] analyzes and points out that this straightforward way may
lead to a poor recommendation performance. Then, it makes an attempt to adequately use item multimodal auxiliary infor-
mation and introduces a multimodal representation learning-based model called MRLM, to improve recommendation
effectiveness.

Although the MRLM model can effectively fuse item multimodal auxiliary information into recommendation, it still has
two deficiencies on feature embedding. First, in a recommender system, each user and each item are not independent, and
they are interrelated. Therefore, for a user or an item, its feature embedding will be affected by other related users and items.
Yet, MRLM ignores this fact and mainly leverages user and item content information to perform feature embedding. Second,
MRLM generates item multimodal features through jointly optimizing multiple deterministic modal classifiers. In particular,
each modality corresponds to a classifier and each item’s auxiliary feature on this modality is clustered into a deterministic
class. However, this may be unreasonable because usually for an item, its auxiliary feature on each modality does not only
correspond to a deterministic class and has the fuzzy-class characteristic. For example, for a fruit, its image auxiliary feature
may have a 65.5% probability corresponding to apple-class and a 34.5% probability corresponding to orange-class. These two
deficiencies are likely to influence accuracy of feature embedding and to ultimately affect recommendation effectiveness.

To address the above deficiencies, in this paper, a novel two-stage embedding model (TSEM) is proposed, which can fully
leverage user-item interaction data and items’ multimodal auxiliary information to improve recommendation effectiveness.
Specifically, the proposed TSEM model mainly includes two sequential stages: graph convolutional embedding (GCE) and
multimodal joint fuzzy embedding (MJFE). In the GCE stage, similar to the work [31], we first generate an undirected bipar-
tite graph for user-item interactions by using user historical data. Then, we take the bipartite graph and user demographic
information as input, and utilize a spatial-based graph convolutional network (SGCN) for constructing user and item back-
bone features. Inspired by previous works [31,32], the SGCN network is designed to contain two graph convolutional layers
and two fully-connected layers. Via the GCE stage, the proposed TSEM model is able to employ both content information of
users and items as well as graph topology structure adequately to construct effective user and item backbone features. In this
way, the first deficiency of MRLM can be effectively alleviated.

While in the MJFE stage, we first take item backbone features and descriptive information as input, and use a three-layer
CNN-based architecture for constructing item semantic-enhanced fuzzy (SEF) features. Then, under this architecture, we
design multiple related task-components that are jointly optimized to get user backbone features and item SEF features
accurately. These task-components involve one metric learner, one deterministic classifier, and m fuzzy classifiers. Here,
m is the number of item’s modalities. Specifically, the metric learner is employed to learn user preferences on items. The
deterministic classifier is employed to identify items’ different grades. Each fuzzy classifier corresponds to a modality,
and its output classes are generated through performing fuzzy clustering algorithms [33–35] for item auxiliary features
on this modality. Via the MJFE stage, the proposed TSEM model is able to fully consider: (i) the fuzzy-class characteristics
of auxiliary features on each modality of items; (ii) the mutuality and the complementarity between different modalities
of items; and (iii) the potential influences of different modalities of items on user preferences. In this way, the second defi-
ciency of MRLM can be effectively alleviated.

After the TSEMmodel converges, user backbone features and item SEF features can be employed for calculating user pref-
erences on items via Euclidean distance. Furthermore, the recommendation effectiveness of TSEM is investigated through
23
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extensive experiments on two real-world datasets. And the results demonstrate that TSEM significantly outperforms the
state-of-the-art baselines in terms of various evaluation metrics.

In summary, our main contributions are:

� We introduce a novel two-stage embedding model that can fully leverage user-item interaction data and items’ multi-
modal auxiliary information to enhance recommendation performance.
� User and item backbone features can be effectively constructed via a SGCN network in the GCE stage. Compared with
purely content-based deep neural networks, SGCN can adequately utilize both content information of users and items
as well as graph topology structure.
� User backbone features and item semantic-enhanced fuzzy features can be accurately obtained through jointly learning
multiple fuzzy modal classifiers in the MJFE stage. In particular, this joint learning method can exploit the mutuality and
the complementarity among items’ different modalities adequately and capture the potential influences of items’ differ-
ent modalities on user preferences accurately.
� We comprehensively investigate the effectiveness of the proposed model through the extensive experiments over two
real-world datasets. The experimental results demonstrates that the proposed model significantly outperforms existing
state-of-the-art models in terms of various evaluation metrics.

The rest of the paper is organized as follows: Section 2 introduces related works to this paper. Section 3 presents the
details of the TSEM model. Experimental results are presented in Section 4. Finally, Section 5 concludes this paper and out-
lines future work.
2. Related work

This section introduces related works on item feature embedding in the recommender system domain, which include two
categories.

The first category encompasses the works that perform item feature embedding by only utilizing item descriptive infor-
mation. He et al. [9] introduce a deep learning-based framework, namely neural collaborative filtering (NCF), which uses a
MLP to learn the user-item interaction function. Covington et al. [10] design a video recommendation model, which learns a
score for each video through extracting user and item features from user demographic information and item descriptive
information. Huang et al. [11] introduce a deep hybrid recommendation model called DMFL (Deep Metric Factorization
Learning), which combines deep learning with improved machine learning framework for learning user-item interactions
from multiple perspectives. Specifically, the DMFL model is able to overcome the deficiencies of individual methods and
improve the overall recommendation performance. Yin et al. [12] present a generative adversarial network (GAN)-based
model, which utilizes a generative network to perform recommendations and a discriminative network for guiding the train-
ing process. Specifically, the generative network can converge to an optimal solution under guidance of the discriminative
network.

At present, there are two mainstream GCN-based recommendation models [31,32]. Ying et al. [31] introduce PinSage, a
data efficient GCN-based framework. It is based on a bipartite graph as well as content information of users and items, and
combines random walks and graph convolutions to perform feature embedding. Then, Wang et al. [32] point out that the
PinSage model cannot accurately generate user and item embeddings because they do not sufficiently consider the collab-
orative signal between users and items. Based on this, the authors present a novel recommendation model called neural
graph collaborative filtering (NGCF), which models the high-order connectivity in a bipartite user-item graph and integrates
the user-item collaborative signal into the embedding process in an explicit fashion.

