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Abstract Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific liter-

ature and datasets. Artificial intelligence (AI), particularly large language models (LLMs), has the potential to revolutionize

this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary ex-

pertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first

end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments.

BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing,

experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hier-

archical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical

complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces

novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves

an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols, on

average, outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential

to reduce researchers’ workloads and accelerate biomedical discoveries, paving the way for future innovations in automated

research systems.
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1 Introduction

Biomedical research is a fundamental driving force behind human development. By uncovering the
underlying mechanisms of diseases [1], biomedical research improves global health, extends life expectancy,
and enhances life quality. It also fuels economic growth, scientific advancements, and societal well-being.

Traditional biomedical research relies heavily on labor-intensive processes like manual data collection,
comprehensive literature reviews, complex experimental designs, and extensive data analysis. Although
the conventional approach has facilitated notable breakthroughs in disease prevention [2–4], diagnosis [5–
7], and treatment [8–10], it struggles to keep pace with the data explosion. For example, PubMed now
hosts over 37 million citations1), overwhelming researchers and making it challenging to stay updated
with the latest findings. Moreover, traditional research often demands repetitive tasks or interdisciplinary
skills, such as coding and hindering research efficiency.

Artificial intelligence (AI) is emerging as a valuable tool in biomedical research, enhancing specific steps
in the research pipeline. For instance, novel machine learning models are designed to analyze data and
make decisions, including predicting drug-target from compound-protein interactions [11–13], detecting
the presence of cancer from medical images [14, 15], and estimating patient outcomes from medical
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Figure 1 Example of experimental protocol generation. For the same user input, (a) illustrates an experimental protocol generated

by a single LLM (GPT-4o), while (b) demonstrates a protocol generated by BioResearcher.

history [16–18]. The advancement of large language models (LLMs) further supports AI’s role in academic
writing [19, 20] and literature summarizing [21]. However, biomedical research is still time-consuming.
The potential for automating the entire biomedical research process remains largely unexplored [22],
which allows researchers to concentrate on innovation and strategic decision-making.

Despite the potential of AI, several critical challenges must be overcome to build a fully automated
biomedical research assistant.

Firstly, biomedical research demands a multidisciplinary skill set, including a fundamental understand-
ing of biology and medicine, comprehension of literature for available datasets and effective approaches,
proficiency in programming languages to write code, and knowledge of statistics to interpret results.
General-purpose LLMs like OpenAI’s GPT-4o lack the domain-specific expertise needed for these tasks.
For instance, as illustrated in Figure 1(a), when GPT-4o is asked to design a biomedical protocol for
a specific research objective, the response is not executable due to missing details such as datasets and
operational guidance.

Secondly, biomedical research is logically complex. On one hand, it requires a coherent understand-
ing of literature with intricate logical structures, yet existing LLMs perform poorly on critical literature
analysis. For example, irrelevant information in lengthy research papers causes catastrophic forgetting
of important facts. On the other hand, biomedical research involves breaking down complex problems
into logically related subtasks. For example, studying pyroptosis in dedifferentiated liposarcoma (DDL)
involves multiple interconnected tasks like analyzing the expression variation and genetic changes of
pyroptosis-related genes (PRGs), performing immune infiltration analyses, identifying PRG-related clus-
ters, characterizing the tumor microenvironment within these clusters, and developing a prognostic gene
model based on these clusters [23]. Each task is logically interdependent, making planning and execution
by LLMs challenging.

Lastly, it is crucial to measure the performance of the research assistant. From the quality control
perspective, assessing the results of intermediate steps ensures that the research assistant provides reliable
final outputs. From the evaluation perspective, detecting the errors of end-to-end responses helps to
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identify the weaknesses and strengths of different systems and sheds insight for future improvements. Due
to the complexity of biomedical research tasks, manually conducting fine-grained evaluation is infeasible;
for example, researchers are not patient with labeling errors in an experimental protocol line by line.
Current automatic evaluations, such as ROUGE [24] and BLEU [25], compute the overlap between the
LLM’s generation and the ground-truth answer, which is unavailable. Furthermore, they focus on textual
quality while ignoring aspects such as technical completeness and correctness, which are more important
in assessing the quality of experiment protocols.

This paper introduces BioResearcher2), an intelligent research assistant designed to automate the entire
biomedical research process. BioResearcher can take any research objective and conditions the user
provides, survey relevant literature, design an appropriate experiment protocol3), and write programs to
implement the protocol and derive meaningful conclusion. BioResearcher develops novel techniques to
address the three challenges above.

