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Abstract

Recently, large-language models (LLMs) have demonstrated strong
potential to solve database problems. However, LLMs still face two
challenges in solving the index selection problem: (1) representing
the workload in an LLM-friendly form and (2) finding the optimal
index set. To solve these challenges, we propose LLM4IA, an LLM-
based index selection method that can recommend indexes for any
analytical workload directly on any database instance. LLM4IA pro-
poses a concise description of natural language by extracting and
sorting predicates and completely avoiding numerical input. LLM4IA
adopts an iterative index selection process by repeatedly improving
previous index candidates and summarizing effective candidates.
Experiments on TPC-H and TPC-DS show that LLM4IA surpasses
the near-optimal index advisor Extend by 5%-10%. Our demonstra-
tion highlights how LLM4IA recommends high-quality indexes for a
new database instance without expensive retraining or fine-tuning.

CCS Concepts

« Information systems — Autonomous database administra-
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1 Introduction

Index selection is critical for optimizing database performance.
Although many index advisors (IAs) have been proposed to free
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Figure 1: Challenges of LLMs in Index Selection

Database Administrators (DBAs) from the laborious index tuning
process, existing IAs have limitations. Specifically, heuristic-based
methods [4, 5] often yield suboptimal solutions because their fixed
algorithm cannot capture the complex correlation between work-
load and data. Learning-based methods [1-3], while promising in
adapting to different workloads, struggle to produce stable perfor-
mance on new database instances due to the dependence on large
amounts of high-quality training data.

The rise of large language models (LLMs) has brought new op-
portunities to solve complex problems in the database field. The
ability of LLMs to combine extensive knowledge with step-by-step
reasoning makes them powerful tools. Naturally, we ask if LLMs can
be adopted as index advisors. However, as shown in Figure 1, even
the most advanced commercial LLM, GPT-4o, faces two challenges.
Challenge 1: representing workloads in an LLM-friendly
form. Workload representation is essential, enabling IAs to dis-
cover useful indices for a particular workload. Learning-based IAs
adopt various workload representation strategies to transform a
workload into a numerical embedding vector. Representing a work-
load is nontrivial for LLMs. On the one hand, LLMs are better
at interpreting textual queries. The embedding vector derived by
learning-based IAs is incomprehensible to LLMs. On the other hand,
LLMs risk position bias and information loss when handling long
contexts. Feeding the LLMs the original workload, which is a long
list of queries and frequencies, prevents LLMs from capturing in-
formation truly related to index selection. As shown in Figure 1,
GPT-4o0 selected indexes "t1(c1)" and "t3(c5)" because it placed
higher attention on the beginning and ending parts of the workload,
while ignoring relevant information in the middle that leads to the
ground-truth index "t2(c3)".


https://orcid.org/0009-0005-3567-9695
https://orcid.org/0009-0005-7951-4200
https://orcid.org/0009-0005-9277-3661
https://orcid.org/0000-0002-1398-0621
https://orcid.org/0000-0002-2275-997X
https://doi.org/10.1145/3746252.3761475
https://doi.org/10.1145/3746252.3761475
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761475&domain=pdf&date_stamp=2025-11-10

CIKM °25, November 10-14, 2025, Seoul, Republic of Korea

Importance | Nested Loop Hash Join | rank [—]
High T1C1>? TIC1=T2C3 | 1 :]
l T2.03=7 T1.C2=T3.C4 :]
<) | e
Workload | > Workload-Level
g Information
E I Information | ||| Prompt
Extraction ] Generation
Database __ Data-Level @
________ Informatlon [—]

I Table Rows - Cardinality - Storage '

Xian Lyu, Junbiao Zhang, Yihang Zheng, Guoliang Li, and Chen Lin

@ LLM-based Index Selection
t1(c1)]

Init Index Gen

4

Workload-Driven
Index
Enhancement

Data-Driven
Index
Enhancement

[t1(c1,c2), t2(c3),t3(c5),t4(c6)]

Figure 2: System Overv1ew of LLM4IA

Challenge 2: finding the optimal index. Like DBAs, LLMs pos-
sess some database knowledge, enabling them to follow established
guidelines to identify some adequate columns (e.g., frequently
queried columns or highly selective columns) while also being
prone to overlooking superior columns that can only be discovered
through data-driven analysis. As shown in Figure 1, GPT-40 chose
'c1" over "c2" in table "t1" because the index selectivity of "c1"
is higher than that of "c2". The ground truth (optimal index) is
"c2" since "c1" is ordered while "c2" is unordered. Unfortunately,
it is difficult to determine whether a column is sorted from the
database schema or the workload alone, and thus GPT-40 produced
unsatisfying results.