The second category contains the works in which item auxiliary information is used. However, to the best of our knowl-
edge, most of them employ item text contents, i.e., single modality (e.g., the studies [13–17]), and a few works use auxiliary
information on other modalities such as image [18–21,28], audio [22–24,26,27], video [24–27], and semantic contents in
knowledge base [28,29].

Zhao et al. [13] introduce a novel predictive collaborative filtering model that leverages both the partially observed user-
item interaction matrix and item reviews for performing recommendations. Kim et al. [14] propose a convolutional matrix
factorization (ConvMF) model that uses item texts as auxiliary information. Specifically, it first utilizes CNN to extract item
features from their text contents, and then employs a matrix factorization method [15] for calculating the scores of users on
items. Chen et al. [16] design an effective recommendation model based on neural attentive regression called NARRE, which
learns the importance of reviews for each item and performs the prediction of ratings via review-level explanations. Xing
et al. [17] present HAUP, a hierarchical attention model by using product reviews. Specifically, it makes recommendations
by jointly learning a user-product rating matrix and product review texts.

Zhang et al. [18] introduce a co-attention network that leverages both texts and images for performing hashtag recom-
mendation. Inspired by the study of [18], Ma et al. [19] develop an effective cross-attention memory network (CAMN) that
also utilizes texts and images to implement mention recommendations for tweets. Based on the NCF framework [9], Lin et al.
[20] present an effective model called MF-VMLP, to fuse visual factors into user preference prediction. Specifically, it first
utilizes a pre-trained CNN to obtain item visual features, and then incorporates item basic and visual features for learning
24
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user preferences via a MLP. Moreover, Yang et al. [21] design an attention-based multimodal neural network model (AMNN)
to learn the representations of multimodal microblogs and recommend relevant hashtags. It extracts the features of both
texts and images and fuses them into the sequence-to-sequence framework for hashtag recommendation.

By the aid of deep neural networks, Oramas et al. [22] propose to combine item texts and audios with user feedback data
to address the cold-start issue in the process of music recommendation. Bougiatiotis et al. [23] present an effective model
called MRTA, which performs movie feature embedding via using movie subtitles (i.e., texts) and audios. Li et al. [24] intro-
duce a content-based video recommendation model by utilizing deep CNNs to solve the cold-start issue. In particular,
besides video features, the proposed model also utilizes video meta-data and audio features. Kumar et al. [25] present a
new dataset called content based video relevance prediction (CBVRP), and propose different frameworks on the CBVRP data-
set that use frame (i.e., image) and video level features to make video recommendations. Xu et al. [26] design a course rec-
ommendation model that extracts multimodal course features via a deep learning method. In this model, different kinds of
information of course, such as course title, course audio and course comments, are utilized to make recommendation in
online learning platforms. Furthermore, Tao et al. [27] propose a graph-based method called multimodal graph Attention
network (MGAT), which models user preferences with high-order neighboring information and implements an attention
mechanism across three modalities (i.e., text, audio, and video).

Zhang et al. [28] introduce a novel model CKE (Collaborative Knowledge Base Embedding) for enhancing recommendation
performance. In CKE, three related components are presented to perform item feature embedding via using texts, images and
semantic contents in knowledge base, respectively. Further, Sun et al. [29] present a multimodal knowledge graph attention
network, named MKGAT, to improve the recommendation performance via multimodal knowledge. It utilizes a multimodal
graph attention mechanism to perform information propagation, and then leverages the resulting aggregated embedding for
recommendation.

The above-mentioned works usually use a straightforward way to incorporate different modal auxiliary information into
the recommendation process. Lately, Huang et al. [30] make an attempt to adequately employ item multimodal auxiliary
information to improve recommendation effectiveness. In this study, a multimodal representation learning-based model
called MRLM, is proposed, which contains two closely related modules, i.e., global feature representation learning and mul-
timodal feature representation learning. Specifically, the former is introduced to learn global features of items and users by
jointly training three tasks: triplet metric learning, Softmax classification, and microscopic verification. While the latter
leverages item multimodal auxiliary information to produce item multimodal features through jointly optimizing multiple
deterministic modal classifiers. MRLM shows the state-of-the-art performance to our best knowledge.

However, as discussed in Section 1, the MRLM model still has two deficiencies, which may influence accuracy of feature
embedding and ultimately affect recommendation effectiveness.
3. Details of the proposed TESM model

Subsection 3.1 presents the problem definition of recommendation with multimodal auxiliary information. Then the two
sequential stages GCE and MJFE of TSEM are proposed in Subsections 3.2 and 3.3, respectively. Finally, the training details of
TSEM is introduced in Subsection 3.4.
3.1. Problem definition

We assume that there are w users and n items in a target recommendation scenario. Denote the user and item sets as
U ¼ fu1;u2; � � � ;uwg and V ¼ fv1;v2; � � � ;vng, respectively. We employ D to denote the demographic information of U. We
employ Di to denote the basic information of ui 2 Uand D ¼

Sw
i¼1Di. Di includes user ui’s ID, name, age and other basic infor-

mation. We employ I to denote the descriptive information of V. We employ Ii to denote the descriptive information of
v i 2 Vand I ¼

Sn
i¼1Ii. Ii includes item v i’s ID, name, category and other basic information. Similarly, we employ M to denote

the modal auxiliary information of V. We employ Mi to denote the modal auxiliary information of v i 2 Vand M ¼
Sn

i¼1Mi. Mi

includes item v i’s user reviews, pictures from different perspectives, promotional videos, etc. In addition, a user-item inter-
action matrix is denoted as R 2 Rw�n. If user ui has interacted with item v j, then R[i, j] = 1, otherwise R[i, j] = 0.