BioResearcher employs a modular multi-agent architecture to integrate multidisciplinary skills. It com-
prises four modules: search, literature processing, experimental design, and programming, each contain-
ing multiple specialized agents. These agents specialize in distinct tasks, including literature and dataset
search, filtering, reports generation from literature, reports analysis, experimental protocol design, dry
lab experiment extraction, code writing and execution, and review. The specialization adapts LLMs
to different task requirements; e.g., a search agent is more professional in retrieving relevant literature
than a general-purpose LLM. The collaboration among multiple agents and modules increases the overall
performance. As illustrated in Figure 1(b), the experimental design module generates a comprehensive
experimental protocol detailing specific datasets, methodologies, and standards. This achievement is facil-
itated by the effective collection, processing, and analysis of relevant literature and datasets by the search
and literature processing modules. Compared with agent systems employing planning agents powered by
LLMs to determine agent participation and intervention strategies throughout task execution [26,27], our
system adopts a professionally designed and rigorously structured workflow framework that constrains
agent generation processes through systematic procedural constraints, thereby ensuring enhanced stabil-
ity and reproducibility. Furthermore, our framework diverges from existing human-curated multi-agent
systems [28–30]. In computer science and other fields, current studies often prioritize novelty. However,
due to the nature of our biomedical applications, we introduce the literature processing module to ensure
the reliability and feasibility of our approach in the biomedical domain.

BioResearcher adopts a hierarchical learning approach to decompose the complex logical structure.
The literature processing module standardizes relevant papers into experimental reports to minimize
unimportant information and provides analyses. The experimental design module then uses the retrieval-
augmented generation (RAG) [26] technique, aided by the analyses, to learn knowledge at different levels
of granularity, including relevant headings, outlines, and experimental details, thereby facilitating the
design of new protocols in a stepwise manner.

BioResearcher introduces an LLM-based reviewer to provide feedback and refine itself for in-process
quality control. This approach allows for the ongoing assessment of the generated content, ensuring
it meets quality standards and aligns with research objectives. Moreover, we propose new evaluation
metrics to assess the quality of the end-to-end performance, including five dimensions for protocol quality,
completeness, level of detail, correctness, logical soundness, and structural soundness, and two metrics
for experimental automation: execution success rate and error level.

Our contributions are summarized as follows.

• We present the first end-to-end automated system designed specifically for biomedical research. At
its core is a multi-agent framework powered by LLMs, which decomposes complex research tasks into
specialized subtasks. By enabling collaborative execution among domain-specific agents, the system
enhances overall performance, significantly reduces manual effort, and improves efficiency.

• We propose new evaluation metrics to assess the quality of the end-to-end performance, including
five dimensions for protocol quality and two metrics for experimental automation.

• Our system successfully achieves an average execution success rate of 63.07% across eight previously
unmet research objectives composed by senior researchers, with protocols outperforming typical agent
systems by 22.0% regarding the proposed quality metrics.

2) Our code and prompts are available at https://github.com/XMUDM/BioResearcher.

3) Our effort primarily focuses on dry lab experiments, which rely on computational methods to conduct bioinformatics analysis.

Future research endeavors may extend to wet lab experiments.

https://github.com/XMUDM/BioResearcher
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• This study explores BioResearcher’s potential to automate biomedical research, paving the way for
future innovations and accelerating discoveries.

2 Related work

AI has improved biomedical applications for processing different textual data [31–33]. Conventionally,
small-scale language models [34] were used, but scaling laws indicate that increasing model parame-
ters brings enhanced performance, leading to superior reasoning capability and higher answer accuracy.
Therefore, we have seen large amounts of applications based on LLMs [35–39].

Biomedical LLMs. LLMs are generally pre-trained on vast open-domain corpora but lack domain-
specific knowledge. To enhance domain-specific performance, several techniques are used. (1) Fine-
tuning optimizes the total or a part of parameters to improve the model performance on a small, specific
dataset [35,37,38,40]. (2) Reinforcement learning with human feedback (RLHF) or AI feedback (RLAIF)
updates the model parameters to align LLM’s responses with responses from humans or a teacher-model
via a reinforcement learning framework [36, 39, 41]. (3) Prompt engineering [42] involves giving instruc-
tions or examples to LLM to enforce rules or enhance reasoning [43–45]. These methods mainly focus
on question-answering (QA) tasks, like answering medical consultations [36], taking medical examina-
tions [35], and summarizing clinical reports [33]. However, LLMs still struggle with complex tasks that
require more profound understanding and reasoning [22]. Compared with QA tasks, responses for sci-
entific research tasks are much longer and more professional and involve intricate, long logical chains.
Fine-tuning and RLHF are infeasible due to the lack of instruction data, and simple prompt engineering
cannot empower LLM with deep logical reasoning for professional topics.