To address these challenges, we propose LLM4IA, an LLM-based
index advisor that can directly recommend indexes for any work-
load on any database instance.

To address Challenge 1, LLM4IA represents the workload in a con-
cise textual description, avoiding numerical input entirely. LLM4IA
first extracts essential predicates from query plans, eliminates the
numerical values, and sorts them based on query frequency and
estimated cost under each category. Therefore, key information
relevant to index selection is combined and compacted to enhance
LLMs’ understanding of the impact of workload on indexes.

To address Challenge 2, LLM4IA adopts an iterative search method
using LLMs. In each round, LLM4IA first makes multiple attempts to
enhance the previous index set based on the workload representa-
tion or data characteristics, then summarizes all effective candidates
to obtain a better index set for the next round. Therefore, the index
set is self-evolved, uncovering potential good indexes.

Furthermore, LLM4IA utilizes a set of strategies to reduce the
overhead of LLMs, including the token budget and the inference
time. LLM4IA shortens the predicate list by truncation and abstracts
table and column names to minimize the number of tokens in the
input. LLM4IA also employs parallel enhancement in the iterative
search to accelerate LLM inference.

Contributions. Compared with heuristic-based methods, LLM4IA
is less likely to fall into suboptimal solutions. LLM4IA outperforms
the near-optimal IA Extend by 5%-10% on TPC-H and TPC-DS
benchmarks. Compared with learning-based methods, LLM4IA can
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provide index recommendations on new database instances, with-
out specific training on the database instance. Compared with di-
rectly using GPT4-o with the original workload, LLM4IA reduces
the workload execution time by 20%-30% on TPC-H and 70%-80%
on TPC-DS, while reducing the token overhead by 60% - 70%.
The demonstration video and the codes are available at https:
//github.com/XMUDM/LLMA4IA.

2 Methodology

As shown in Figure 2, LLM4IA consists of three modules.

21

This module extracts index-relevant information from workload-
level and data-level to retain effective contextual information while
reducing the input size of LLMs.

Workload-level information. Step 1: Predicate extraction.
Proper alignment of indexes with frequently executed predicates
can significantly enhance query performance. Therefore, our core
idea is to utilize predicates to obtain a brief and informative work-
load representation rather than the lengthy and obscure original
workload. Since the query plans contain more detailed informa-
tion, LLM4IA first transforms each query in the workload into a
query plan. The predicates are the filtering conditions of each node
in the query plan. Then, LLM4IA classifies the predicates according
to the types of their corresponding node. For example, predicates
“T1.C1>1" and “T2.C3=1" are grouped under node type “Nested
Loop". Step 2: Non-numerical transformation. Since there are
infinitely many potential values for the literals, LLMs may misinter-
pret the scales or ranges because they are not extensively trained on
rare values. To generalize the literals, LLM4IA replaces them with
the placeholder “?”. Step 3: Predicate ranking. LLM4IA calculates
“estimated cost X query frequency” to order all predicates
in the same type, where "estimated cost" refers to the estimated
cost of the node in the query plan, and the "query frequency" refers
to the frequency of the corresponding query. Step 4: Predicate
filtering. A lengthy input may raise difficulties for LLMs to grasp
crucial information and increase the cost of calling LLM APIs. Since
the predicates with lower frequency or smaller estimated costs
provide less significant performance benefits, we reserve the top k
predicates in the ranking.

(D Information Extraction
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Data-level information. To enable the LLM to perceive index-
related database statistics, LLM4IA extracts the number of recodes
in each table, the cardinality of each column, and the storage occu-
pancy of single-column indexes from the database, and formalizes
them into textual descriptions.

Information Compressing. To reduce the token budget, LLM4IA
removes tables and columns not targeted in the current workload.
LLM4IA also abstract the table names and column names to simplify
the text representation. For example, a table named "1ineitem" and
a column named "1_extendedprice" in the TPC-H benchmark
are abbreviated as "t;" and "C;", respectively. The above compres-
sion techniques are applied to both workload-level and data-level
information.

2.2 (@ Prompt Generation

This module generates the prompt feeding LLMs, which comprises
eight parts. 1 Database Structure Information. This part de-
scribes the database structure, e.g., which table a certain column
belongs to. 2 Task Description. We generate different task de-
scriptions according to different index recommendation stages, e.g.,
initial index set generation, workload-driven index enhancement,
and data-driven index enhancement mentioned in Section 2.3. 3
Key Information for Index Recommendation. This part in-
cludes the workload-level and data-level information extracted in
Section 2.1. The exact input in this part differs for different index
recommendation stages. More details are provided in Section 2.3.
4 Current Index Set. This part inputs the initial index set or the
index set obtained from the previous step. The initial index set is
empty. 5 Storage Budget. This part includes the storage budget
predefined by the user. 6 Index Recommendation Rules. This
part contains some predefined rules for index recommendation (e.g.
keep the storage cost of the index within budget). Users can also
customize their own rules. 7 Index Recommendation Experi-
ence. This part contains all indexes that LLM4IA found during the
index selection process up to the current step that are not profitable.
We ask the LLM not to recommend indexes in the experience in the
next step, avoiding repeated inefficient searches. 8 Output Format
Requirements. This part standardizes the output of the LLM to
facilitate subsequent processing.