Like previous works, in this paper, we treat the personalized recommendation problem as a metric learning problem.
Hence, a problem in this paper is: Given a user uiand two items v j

1 and v j
2, the recommendation model can predict the pref-

erences of ui for v j
1 and v j

2, respectively, and evaluate which item ui prefers. Specifically, the training of recommendation
model is based on U, V, D, I, M, and R.
3.2. GCE: Graph convolutional embedding

The GCE stage is introduced for learning to construct user and item backbone features via a SGCN network. Fig. 1 shows
the overall framework used in GCE.

In the GCE stage, we first generate an undirected bipartite graphG ¼ ðN; EÞ for user-item interactions based on H. Here, the
node set N = U [ V. And the edge set E={(u, v)|u 2 U and v 2 V and u has interacted with v}. In our study, G is utilized to depict
25



Fig. 1. The overall framework used in the GCE stage.
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the correlations between users and items. On this basis, we use the Glorot strategy [36] to randomly initialize the features of
all nodes (i.e., users and items) in G:
u
�
; v
�
 T udf �

ffiffiffi
6
d

r
;

ffiffiffi
6
d

r !
ð1Þ
Here, T udf () is a uniform distribution function and d is the dimensionality of user and item initial features.
As shown in Fig. 1, the SGCN network contains two graph convolutional layers (i.e., SCGN1 � SCGN2) and two fully-

connected layers (i.e., FC1 � FC2). To obtain the input of SGCN, we sample a mini-batch Ub of user nodes from G at a time.
Then based on Ub, we generate a node set Sb and a preference set Pb, which is shown in Algorithm 1. Following previous
works, a negative sampling ratio r is set to 4 in the algorithm. Please note that Pb is used for metric learner in the next stage
(Subsection 3.3). SGCN takes Sb as input samples and utilizes SCGN1 and SCGN2 to produce backbone features of items and
latent features of users. Then, users’ latent features and demographic features are concatenated and fed to FC1 and FC2 for
constructing their backbone features.

Algorithm 1: Generating a node set and a preference set

Input: Ub, V and r (negative sampling ratio).
Output: Sb, Pb.
1: Sb Ub; Pb £;
2: for each u 2 Ub do
Randomly choose one positive item v+ from V;

3: Sb Sb[{v+}; Pb Pb[{(u v+)};
4: Vn randomly choose r negative items from V;
5: for each v�2Vn do
6: Sb Sb[{v-}; Pb Pb[{(u v-)};
7: Return Sb, Pb.

The process of SCGN1 and SCGN2 handling each node s 2 Sb is shown in Fig. 2. Concretely, for each s 2 Sb, we obtain its first-
hop neighborhood Ns={g1, g2,. . ., gt}, and further obtain the first-hop neighborhood of each gi2Ns, i.e., Ngi= {lgi1 ,l

gi
2 ,. . .,l

gi
mgi

}. Here,

t and ngi are the cardinalities of Ns and Ngi , respectively. Then, inspired by the study of [31,32], in SCGN1, we produce an
aggregation feature agi for each gi by employing the following aggregation function (1 � x � mgi ):
agi ¼ A Ngi

� �
¼
X

l
gi
x 2Ngi

ReLU W1l
gi
x þ b1

� �
F lgix ; gi

� �
0
@

1
A ð2Þ
where l
gi
x is the initial feature of lgix , ReLU (Rectified Linear Unit) [37] is a nonlinear activation function, andW1 and b1 are the

two trained parameters. WhileF lgix ; gi

� �
is the graph Laplacian norm [38]:
F lgix ; gi

� �
¼ deg lgix

� �
� deg gið Þ

� �1=2 ð3Þ
where degðgiÞ is the degree of node gi. On this basis, we take agi and gi (the initial feature of gi) as an input, and leverage a
fully-connected layer FCs

1 to generate gi’s derivation feature gd
i :
26



Fig. 2. The process performed by SCGN1 � SCGN2 for each s 2 Su.
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gd
i ¼ ReLU W2 agi � g

�
i

� �
þ b2

� �
ð4Þ
where ‘�’ is a concatenation operation, and W2 and b2 are the two trained parameters.
SCGN1 finally outputs t derivation features for Nz, i.e., gd

1, g
d
2,. . .,g

d
m. And in SCGN2, similar to SCGN1, we apply the function

A on these t derivation features to obtain an aggregation feature as for s. Then, it is combined with s to produce a semantic
feature s via another fully-connected layer FCs

2:
as ¼ A Nsð Þ ¼
X

gi2Ns

ReLU W3yd
i þ b3

� �
F gi; sð Þ

 !
ð5Þ
s ¼ ReLU W4 as � s
�� �
þ b4

� �
ð6Þ
whereW3, b3,W4, and b4 are the four trained parameters, and F gi; sð Þ is calculated via (3). Note that s is either an item back-
bone feature vb or a user latent feature ul.

If s is a user latent feature (i.e., s is a user node), then we combine s with the demographic feature ud of s, and use FC1 -
� FC2 to construct the backbone feature ub of s:
F1 ¼ Sigmoid W5 s� udð Þ þ b5ð Þ ð7Þ
ub ¼ Sigmoid W6F1 þ b6ð Þ ð8Þ
Here, Sigmoid is a nonlinear activation function [39], andW5, b5,W6, and b6 are the four trained parameters. Note that ud

can be obtained by concatenating one-hot features of demographic information of s.
3.3. MJFE: Multimodal joint fuzzy embedding

By utilizing multimodal auxiliary information, the MJFE stage is introduced to construct item semantic-enhanced fuzzy
(SEF) features based on item backbone features. Fig. 3 shows the framework used in MJFE.