LLM-based agents for research. LLM-based agents offer significant advantages over the direct use
of LLMs, such as actively acquiring information, interacting with environments, and stronger reasoning
and planning [22]. LLMs can function as a single agent by being assigned with specific roles through
in-domain fine-tuning [29] or role-specific prompts [33, 46–51]. In contrast, a multi-agent system (MAS)
comprises multiple LLM-based agents, enabling task completion through various cooperative methods.
One approach involves assigning distinct roles to agents, who then reach a consensus through negotiation,
like discussing clinical diagnosis via several medical experts [52–54]. However, the consensus can be
unreliable due to potential instability and hallucinations from LLMs. Alternatively, MAS can distribute
complex tasks into sub-tasks among agents, such as dividing a scientific discovery process into creating
ideas, experimentation, and writing [28]. MAS is promising for tasks with complex logical chains and
highly detailed requirements. After decomposing tasks and assigning them to agents, we can synthesize
the results effectively. Furthermore, employing a professional and rigorous workflow framework helps
constrain the agents’ generative processes, ensuring highly reliable outcomes.

AI for research. AI for research (AI4R) [55] has gained significant attention, particularly in au-
tomating scientific workflows. Existing studies are categorized into four automation levels [22]: Level 0
automation performs specific predefined tasks [56]; Level 1 automation designs simple experimental pro-
tocols with in-silico or lab tools [46,57]; Level 2 automation develops rigorous experimental protocols and
employs statistical methods for hypothesis evaluation [28,58]. Level 3 agents, which remain undeveloped,
are envisioned to discover new methods and employ diverse techniques to measure biological phenomena.

Our work belongs to Level 2 automation and differs from current AI4R systems. (1) The system is not
limited to solving a specific biomedical task. For example, CRISPR-GPT [59] customizes the workflow
only for gene editing experiments. (2) We automate the entire process without manual maintenance of
a template database like Genesis [60]. (3) Most Level 2 AI4R systems are designed for computer science
(CS) [28–30,61,62], where public datasets like OpenReview are available, facilitating training and evalu-
ation. Such extensive review data are lacking in the biomedical domain. (4) Existing studies emphasize
novelty while we focus on reliability and feasibility, necessitating fine-grained literature analysis. For
example, AIScientist [28] improves existing solutions based on a given task and initial experimental code.
Conversely, BioResearcher designs a series of executable experiments for a new research subject.
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Figure 2 Flowchart of BioResearcher. On the left, the system is divided into four main modules: search, literature processing,

experimental design, and programming. The right side illustrates the system’s workflow: it initiates with the search module that

retrieves pertinent literature and datasets based on the user input. The literature processing module then converts the obtained

literature into standardized experimental reports, analyzing them against the research objective, conditions, and requirements. It

also works with the search module to evaluate the applicability of the datasets mentioned in the reports. These processed reports,

analyses, and suitable datasets are then sent to the experimental design module, which designs an experimental protocol aligned

with the research objective. Finally, the programming module extracts the dry lab experimental tasks from the protocol and

generates executable code to perform these tasks. The components underlined are agents based on LLMs.

3 BioResearcher

3.1 Framework overview

BioResearcher is designed to automate the research process for biomedical studies. Users provide a
research objective4) and the conditions under which the experiments will be conducted. Users can also
specify the research requirements, such as desired experimental steps or outcomes. All user input is in
natural language.

To emulate the workflow of human researchers, BioResearcher consists of four primary modules: search,
literature processing, experimental design, and programming. As shown in Figure 2, the research process
begins with the search module, which comprehends the user input, generates appropriate queries, and
searches for relevant research papers and datasets from online repositories. The retrieved literature is
then filtered, downloaded, and forwarded to the literature processing module. Here, each research paper
is standardized into an experimental report, and each report is analyzed in light of the user-specified
objective, conditions, and requirements. This module also interacts with the search module to identify
the usability of the datasets mentioned in the reports. The processed reports, analyses, and datasets are
then forwarded to the experimental design module, which constructs an experimental protocol. Finally,
the programming module extracts a sequence of dry lab experiment tasks from the protocol and generates
accurate and executable codes for these tasks.

3.2 Search

Scientific research initiates with a thorough review of related literature. Literature searching is especially
important in BioResearcher because, unlike previous studies that use literature surveys to identify research
gaps and propose novel ideas, BioResearcher ensures the process is built upon existing knowledge and
preserves the reliability of the output. The search module comprehensively explores pertinent literature
and datasets throughout various research phases. Its internal procedure is as follows.

4) Since our goal is to automate the entire research process, BioResearcher currently only supports studies involving only dry

lab experiments. Studies that require wet experiments are out of the scope because wet experiments generally require human

operation, e.g., hands-on tasks in a laboratory setting, and cannot be fully automated.
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Figure 3 Example of query generation.