2.3 (3 LLM-based Index Selection

This module calls LLMs to perform index selection.

Step 1: Initial Index Set Generation By default, LLM generates
the initial index set. The prompt is generated as in Section 2.2, where
the "Key Information for Index Recommendation” part contains
workload and data-level information and the "Task Description”
part asks the LLM to recommend the index configuration that it
believes will yield the most benefit within a given storage bud-
get based on the input information. LLM4IA also allows users to
generate the initial index set by other existing index advisors.

Step 2: Two-stage Iterative Index Enhancement It is diffi-
cult to generate high-quality indexes by making a single call to
the LLM. Therefore, we propose an iterative enhancement process
based on the LLM to optimize the index set until it cannot be im-
proved. Furthermore, the input of the LLM contains both workload
information and data-related information. However, the workload
information is much longer than the data-related information in
length, making it difficult for the LLM to focus on the data-related
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parts. Therefore, our iterative enhancement process is divided into
two stages, one stage focusing on workload information and the
other stage focusing on data-related information.

Step 2.1: Workload-driven index enhancement. The en-
hancement of this stage focuses on finding good indexes from
the workload. Therefore, the "key information for index recom-
mendation" part in the prompt only includes the workload-level
information. Based on the initial index set, LLM4IA seeks a better
index set within the given storage budget by either "adding a new
index", "expanding an existing index with additional columns", or
"replacing an index with an unseen index", repeatedly (Described in
"Task Description"). During each round of index enhancement, we
call LLM multiple times to generate diverse candidates. We verify
the effectiveness of each candidate by calling the what-if optimizer.
As shown in Figure 2, the red node means that the node has found
a better index configuration, while the green node means it has not.
The user pre-defines the maximal number of attempts. To reduce
the time overhead caused by multiple LLM calls, LLM4IA performs
multiple explorations in a single index enhancement step in parallel.

Due to the inevitable hallucination issue of LLMs during the
generation process, to ensure the correctness of the final recom-
mended indexes and reduce unnecessary enhancement iterations,
LLM4IA filters out "invalid index" (e.g. indexes that do not provide
benefits, indexes where the columns do not belong to the table of
the index, and multi-column indexes with the number of columns
exceeding the limit). Furthermore, to fully utilize the multiple at-
tempts from each round, we develop a memory mechanism, i.e.,
collect and record the indexes explored in each round that do not
provide benefits. In the subsequent exploration, this "experience”
part in the prompt will significantly prevent the LLM from repeat-
edly exploring useless indexes, thereby making the process more
efficient and effective.

Next, instead of selecting the optimal candidate, LLM4IA com-
bines all valid candidates by sorting the indexes according to their
benefits and merging the indexes from high benefits to low benefits
until the storage budget is met. An enhanced index set is obtained
after the combination.

Step 2.2 Data-driven index enhancement. Step 2.1 alone is
insufficient because the estimated query plans may not be accu-
rate. There are some indexes that, although rarely appearing in
the workload, are good indexes due to their excellent data-level
characteristics. Therefore, it is impossible to find all possible good
indexes based only on workload-driven index enhancement, and
we need to increase the recall rate, i.e., discover all potentially good
indexes, to determine the optimal indexes. To avoid being misled
by workload-level information, the "key information for index rec-
ommendation” of this stage only contains data-level information.
Other details of this stage are similar to those in Step 2.1.

3 Demonstration

In this section, we first demonstrate the index iteration enhance-
ment process of LLM4IA. Then, to verify that LLM4IA surpasses
existing IAs, we demonstrate a detailed comparative evaluation on
index qualities. Users can test LLM4IA on several typical analytical
benchmark tests (e.g., TPC-H and TPC-DS) using their customized
workloads.
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Figure 4: Visualization of Index Selection Result

3.1 Visualization of Index Selection of LLM4IA

The visualization of this part includes two aspects. 1 Visualization
of the index selection process. As shown in Figure 3, after users
customize the parameters for index selection (e.g., max index length,
storage budget), LLM4IA parameters (e.g. LLM model, the number
of attempts in each enhancement), and upload the workload, an
index selection flowchart is generated. This flowchart illustrates
how LLM4IA iteratively enhances the initial index set step by step to
obtain the final recommended index. Users can hover their mouse
over specific nodes to view details (e.g., the current index set, stor-
age consumption, and cost reduction ratio).