In this stage, we first obtain a subset Vb of Sb that only contains items. On this basis, for each v 2 Vb, we obtain its backbone
feature vb and descriptive feature vd. Specifically, vd can be produced by concatenating one-hot features of descriptive infor-
mation of v. Then, we use a three-layer CNN-based architecture to construct v’s semantic-enhanced fuzzy (SEF) feature vs,
which contains two convolutional layers (i.e., C1 � C2) and a fully-connected layer FC. Following the general practice [39], C1

and
27



Fig. 3. The framework used in the MJFE stage.
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C2 are followed by a batch-normalization (BN) operation [39] and a ReLU nonlinear activation function. These three layers
are defined as:
C1 ¼ ReLU W7 � vb � vdð Þ þ b7ð Þ ð9Þ
C2 ¼ ReLU W8 � C1 þ b8ð Þ ð10Þ
vs ¼ Sigmoid W9C2 þ b9ð Þ ð11Þ
Here, ‘	’ is a convolution operation, andW7, b7,W8, b8,W9, and b9 are the six trained parameters. After the SEF features of
all the items in Vb are constructed, we temporarily store them in a SEF feature table T b.

Under this architecture, we adopt the idea of multi-task learning [40], and present multiple related task-components that
are jointly learned for effectively optimizing user backbone features and item SEF features. In particular, these task-
components encompass one metric learner, one deterministic classifier, and m fuzzy modal classifiers. It is worth pointing
out that in multi-task learning, multiple tasks are solved jointly, sharing inductive bias between them. Specifically, multi-
task learning can employ useful information encompassed in multiple related tasks to help improve the generalization per-
formance of all the tasks.
� Metric learner. It is designed for learning user preferences on items. That is, it minimizes Euclidean distances between

users and positive items, and maximizes Euclidean distances between users and negative items. Thus, the loss function used
in metric learner is defined as:
Llr ¼
1
jPbj

X
ðu;vÞ2Pb

jjub � vsjj2;v is a positive item
�jjub � vsjj2;v is a negative item

�� 	
ð12Þ
where |Pb|is the size of Pb, and jjub � vsjj2 is the Euclidean distance between u and v. Note that vs is obtained from the SEF
feature table T b.
� Deterministic classifier. It is a grade classifier, which is introduced to identify items’ different grades and has two trained

parameters Q 0 and q0. In this study, items’ grades have five classes, i.e., excellent, good, medium, general, and poor. Specif-
ically, the grade classifier employs a deterministic Softmax layer that has five different output-classes, corresponding to five
grades of items, respectively. Meanwhile, the probability value of each output-class is calculated by using a Softmax func-
tion. Thus, the loss function of grade classifier is defined as:
Lgc ¼
1
jVbj

X
v2Vb

�p v jgvð Þ þ log
X5

i¼1
ep v jgið Þ

� �
ð13Þ
where gv is the true corresponding grade of v, p v jgvð Þ is the probability value of v on gv , and p v jgið Þ is the probability value of
v on each of five grades gi.
� Fuzzy modal classifiers. Each fuzzy modal classifier corresponds to a modality of item. For the i-th modality (1 � i �m),

we first use existing feature extraction methods to obtain the auxiliary feature of each item in Vb. Then, we use fuzzy c-
means (FCM) clustering algorithms [33–35] to perform fuzzy clustering on all obtained items’ auxiliary features. The imple-
mentation details is described as follow. Let q=jVbj.
28
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We first select two positive integers cmin
i and cmax

i satisfyingcmin
i < cmax

i . And let cmin
i and cmax

i be the minimal and the max-
imal thresholds of fuzzy clusters, respectively. Then for eachci 2 [cmin

i , cmax
i ], we randomly initialize ci fuzzy cluster centers ci-

FC ={vð1Þi , vð2Þi
),. . ., vðciÞi }, and carry out the following steps:

(i) Calculate the membership matrix ci-M=(mxy)q�c:

mxy ¼

Pci
z¼1

kv i:x�v
yð Þ
i
k
2

kv i:x�v
zð Þ
i
k
2

� 	 2
s�1

 !�1
if 8z; k v i:x � v zð Þ

i k2 > 0

1; if k v i:x � v yð Þ
i k2 ¼ 0

0; if 9z–y; k vv i:x � v zð Þ
i k2 ¼ 0

8>>>><
>>>>:

(14)

where x 2 [1, q], y 2 [1,ci], vi:x is the auxiliary feature of the x-th item in Vb, and s is a fuzzifier parameter.
On this basis, we normalize ci-M. That is, for each mxy 2 ci-M, its normalized value is: n mxy ¼ mxy=

Pq
t¼1
Pci

q¼1mtq. We can

easily have:
Pq

x¼1
Pci

y¼1n mxy=1. And for convenience, we still use mxy

to represent the normalized value in the following parts.

(ii) Update the centers ci-FC’={v0
ð1Þ
i , v0 ð2Þi

),. . ., v0ðciÞi }. And for each y 2 [1, ci], v0
ðyÞ
i is expressed as:
v0ðyÞi ¼
Pq

x¼1 mxy
� �svi:xPq

x¼1 mxy
� �s ð15Þ
(iii) Calculate the objective function values before and after updating centers, respectively:
f ðci �M; ci � FCÞ ¼
Xq

x¼1

Xci

y¼1
mxy
� �skvi:x � v yð Þ

i k
2

2 ð16Þ

f ðci �M; ci � FC 0Þ ¼
Xq

x¼1

Xci

y¼1
mxy
� �skvi:x � v0 yð Þi k

2

2 ð17Þ
(iv) Given a convergence threshold f, we evaluate the value df=|f(ci-M, ci-FC’)-f(ci-M, ci-FC)|. If df � f, then return the fuzzy
cluster result containing ci-FC’ and ci-M; otherwise let ci-FC = ci-FC’, and go to Step (i).