(1) Query generation. Searching directly with the user input can yield imprecise results for two
reasons. Firstly, the user describes the research objective and conditions in natural language, while
most databases use Boolean query logic, making it difficult to retrieve results that completely match
the lengthy user input. Secondly, the user intention is provided with key high-level concepts, while the
literature may use a more detailed description or synonyms, making it challenging to obtain all relevant
materials. Thus, query rewriting is crucial [63]. However, manually crafting effective queries costs a
lot of expertise, labor, and time [64]. To address this, the search module in BioResearcher employs
an LLM-based query generator agent to create Boolean queries based on the user input. As displayed
in Figure 3, the query generator extracts keywords to improve the retrieval accuracy. It also performs
synonym expansion (e.g., expanding “Single-cell sequencing” with “scRNA-seq”) to improve the retrieval
recall. These structured queries allow the module to interpret the research objective effectively and focus
on the most relevant materials.

(2) Retrieval. The module interfaces with databases through their APIs, enabling the retrieval of
relevant literature and datasets from established repositories such as PubMed Central (PMC), PubMed,
and GEO. Additional databases can be integrated as needed to expand the system’s capabilities.

(3) Filtration. To retain only the most relevant and useful materials for further stages, our system
employs an LLM-based filter agent to filter the returned research articles and datasets. For the research
articles, we define a set of criteria detailed in Appendix D (Table D1). The filter examines the titles and
abstracts of each article to determine their potential contribution to the research objectives. Each article
receives a helpfulness score ranging from one to five. Articles scoring above four are downloaded and
forwarded to the literature processing module. For the datasets, the filter assesses its usefulness based
on the metadata (i.e., the attached online descriptions) of datasets and assigns a binary usability score.
The useful datasets’ descriptions are forwarded to the experimental design module.

The search module thus ensures that subsequent stages of BioResearcher are provided with high-quality,
targeted resources, establishing a robust foundation for further processes.

3.3 Literature processing

Literature comprehension can be challenging for researchers and LLMs because the research papers are
massive, lengthy, and unstructured, with complex logic. To streamline literature comprehension, enhance
comprehension, and provide valuable references for experimental design, we introduce the literature
processing module. This module first standardizes research papers into highly structured experimental
reports and analyzes them systematically. It then interacts with the search module to identify the usability
of the datasets mentioned in the reports. Thus, this module operates through two primary phases: report
generation and report analysis. Figure 4 illustrates an example of the module in operation.

Report generation. Each biomedical research paper contains experiment-related contents scattered
across various sections. We aim to extract and reorganize these contents into a condensed, highly struc-
tured experimental report. Doing so brings three advantages. Firstly, the experimental report is shorter
than the original paper, enhancing the efficiency of LLMs. Secondly, uniform formatting across reports
provides logical structure coherence and format consistency, ensuring the LLMs grasp a big-picture idea
of the most commonly acknowledged methods. Finally, the report is modularized with sections focusing
on different aspects of the experiments, making it inherently suitable as a unit of analysis and a segment
within RAG techniques.

Consequently, we first introduce the hierarchical report generation process in this module, which con-
sists of the following steps, carried out by an LLM-based report generator agent. (1) First-level heading
generation. The first-level headings for the experimental report are generated based on the paper’s
content, establishing the foundation for the report’s overall structure. (2) Outline development. A com-
prehensive outline of the experimental report is developed, guided by the first-level headings and the
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Figure 4 Example of literature processing. (a) Workflow for report generation; (b) example of report analysis.

paper’s content, offering a structured framework for detailing experimental procedures. (3) Step extrac-
tion. Experimental steps are extracted from the paper and organized according to the generated outline.
(4) Granular information extraction. Detailed information about each experimental step is extracted
from the paper. This step is critical for refining the experimental report and ensuring that all essential
details are included for a thorough understanding of the experimental procedures. (5) Results extraction.
Results related to each experimental step are extracted, facilitating the interpretation of outcomes and
their relevance to the research objective.

To mitigate potential performance degradation caused by excessively long input contexts [65], the
report is divided into sections corresponding to the first-level headings, allowing parallel processing and
enhancing efficiency.

Report analysis. Drawing inspiration from the chain of thought (COT) framework [66], which
emphasizes step-by-step reasoning, we recognize that analyzing reports in relation to research objectives
is a critical step in designing new experiments. Consequently, we introduce a report analysis process
following report generation. Specifically, an LLM-based analyst agent evaluates each section of the
experimental report for its referability, considering the research objective, conditions, and requirements.
The analyst also provides suggestions for references and modifications, akin to proposing innovations on
existing methods. Additionally, this module interfaces with the search module to identify usable datasets
within the report, using regular expressions to extract dataset identifiers (IDs) for retrieval from the
database while bypassing the query generation step. As mentioned above, the usefulness of each dataset
is determined based on its description, and useful datasets are then integrated with previously collected
ones.