2 Visualization of the index selection results. As shown
in Figure 4, users can get a result analysis interface for a compre-
hensive visualization of the results, including (1) the parameter
configuration, e.g., maximal index length and storage budget. (2)
the output indexes by LLM4IA, (3) the cost reduction ratio w.r.t.
the null index, which is the execution time ratio of running the
workload given the selected indexes v.s. given no indexes. (4) The
inference time, including the end-to-end overhead and the time
overhead of each stage. (5) Index analysis, including the storage
consumption and cost reduction ratio of each index. (6) Cost of
each query, which is the execution time before (i.e., null index) and
after LLMA4IA for each query in the workload.

3.2 Comparative Evaluation

This part allows users to select an existing IA to compare its rec-
ommendation effectiveness with that of LLM4IA. Similar to 3, users
need to customize the index selection parameters, LLM4IA parame-
ters, and the test workload. Then, users can get a detailed compari-
son report. As shown in Figure 5, we compare the recommended
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Figure 5: Comparison between LLM4IA and Extend
indexes of two IAs from multiple aspects as Section 3.1. The differ-
ences in the output indexes are highlighted in red.

To further investigate the index recommendation performance
of LLM4IA, in TPC-H 1GB, we take Extend [4], which is consid-
ered near-optimal in the literature, for comparison in Figure 5 as
an example. Under the given storage budget, Extend selects index
"lineitem(1l_partkey, 1l_shipmode)" with a higher benefit-to-
storage ratio, but the high storage consumption of index "1ineitem(

-1_partkey, 1_shipmode)" prevents the selection of index "linei
-tem(1l_shipdate)", thus falling into a suboptimal solution. On
the contrary, LLM4IA selects index "lineitem(1l_partkey)" with
a lower benefit-to-storage ratio, but the lower storage consumption
of index "lineitem(1_partkey)" allows for the selection of index
"lineitem(1l_shipdate)". Finally, because the combined benefits
ofindex "lineitem(1l_shipdate)" andindex "lineitem(1_partk
-ey)" exceed that of index "1ineitem(1_partkey, 1_shipmode)",

LLM4IA ultimately achieves a higher performance.

We have conducted extensive experiments in the open-source

database testing benchmarks TPC-H and TPC-DS and found that LLM4IA

stably outperforms the near-optimal IA Extend by 5%-10%. Learning-
based IAs have two limitations: (1) they cannot be used on a new db
instance without hours of training, (2) their performance degrades
severely under workload drift. Therefore, we use the same testing
workload as the training workload, and LLM4IA exceeds the SOTA
learning-based IA SWIRL [1] by 11%.

4 Conclusion

LLM4IA presents a novel paradigm of employing LLMs for index
selection by feeding LLMs with a concise textual description of
the key predicates and iteratively enhancing and summarizing
indexes for self evolution. LLM4IA applies directly to any database
instance and workload, which is promising. One limitation is that
the inference time of LLM4IA is still large, which leaves as a future
direction for improvement.

5 Acknowledgments

Chen Lin is the corresponding author and is supported by the
Natural Science Foundation of China (N0.62372390,62432011).



LLM4IA: Index Advising via Large Language Models

References

[1] Jan Kossmann, Alexander Kastius, and Rainer Schlosser. 2022. SWIRL: Selection of
Workload-aware Indexes using Reinforcement Learning.. In EDBT, Vol. 2. 155-2.

[2] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An index advisor using deep rein-
forcement learning. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. 2105-2108.

[3] Zahra Sadri, Le Gruenwald, and Eleazar Lead. 2020. DRLindex: deep reinforcement
learning index advisor for a cluster database. In Proceedings of the 24th Symposium

6677

CIKM 25, November 10-14, 2025, Seoul, Republic of Korea

on International Database Engineering & Applications. 1-8.

Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient scalable multi-
attribute index selection using recursive strategies. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 1238-1249.

Gary Valentin, Michael Zuliani, Daniel C Zilio, Guy Lohman, and Alan Skel-
ley. 2000. DB2 advisor: An optimizer smart enough to recommend its own in-
dexes. In Proceedings of 16th International Conference on Data Engineering (Cat.
No. 00CB37073). IEEE, 101-110.



	Abstract
	1 Introduction
	2 Methodology
	2.1 ① Information Extraction
	2.2 ② Prompt Generation
	2.3 ③ LLM-based Index Selection

	3 Demonstration
	3.1 Visualization of Index Selection of LLM4IA
	3.2 Comparative Evaluation

	4 Conclusion
	5 Acknowledgments
	References