Thus, we can obtain (cmax
i -cmin

i + 1) fuzzy cluster results: <cmin
i -FC, cmin

i -M>, <cminþ1
i -FC, cminþ1

i -M>,. . ., and < cmax
i -FC, cmax

i -M > .
Then, we utilize a validity index VI(<ci-FC, ci-M > ) to evaluate the quality of fuzzy partition. And the smaller VI(<ci-FC, ci-
M > ), the better the fuzzy partition. Based on [35], VI(<ci-FC, ci-M > ) is defined as:

VI(<ci-FC, ci-M > ) = C(<ci-FC, ci-M > )-S(<ci-FC, ci-M > ). (18)
In (18), C(<ci-FC, ci-M > ) is a compactness measure that is defined as:

C(<ci-FC, ci-M > )= ciþ1
ci�1

� �2
�
Pci

y¼1
Pq

x¼1 Rð Þ �
Pq

x¼1
mx
q . (19)

Here,R ¼ 1� exp � qkvi:x�v
yð Þ
i
k
2

2Pq
x¼1kvi:x�vik

2
2

� 	1=2

and vi ¼
Pq

t¼1vi

q . And S(<ci-FC, ci-M > ) is a separation measure that can be defined as:
Sð< ci � FC; ci �M >Þ ¼
Pq

x¼1
Pci�1

t¼1
Pci�1

z¼tþ1J t;z;xðci; ci �MÞ
� �

q
ð20Þ
where J t;z;xðci; ci �MÞ is the degree of separation between two fuzzy clusters t and z for the x-th given auxiliary feature.
Specifically, it is defined as:
J t;z;xðci; ci �MÞ ¼
1� mtx �mzxj j; if mtx �mzxj j > tsm; t–z

0;otherwise

�
ð21Þ
where tsm is a separation threshold.
After the above processing, for items in Vb, we can obtain ci fuzzy clusters for their auxiliary features on the i-th modality,

denoted as FC1, FC2,. . ., FCci . Based on this, the i-th fuzzy modal classifier utilizes a fuzzy Softmax layer, which involves two
trained parameters Q i and qi, and has ci output-classes, corresponding to ci fuzzy clusters, respectively. The probability value
of each output-class can be calculated via a fuzzy Softmax function. Thus, the loss function of this classifier is defined as:
Lf :i ¼
ci � 1
jVbj

X
v2Vb

Xci

x¼1
p v jFCxð ÞmuðvÞx

� �
ð22Þ
Here, p v jFCxð Þ is the probability value of the current item v on the output-class (i.e., fuzzy cluster) FCx, uðvÞ is the index
position of v in Vb, and muðvÞx2 ci-M is a degree of membership that equals the value of the uðvÞ-th row and x-th column in
ci-M.

Thereby, the joint loss function of all the (m + 2) task-components can be defined as:
LTESM ¼ k1Llr þ k2Lgc þ k3Lf :1 þ � � � þ kmþ2Lf :m ð23Þ
where k1�kmþ22(0, 1) are the trained parameters that are used to control the importance of each task-component, and
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satisfy
Pmþ2

t¼1 kt = 1.

3.4. Overall training of TESM

In the proposed model TESM, all the trained parameters form a parameter-set wall. That is,wall= {W1�W9, b1�b9, k1�kmþ2,
Q 0�Qm, q0�qm}. And we randomly initialized each parameter with a normal distribution of N 0;1ð Þ.

We use a mini-batch stochastic gradient descent (SGD) method [39] to minimize the loss function LTESM . And an RMSprop
optimizer [41] is utilized for updating each parameter. As an example, at the t-th iteration, RMSprop updateW1 as follows:
-t  0:9-t�1 þ 0:1ð@LTESM
@ W1½ 
t

Þ2

W1½ 
tþ1  W1½ 
t � ð rffiffiffiffiffi
-t
p þ�Þ

@LTESM
@ W1½ 
t

8<
: ð24Þ
where - is a gradient cumulative variable, r is an initial learning rate, and � ¼ 10�8 is a constant to ensure a non-zero
denominator.

Then, based on the stages GCE and MJFE, the training procedure of TESM can be described in Algorithm 2. Line 1 generates
an undirected bipartite graphG by using H, U and V. Line 2 initializes the features of all users and items, and Line 3 initializes
each trained parameter in wall. Via Lines 5–7, we can get four sets: a user-node set Ub, a node set Sb, a preference set Pb, and an
item-node set Vb. Specifically, Sb and Pb are generated by employing Algorithm 1. Lines 8–10 construct backbone features of
all the users in Ub, and Lines 11–13 construct SEF features of all the items in Vb. Lines 14–18 construct m + 2 task-
components, and Line 19 calculates the joint loss function LTESM of these task-components. Line 20 then updates each param-
eter in wall via RMSprop optimizer. Once the model converges, Algorithm 2 will return the optimal parameter-set wall.

Algorithm 2: Overall training of TESM

Input: historical interaction dataset is H, user demographic information D, item descriptive information I, item
multimodal auxiliary information M, user set U, item set V, min-batch size b, negative sampling ratio r.
Output: the parameter-set wall.
1: Construct G based on H, U and V;
2: Initialize the features of all nodes in G according to (1);
3: Initialize wall: wall Nð0;1Þ;
4: repeat
5: Sample a mini-batch Ub of user nodes from G;
6: Generate Sb and Pb via Algorithm 1(Ub, V, r);
7: Vb Sb-Ub;
8: for each u 2 Ub do
9: Generate ul according to (2)-(6);
10: Construct ub based on ul and D according to (7)-(8);
11: for each v 2 Vb do
12: Generate vb according to (2)-(6);
13: Construct vs based on vb and I according to (9)-(11);
14: Construct the metric learner based on Pb and {ubg [ fvsg;
15: Construct the grade classifier based on Vb and fvsg;
16: for i = 1 �m do
17: Generate ci fuzzy clusters on the i-th modality based on M according to (14)-(21);
18: Construct the i-th fuzzy modal classifier based on Vb and fvsg;
19: Calculate LTESM according to (12), (13), and (23);
20: Calculate the partial derivative of each parameter in wall and update it via RMSprop optimizer;
21: until the model converges
22: Return wall.

Complexity analysis. Assume that there are N u users, N v items, and N in user-item interactions in a given recommender sys-
tem. And on average, N u users have interacted with the same item, and N v items have interacted with the same user
ðN u � N u, N v � N v ). From Algorithm 2, we can see that the computational complexity of training TESM mainly consists
of five parts:

O N inð Þ for generating G;
O N uþN vð Þ for initializing the features of all nodes;

O N uþN vð ÞN uN v

� �
= O N in N u þN v

� �� �
for constructing users’ backbone features and items’ SEF features;
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O N in þmN v
2

� �
for performing the task-components and calculating the joint loss function;

O N inð Þ for updating the model parameters.