To ensure the quality and accuracy of the generated outputs, an LLM-based reviewer agent is intro-
duced to interact with the experimental report generator and analyst agents at each step. Outputs are
refined based on the reviewer’s feedback until final approval.

To provide fine-grained retrieval that eliminates irrelevant information, upon a comprehensive review of
the relevant literature, we extract and integrate the sections deemed highly referential during the analysis
phase, along with their corresponding analysis content from all reports. This consolidated information
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Figure 5 Demonstration of experimental design.

serves as a reference for the experimental design module.

3.4 Experimental design

Scientific findings in biomedical research frequently face reproducibility issues, wasting resources and
time while undermining the credibility of scientific outcomes [67]. A well-designed experimental protocol
is crucial for obtaining reliable results and optimizing resource use [68]. Therefore, we develop the
experimental design module, which uses an LLM-based experiment designer agent to create scientific
and reproducible protocols. We propose a hierarchical learning approach to ensure the rationality of
the logical structure of the generated experimental protocols. This method employs the RAG technique
aided by the analysis (i.e., using relevant reports’ sections with high referability as reference materials),
enabling the model to subsequently learn first-level headings independently, then outlines, and then
experimental details from the reorganized reports. The design process is structured into three essential
steps, as demonstrated in Figure 5.

(1) First-level heading design. The designer begins by reviewing the first-level headings and
corresponding analyses of relevant experimental reports, paying particular attention to the reference
and modification suggestions. Integrating this information with the research objective, conditions, and
requirements, the designer crafts first-level headings for the new protocol. Additionally, for each section,
the designer provides a rationale detailing the section’s purpose, design rationale, and reference source.
This step is crucial as it lays the foundation for the experimental framework, ensuring alignment with
the research objective.

(2) Outline generation. The designer then constructs a brief protocol outline, referencing the
outlines of pertinent reports and analyses. The designer also includes the sources of reference following
the outlines. The generated outline serves as a framework for organizing the protocol.

(3) Generation of implementation details. Finally, the designer generates complete and specific
implementation details for each part of the experimental protocol. Relevant sections of experimental
reports and corresponding analyses are extracted based on the reference sources provided in the previous
step. This information, along with the useful datasets, the protocol outline, and the summaries from
earlier sections, is incorporated to produce a detailed protocol. The emphasis on detail and specificity
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ensures the reproducibility of the experiments, enabling researchers to follow the protocol precisely in
subsequent studies.

Furthermore, an LLM-based reviewer agent, like in the literature processing module, is involved at
each stage, providing continuous feedback to refine the design. This iterative process ensures the quality
and accuracy of the final experimental design, thus contributing to the overall robustness of the research.

3.5 Programming

Programming in biomedical research presents a unique challenge to researchers, necessitating a com-
bination of programming proficiency and domain-specific knowledge. To address this, we propose the
programming module, which is crucial in enhancing the reproducibility of experimental designs and au-
tomating systems.

To reduce the complexity of coding and debugging, the programming module employs an LLM-based
dry lab experiment extractor agent to derive a series of dry experiment tasks from the designed experi-
mental protocol. Each task includes a task ID, a description of the task, and the types and descriptions
of the input and output.

Subsequently, this module utilizes an LLM-based code generator agent to create R language code for
each task. More programming languages will be supported in future work. To ensure code executability,
code execution within a Docker container is employed, which provides a controlled, isolated environment.
Execution results, whether error reports or successful outputs, are fed back to the code generator. Based
on these results, the code generator determines the next course of action: either further modification
of the original code or termination of the generation process. Through this iterative cycle, the system
refines the code until it achieves correctness and operational validity.

By systematically bridging the gap between experimental design and execution, this module signifi-
cantly contributes to the efficiency and efficacy of the research workflow, making it a critical module of
the system’s overall functionality.

4 Evaluation metrics

Quantitative evaluation metrics are demanded to fully reflect a research assistant’s ability to advance
the automation of biomedical research. However, no existing study has proposed such metrics. In this
context, we propose a comprehensive method for assessing the quality of the resulting experimental
protocols and programs.

4.1 Protocol evaluation

We evaluate experimental protocols from five dimensions: completeness, level of detail, correctness, logical
soundness, and structural soundness. The definitions and formulas for these five metrics are as follows.

• Completeness. Completeness assesses how thoroughly each section of the protocol is described,
considering the necessary steps that should be added to achieve the design purpose of this part. The
formula for completeness is given by

Completeness =

∑m

i=1 n
i
es

∑m

i=1 n
i
ns

=
nts

nts + nas
, (1)

where m represents the number of sections in a protocol. Here, ni
es refers to the number of existing steps

in the i-th section, while ni
ns denotes the total necessary steps for that section. Additionally, nts indicates

the total number of steps in a protocol, and nas represents the number of steps that need to be added.
• Level of detail. The level of detail measures the degree to which a protocol provides sufficient

information for each step, ranging from 0 (no detail) to 1 (fully detailed).
• Correctness. Correctness assesses the proportion of protocol steps that are free from factual errors.

Our analysis reveals that protocols with shorter steps tend to exhibit higher correctness scores, as the
probability of factual errors increases with longer and more detailed steps. Drawing inspiration from the
BLEU [25] metric in machine translation, we also introduce a brevity penalty (BP) for shorter steps. The
BP is constrained to a minimum of 0.5, and the formula is as follows:

BP =

{

1, if lsteps > L,

max(e
(1− L

lsteps
)
, 0.5), if lsteps 6 L,

(2)
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Table 1 Grading criteria and error types for R code execution.

Level Description Example error types

1 Minor errors Missing or incorrect file paths, missing necessary libraries or packages, network timeouts

2 Moderate errors Syntax errors, incorrect function or variable names, data type mismatches

3 Major errors Parameter mismatches, index out of bounds or invalid index, out of memory

4 Severe errors Incorrect algorithms or logic, disorganized code structure, key components missing or incorrect

where lsteps represents the length of steps, quantified by the number of sentences containing more than
six words within each step (this criterion is employed to exclude steps’ titles from the count). The
parameter L denotes the average number of sentences within a step, calculated to be 4.42 from 315
protocols generated by different methods.

Then, the formula for Correctness is defined as

Correctness = BP ·

ncs

nts
, (3)

where ncs denotes the number of the correct steps.
• Logical soundness. Logical soundness evaluates the proportion of steps that are placed in a

reasonable order within a protocol. Reasonable steps are those that are logically ordered and appropriately
positioned. The formula for Logical Soundness is given by

Logical Soundness =
nrs

nts
, (4)

where nrs denotes the number of reasonable steps.
• Structural soundness. Structural soundness evaluates the logical coherence and organizational

integrity of a protocol’s overall framework, with scores from 0 (completely unsound) to 1 (perfectly
sound).

To speed up evaluation, we employ an LLM (GPT-4o) as the judge to evaluate the experimental
protocols and obtain the above five metrics independently. For completeness, the LLM generates the
additional steps required to achieve the design purpose of each section. For correctness and logical
soundness, it evaluates the accuracy and coherence of each step. We then calculate these three metrics
using their respective formulas. For the remaining two metrics, level of detail and structural soundness,
the LLM directly generates the corresponding scores. Ultimately, the overall score for the experimental
protocol is determined by summing the scores of all five dimensions.

4.2 Program evaluation

As a critical component of research automation, the extent to which the Programming module can
augment research efficiency deserves attention. As detailed in Subsection 3.5, this module generates
tailored code for each dry lab experiment task. To assess its effectiveness, we propose two scoring systems.
The first computes the execution success rate, reflecting the percentage of successfully completed tasks
per protocol. The second metric assigns error levels to the tasks that remain incomplete, reflecting the
severity of errors encountered during code execution. The detailed grading criteria are outlined in Table 1.

5 Experiment

In this section, we design comprehensive experiments to answer the following research questions.
RQ1: How does BioResearcher perform in automating the entire biomedical research process?
RQ2: How does each component of BioResearcher perform in their specific sub-tasks, including the

search module (RQ2.1), report generation module (RQ2.2), and experimental design module (RQ2.3)?

5.1 Experiment setup

In our experiments, we utilize the GPT-4o model as the foundational LLM for all the agents in BioRe-
searcher. The temperature settings for various agents within the system are as follows: the query gener-
ator is configured with a temperature of 0.7 to introduce a moderate level of variability in the generated
queries. Conversely, the reviewer and the LLM used for evaluation are set to a lower temperature of
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Table 2 Quality of experimental protocols generated by various systems. The best results are in bold. ‘Detail’ and ‘Structure’

refer to ‘level of detail’ and ‘structural soundness’, respectively.

Method Completeness Detail Correctness Logical soundness Structure Overall lsteps ntotal steps

RAG 0.405 0.687 0.483 0.973 0.908 3.456 1.286 9.167

ReAct 0.364 0.577 0.484 0.963 0.897 3.285 1.237 5.792

Plan and execute 0.380 0.587 0.483 0.965 0.900 3.314 1.194 6.375

BioResearcher 0.659↑0.254 0.893↑0.206 0.895↑0.411 0.953↓0.020 0.891↓0.017 4.292↑0.836 7.327 33.958

0.1 to ensure more deterministic and consistent evaluations. All other agents operate at a temperature
of 0.5, balancing between randomness and determinism to maintain overall coherence and reliability in
the agents’ outputs. Additionally, the query generator generates five queries for each user input, with
a maximum retrieval quantity of 10 per query for each database. The maximum number of interaction
rounds for the LLM reviewer in a single session is 6.