Based on the above analysis, we have the complexity of O N in N u þN v

� �
þN u þmN v

2
� �

to train TESM.

Recommendation utilizing TESM. When the training of TESM is completed, for a given user u 2 U and an item set A={v1,
v2,. . ., va} # V, we first obtain u’s backbone feature ub and the SEF feature set corresponding to A: A

!
={v1

s ;v2
s ; � � � ; va

s }. Then,

for each vi
s2A
!
, we calculate the predictive rating of (ub,vi

s) via Euclidean distance. Finally, we select the k (k < a) items with
the largest predictive ratings as recommendation.
4. Experiments

In this section, we perform an experimental evaluation of TESM with two real-world datasets.

4.1. Experimental settings

Two real-world datasets are used in experiments: Movielens-20 M2 and BookCrossing3:

� MovieLens-20 M. It is one of the most widely utilizing datasets in recommender system domain, encompassing the infor-
mation: users, movies, and users’ rating on items. In experiments, according to previous works, the ratings greater than or
equal to 4 are treated as positive feedback, and the ratings less than 4 are treated as negative feedback. Only the users
with more than 20 ratings are considered in experiments.
� BookCrossing. It is a prevalent book dataset, encompassing the information: users, books, and users’ rating on books. Fol-
lowing previous works, the ratings greater than or equal to 5 are treated as positive feedback, and the ratings less than 5
are treated as negative feedback.

In MovieLens-20 M, auxiliary information of four modalities is introduced for each movie: (a) For text modality, the text
summary extracted from its plot is employed; (b) For image modality, its poster image is employed; (c) For video modality,
its promotional video is utilized; and (d) For knowledge-base modality, its directly adjacent entities and relationships are
used in KB4Rec [41]. In BookCrossing, auxiliary information of two modalities is introduced for every book: (a) For text
modality, its brief introduction is used; (b) For image modality, its front cover image is used. Furthermore, BERT [42],
ResNet-50 [43], ECNN [44], and TransG [45] are leveraged to implement feature extraction for the modalities of text, image,
video, and knowledge-base, respectively. Please note that to improve training efficiency, for each modality, we perform fuzzy
clustering on the auxiliary features of all items in advance, rather than on the auxiliary features of a mini-batch of items at a
time.

Table 1 shows the statistical data of two real-world datasets used in the experiments.
In experiments, the datasets are randomly divided into training (70%), validation (20%), and test (10%) sets. We perform

experimental evaluation on TensorFlow platform [39], and use RMSprop optimizer to update each parameter. We carry out
hyper-parameter tuning on validation sets to choose the optimal value for each hyper-parameter via random search method
[46].

For MovieLens-20 M, the dimensionality of features of all users and items d = 200, the mini-batch size b = 128, and the
negative sampling ratio r = 4; FC1 and FC2 contain 300 and 200 neurons, respectively; C1 has 9 kernels of size 1 � 3 with
stride of 3, and C2 has 5 kernels of size 1 � 3 with stride of 3; FC contains 200 neurons; and the initial learning rater = 0.001.
While for BookCrossing, d, b, and r are set to 150, 128, and 4, respectively; FC1 and FC2 contain 250 and 150 neurons, respec-
tively; C1 has 7 kernels of size 1 � 3 with stride of 3, and C2 has 5 kernels of size 1 � 3 with stride of 3; FC contains 150 neu-
rons; andr = 0.001.

As for evaluation metrics, following previous works, we utilize two well-known metrics Recall@n and AUC@n [47,48],
which are widely applied for top-n recommendation evaluation. AUC represents the area under receiver operating charac-
teristic (ROC) curve. Recall represents the percentage of correctly predicted true positive items in the samples:
2 http
3 http
Recall ¼ TP=ðTP þ FNÞ ð25Þ
where TP is the number of positive items that are correctly predicted to be true, and FN is the number of positive items that
are falsely predicted to be false.

To verify effectiveness of TESM, we compare it with eleven state-of-the-art models, i.e., DMFL [11], NGCF [32], HUAP [17],
MF-VMLP [20], AMNN [21], ORAMAS [22], AMV [24], MGAT [27], CKE [28], MKGAT [29], and MRLM [30]. For comparison, the
extended versions of the eight models are considered, which utilize all four modalities via a straightforward way proposed in
s://grouplens.org/datasets/movielens/20m
s://grouplens.org/datasets/book-crossing
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Table 1
The statistics of two real-world datasets used in experiments.

Movielens-20 M BookCrossing

Users 138,493 278,858
Items 27,278 271,379
Ratings 20,000,263 1,149,780
Ratings per user 144.4 4.1
Ratings per item 733.2 4.2
Items having texts 26,012 259,385
Items having imagesItems having videosItems in KB 27,08424,61625,982 263,19400
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Section 1. These extended models are denoted as DMFL*, NGCF*, HUAP*, MF-VMLP*, AMNN*, ORAMAS*, AMV*, MGAT*, CKE*,
MKGAT*, and MRLM*, respectively. Since MRLM involves all four modalities, MRLM* is the same as MRLM. Here, we only
present the experimental results of MRLM.
4.2. Performance comparison with baselines

We compare the effectiveness of TSEM with its peers (i.e., 21 baselines). Tables 2 and 3 show the values of Recall@n and
AUC@n for the two datasets with n={5, 10, 15, 20}.

From Tables 2 and 3, we are able to observe that TSEM has superior recommendation accuracy than all the twenty-one
baselines. For example, in Table 2, TSEM outperforms eleven base models DMFL, NGCF, HUAP, MF-VMLP, AMNN, ORAMAS,
AMV, MGAT, CKE, MKGAT, and MRLM by 96.35%, 71.72%, 67.33%, 58.90%, 56.46%, 63.85%, 23.29%, 19.79%, 40.87%, 25.25%, and
9.10%, respectively, for Recall@20 on MovieLens-20 M. And it outperforms ten extended models DMFL*, NGCF*, HUAP*, MF-
VMLP*, AMNN*, ORAMAS*, AMV*, MGAT*, CKE*, and MKGAT* by 83.05%, 47.81%, 39.94%, 35.82%, 32.58%, 4.96%, 13.59%,
32.30%, and 17.52%, respectively. The main reasons are two-folds: (i) First, by using the SGCN network in the GCE stage, TSEM
is able to construct user and item backbone features adequately. Specifically, for each user and each item, TSEM can effec-
tively capture the influence of other related users and items on its feature embedding. (ii) More important, by jointly learning
six related tasks in the MJFE stage, TSEM is able to obtain user backbone features and item SEF features accurately. In par-
ticular, among these learning tasks, four fuzzy modal classifiers can effectively refine item backbone features to generate SEF
features.

Meanwhile, we can observe that for every base model, its extended version slightly outperforms it in most cases. This
observation is consistent with that in the work [30]. For example, in Table 3, DMFL* outperforms DMFL by 4.89% for
AUC@20 on BookCrossing. The main reason is that for every base model, its extended version integrates different modal aux-
iliary information into recommendation process via a straightforward way, thus slightly increasing the accuracy of item
Table 2
The Recall@n values of TESM and 21 baselines (best results are bold-faced).

Model Dataset

MovieLens-20 M BookCrossing

n = 5 n = 10 n = 15 n = 20 n = 5 n = 10 n = 15 n = 20

DMFL 0.1742 0.2035 0.2250 0.2491 0.0367 0.0413 0.0481 0.0565
NGCF 0.2253 0.2514 0.2776 0.2848 0.0513 0.0605 0.0716 0.0853
HUAP 0.2321 0.2608 0.2815 0.2923 0.0590 0.0728 0.0811 0.0927
MF-VMLP 0.2359 0.2662 0.2891 0.3078 0.0654 0.0812 0.0993 0.1092
AMNN 0.2371 0.2704 0.2969 0.3126 0.0682 0.0859 0.1047 0.1161
ORAMAS 0.2340 0.2633 0.2854 0.2985 0.0639 0.0798 0.0931 0.1015
AMV 0.2784 0.3072 0.3419 0.3967 0.0765 0.0971 0.1086 0.1242
MGAT 0.2858 0.3165 0.3511 0.4083 0.0846 0.1028 0.1153 0.1336
CKE 0.2697 0.2929 0.3246 0.3472 0.0931 0.1026 0.1208 0.1431
MKGAT 0.2769 0.3041 0.3374 0.3905 0.0992 0.1071 0.1285 0.1527
MRLM 0.3327 0.3516 0.3952 0.4483 0.1108 0.1204 0.1390 0.1638
DMFL* 0.2015 0.2251 0.2495 0.2672 0.0430 0.0505 0.0593 0.0681
NGCF* 0.2501 0.2807 0.3006 0.3309 0.0616 0.0693 0.0879 0.1102
HUAP* 0.2526 0.2842 0.3063 0.3495 0.0854 0.1008 0.1102 0.1315
MF-VMLP* 0.2605 0.2936 0.3261 0.3601 0.0917 0.1021 0.1153 0.1398
AMNN* 0.2654 0.2998 0.3353 0.3689 0.0682 0.0859 0.1047 0.1161
ORAMAS* 0.2582 0.2913 0.3208 0.3594 0.0905 0.1019 0.1101 0.1390
AMV* 0.3119 0.3402 0.3795 0.4306 0.0948 0.1035 0.1243 0.1496
MGAT* 0.3194 0.3497 0.3881 0.4402 0.1005 0.1149 0.1321 0.1564
CKE* 0.2738 0.3005 0.3376 0.3697 0.0931 0.1026 0.1208 0.1431
MKGAT* 0.2821 0.3139 0.3495 0.4162 0.0992 0.1071 0.1285 0.1527
TESM 0.3495 0.3638 0.4012 0.4891 0.1174 0.1292 0.1485 0.1801
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Table 3
The AUC@n values of TESM and 21 baselines (best results are bold-faced).

Model Dataset

MovieLens-20 M BookCrossing

n = 5 n = 10 n = 15 n = 20 n = 5 n = 10 n = 15 n = 20

DMFL 0.5562 0.5814 0.5928 0.6013 0.5631 0.5794 0.5912 0.6109
NGCF 0.5971 0.6307 0.6404 0.6510 0.5755 0.5936 0.6141 0.6337
HUAP 0.6308 0.6725 0.6801 0.6892 0.6309 0.6652 0.6805 0.7030
MF-VMLP 0.6423 0.6892 0.7026 0.7189 0.6392 0.6715 0.6943 0.7118
AMNN 0.6519 0.6993 0.7122 0.7285 0.6451 0.6783 0.7002 0.7146
ORAMAS 0.6346 0.6785 0.6891 0.7013 0.6308 0.6601 0.6818 0.7025
AMV 0.7093 0.7518 0.7675 0.7902 0.6471 0.6883 0.7047 0.7171
MGAT 0.7165 0.7592 0.7761 0.7998 0.6563 0.6949 0.7101 0.7218
CKE 0.6952 0.7321 0.7480 0.7705 0.6615 0.7028 0.7152 0.7263
MKGAT 0.7017 0.7392 0.7541 0.7782 0.6652 0.7067 0.7214 0.7326
MRLM 0.7405 0.7862 0.8049 0.8237 0.7259 0.7611 0.7729 0.7895
DMFL* 0.6004 0.6219 0.6335 0.6458 0.5804 0.5960 0.6215 0.6408
NGCF* 0.6367 0.6651 0.6760 0.6927 0.5950 0.6139 0.6390 0.6651
HUAP* 0.6912 0.7185 0.7298 0.7411 0.6592 0.7027 0.7124 0.7319
MF-VMLP* 0.7105 0.7342 0.7473 0.7622 0.6696 0.7101 0.7159 0.7194
AMNN* 0.7132 0.7361 0.7509 0.4625 0.6451 0.6783 0.7002 0.7146
ORAMAS* 0.7028 0.7286 0.7382 0.7617 0.6651 0.7074 0.7148 0.7169
AMV* 0.7309 0.7663 0.7827 0.8014 0.6805 0.7251 0.7426 0.7652
MGAT* 0.7392 0.7759 0.7926 0.8121 0.6864 0.7305 0.7481 0.7728
CKE* 0.7143 0.7394 0.7561 0.7798 0.6615 0.7028 0.7152 0.7263
MKGAT* 0.7215 0.7481 0.7656 0.7893 0.6652 0.7067 0.7214 0.7326
TESM 0.7845 0.8247 0.8452 0.8731 0.7619 0.7896 0.8160 0.8413