Baselines. We evaluate BioResearcher by comparing it with three well-known agent systems.
(1) ReAct [69], which integrates reasoning and action within LLMs to effectively manage complex rea-
soning and decision-making tasks. (2) Plan-and-Execute [27], which utilizes an iterative framework to
accomplish tasks through sequential planning and execution. (3) RAG, which employs a naive RAG
module to search for relevant content and generates the answer in a single step. Appendix B provides a
detailed description of the implementation of these baseline systems.

5.2 Performance of end-to-end automation

We collect eight ongoing research objectives from a biomedical laboratory to ensure that no published
work has addressed these research objectives, as detailed in Appendix C (Table C1). Each objective is
processed for three runs to minimize randomness. We evaluate three baseline systems and our system
for designing and executing experiments for these objectives. We equip the React and Plan-and-Execute
systems with four tools: (1) a search tool utilizing the NCBI API5) to retrieve descriptions of relevant
papers, (2) a download tool for acquiring these papers and storing them in a chunked and vectorized
format, (3) a search tool using the NCBI API to obtain descriptions of relevant datasets and storing
them in a chunked and vectorized format, and (4) a search tool that extracts pertinent content from the
resulting vector database.

5.2.1 Performance by automatic evaluation

Table 2 presents the average scores for protocols generated by different systems, including completeness,
level of detail, correctness, logical soundness, and structural soundness. To minimize single-model evalu-
ation bias, we employed four LLMs (GPT-4o, O3-mini-2025-01-31, Gemini-2.0-Flash, and DeepSeek-V3)
for assessment, reporting their average scores across five distinct metrics. The detailed scoring of each
model can be found in Appendix F (Table F1). We also calculate the overall performance, the aver-
age number of sentences per step (lsteps), and the average number of steps per protocol (ntotal steps).
(1) The results highlight BioResearcher’s exceptional performance in completeness, level of detail, and
correctness, surpassing the best baseline by 0.254 (62.7%), 0.206 (30.0%), and 0.411 (84.9%), respectively.
(2) Our system is comparable to the best baseline in logical soundness and structural soundness, exceed-
ing 0.89, consistently maintaining a high performance in these aspects. (3) Furthermore, the protocols
generated by BioResearcher have significantly more sentences per step and steps per protocol, 5.9× and
4.8× greater than the average performance of different baselines, respectively, indicating the generation of
more detailed and comprehensive protocols. (4) The comparative analysis of the three baselines indicates
that RAG outperforms the other two iterative agent systems. This superiority can be attributed to the
fact that, in the long-context environment characterized by iteration and lengthy retrieved information,
the summarization and integration capabilities of the latter two systems degrade, resulting in the loss
of substantial amounts of valuable information in the final generated protocol. In contrast, we design
tailored workflows to effectively integrate results from multiple modules and steps, thereby preserving
critical information throughout the integration process. A case comparison of protocols from the four
systems is illustrated in Appendix F (Figure F1).

5) https://www.ncbi.nlm.nih.gov/home/develop/api/.

https://www.ncbi.nlm.nih.gov/home/develop/api/
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Figure 6 Execution success rate. Figure 7 Score frequency distribution.

Table 3 Performance of the LLM judge, as evaluated by human experts. Human consistency is measured using Fleiss’ kappa.

‘Detail’ and ‘Structure’ refer to ‘level of detail’ and ‘structural soundness’, respectively.

Completeness Detail Structure Logical soundness Correctness Avg.

LLM’s accuracy (%) 91.1 88.9 75.9 75.0 71.3 80.4

Human consistency 0.66 0.92 0.90 0.88 0.95 0.86

Notably, the first three metrics are crucial for the feasibility of protocols. Consequently, in subsequent
code generation and execution, our experiments reveal that the baselines almost invariably fail to produce
executable code, with success rates near zero. Our approach, however, achieves an average execution
success rate of 63.07% across eight topics, with a maximum of 87.50%, as detailed in Figure 6.

Furthermore, we conduct an error analysis of tasks that failed during code execution. We assess
the corresponding code using the criteria in Table 1 and the error messages. Figure 7 illustrates the
distribution of error levels. Across eight objectives, the majority of errors are minor errors (Level 1
errors), with an average portion of 67.19%, while severe errors requiring significant manual correction
account for only 5.46%. This indicates that even when some tasks are not executed successfully, they can
be corrected with minimal human intervention.

These findings suggest that the programming module has significant potential to enhance research
efficiency. While some tasks still experience errors, the majority are successfully completed without the
need for human intervention. This greatly reduces the time researchers spend on coding and debugging.
By further optimizing the module to reduce error rates, research automation can be improved, thereby
substantially increasing overall research productivity.