Fig. 4. Performance evaluation for TESM and TESM-M.
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feature embedding. Please note that in Tables 2 and 3, for the three models AMNN, CKE, and MKGAT, their accuracy is equal
to their corresponding extended models AMNN*, CKE*, and MKGAT* on BookCrossing. It is mainly since that AMNN, CKE, and
MKGAT have used items’ text and image modal auxiliary information in BookCrossing. Therefore, AMNN*, CKE*, and MKGAT*
degenerates to AMNN, CKE, and MKGAT, respectively, on BookCrossing.

Moreover, we find that all twenty-two models have higher recommendation accuracy on MovieLens-20 M than on
BookCrossing. For example, in Table 2, the average Recall@20 values of these twenty-two models on MovieLens-20 M and
BookCrossing are 0.3599 and 0.1257, respectively. A possible explanation is that the average number of user-item interac-
tions in MovieLens-20 M is greater than that in BookCrossing, which enables these models to learn user and item feature
embedding more accurately.
4.3. Performance study for item semantic-enhanced fuzzy features

The overall performance comparison demonstrates that our TESMmodel has a higher recommendation effectiveness than
twenty-one baselines. For further understanding the importance of item SEF features, we perform an ‘‘ablation” study in this
subsection. First, we compare TESMwith its simplified version TESM-M representing that four fuzzy modal classifiers are not
used in the MJFE stage, i.e., only a metric learner and a deterministic classifier are used. Fig. 4 shows the values of Recall@n
and AUC@n for the two datasets with n={5, 10, 15, 20}.

Fig. 4 clearly presents that the complete TESM model outperforms TESM-M on both two datasets. For example, in the fig-
ure, we are able to observe that TESM outperforms TESM-M by 67.79% and 101.68% for Recall@20 on MovieLens-20 M and
BookCrossing, respectively. It shows that the recommendation results are not satisfactory if we only employ a metric learner
and a deterministic classifier, and do not leverage four fuzzy modal classifiers. And we can substantively improve the final
recommendation effectiveness through incorporating item multimodal auxiliary information.
Fig. 5. Performance evaluation for TESM and TESM-D.
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Fig. 6. Experimental study for the importance of different modalities.
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Then, we compare TESM with its another simplified version TESM-D representing that four fuzzy modal classifiers are
replaced with corresponding deterministic ones presented in [30]. Fig. 5 shows the values of Recall@n and AUC@n for the
two datasets with n={5, 10, 15, 20}.

Similarly, from Fig. 5, we are able to observe that the complete TESM model outperforms TESM-D on both two datasets.
For example, in the figure, TESM outperforms TESM-D by 5.66% and 6.29% for AUC@20 on MovieLens-20 M and BookCross-
ing, respectively. The main reason is that compared with deterministic modal classifiers, fuzzy ones are able to make better
use of item multimodal auxiliary information, thus learning item feature embedding more accurately.

Finally, we focus on investigating the importance of different modalities and compare TESMwith its four related variants:

� TESM-T: only text modality is utilized in TESM;
� TESM-I: only image modality is utilized in TESM;
� TESM-V: only video modality is utilized in TESM;
� TESM-K: only knowledge-base modality is utilized in TESM.

Fig. 6 reports the values of Recall@n for the two datasets with n={5, 10, 15, 20}. We observe a similar accuracy trend for
AUC@n values and omit them here due to space limitation. Please note that BookCrossing does not have video and knowl-
edge base modalities, therefore TESM-V and TESM-K have no experimental results on it.

From Fig. 6, we can clearly see that the complete TESM model has superior recommendation accuracy than all its four
variants over both two datasets. For example, in Fig. 6 (a), TESM outperforms TESM-T, TESM-I, TESM-V and TESM-K by
12.19%, 23.23%, 24.02%, and 59.86%, respectively, for Recall@20 on MovieLens-20 M. It indicates that item auxiliary informa-
tion over each modality contributes to final recommendations, and the joint use of item multimodal auxiliary information
can produce the best effectiveness. Meanwhile, we find that compared with other variants, TESM-T achieves superior rec-
ommendation accuracy. For example, in Fig. 6 (a), the Recall@10 values of TESM-T, TESM-I, TESM-V and TESM-K are
0.3301, 0.3137, 0.3152, and 0.2675, respectively, on MovieLens-20 M. A possible reason is that in either of two datasets,
item’s text modality contains more useful semantic information than item’s other modalities for final recommendations.
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5. Conclusions

This paper introduces a novel model TESM for improving the recommendation effectiveness. It fully exploits item mul-
timodal auxiliary information and includes two sequential stages. In the GCE stage, we first obtain a user-item interaction
graph that is then combined with user demographic information to construct user and item backbone features via a SGCN
network. While in the MJFE stage, we first employ item backbone features and descriptive information for constructing item
SEF features via a three-layer CNN-based architecture. Then, six related task-components are simultaneously optimized to
obtain user backbone features and item SEF features accurately. Specifically, four fuzzy classifiers are

obtain user backbone features and item SEF features accurately. Specifically, four fuzzy classifiers are proposed by jointly
using item multimodal auxiliary information. Experimental results over two real-world datasets show the effectiveness of
our TESM model.

In the future, we will continue to improve recommendation performance of our TESMmodel from two aspects. Firstly, we
will propose more effective neural networks to increase the accuracy of feature embedding. Secondly, we will introduce
more types of item auxiliary information to raise recommendation accuracy.
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