5.2.2 Quality of automatic evaluation

To validate the reliability of evaluations conducted by the LLM judge, we engage three domain ex-
perts to independently assess the LLM judge’s evaluation outcomes. Given the time-consuming and
labor-intensive nature of manual evaluation, we employed only GPT-4o, the best LLM currently, as the
foundation LLM in BioResearcher to conduct multiple sampling generations on one research objective,
resulting in the generation of 18 protocols used in this experiment. This focused approach also reduces
evaluation complexity while enhancing assessment accuracy through deeper contextual understanding by
experts.

We engage three domain experts to systematically review the LLM judge’s evaluation rationales and
results for each protocol across five dimensions. This process involves verifying the factual accuracy and
logical credibility of the LLM’s outputs. Expert judgments are aggregated through majority voting to
determine the validity of each step-level evaluation. The final analysis quantifies the LLM’s assessment
accuracy across five dimensions.

Results are shown in Table 3, demonstrating that the LLM achieves an overall accuracy of 80.4% in
protocol evaluations, with exceptional performance in completeness (91.1%). These metrics confirm the
model’s capacity to deliver comprehensive and efficient automation assessments. We also calculate the
inter-expert consistency using Fleiss’ kappa to ensure evaluation reliability. Substantial agreement is
observed across all dimensions: detail (κ = 0.92), structure (κ = 0.90) and correctness (κ = 0.95) reaches
near-perfect consensus, while other dimensions maintain κ > 0.65. The p-values for consistency across
the three dimensions are uniformly below 0.05. This agreement underscores the methodological rigor and
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Table 4 Quality of experimental protocols evaluated by human experts. Consistency for the correctness metric is measured using

Fleiss’ kappa, while consistency for the detail and structure metrics is assessed using Kendall’s W. ‘Detail’ and ‘Structure’ refer to

‘level of detail’ and ‘structural soundness’, respectively.

Correctness Detail Structure

Human experts 0.85 0.87 0.87

Human consistency 0.85 0.68 0.61

Figure 8 Comparison of the effects of LLM-generated queries and human-generated queries. (a) Comparison of the number of

useful papers retrieved by LLM- and human-generated queries; (b) comparison of the number of useful datasets retrieved by LLM-

and human-generated queries.

reproducibility of the evaluation framework.

5.2.3 Performance by manual evaluation

To further validate the quality of the protocols generated by BioResearcher, we engage three domain
experts to independently assess the 18 original protocols generated on one research objective, same as
in Subsection 5.2.2, using consistent criteria in Subsection 4.1. Concentrating on one research objective
mitigates assessment complexity and enhances accuracy through deeper contextual understanding by the
experts.

We employ experts to evaluate these protocols across three dimensions: correctness, detail, and struc-
ture, following the criteria in Subsection 4.1. Specifically, the experts systematically evaluate each step
of the protocols, determining whether it is correct or not to derive the ncs in (3) for calculating the cor-
rectness. For the remaining two metrics, the experts assign a direct score to each protocol. We exclude
completeness and logical soundness due to their susceptibility to subjective interpretation, as different
researchers may design divergent yet valid experimental approaches. We then analyze inter-rater relia-
bility using appropriate statistical measures. For correctness, which quantifies the proportion of correct
experimental steps in a protocol, we employ Fleiss’ kappa. For detail and structure (ordinal scoring),
we employ Kendall’s W. As shown in Table 4, the results in three dimensions are all over 85%, and all
consistency metrics exceed 0.6, with correctness over 0.8. The p-values for consistency across the three
dimensions are uniformly below 0.05. These results confirm strong consensus among evaluators across all
dimensions.

5.3 Performance of search module

5.3.1 Effect of generated queries

We conduct a comparative experiment to assess the effectiveness of LLM-generated queries. An LLM
and three human participants independently generate five queries for each user input, which specifies a
research objective, conditions, and requirements. The evaluation metric is the number of relevant papers
or datasets retained after retrieval and filtering. The LLM generates queries three times, with the results
averaged, and a similar average is calculated across the three human participants. This experiment,
covering ten research objectives listed in Appendix C (Table C2), presents its results in Figure 8.

LLM-generated queries generally outperform human-generated ones across most objectives. (1) In
Figure 8(a), which compares the number of useful papers retrieved, the LLM-generated queries show
significantly stronger performance in objectives 3 and 7, but the increases are modest on objectives 2, 5,
6, and 9. Human-generated queries perform slightly better in three objectives, suggesting that human
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Table 5 Evaluation results of the LLM-based filter agent. Human consistency in paper reviews is measured by Kendall’s W, and

in dataset reviews, Fleiss’ kappa is employed. All p-values are less than 0.05, indicating statistical significance. LLM accuracy is

calculated using the ground truth from the majority of human ratings.

Obj.1 Obj.2 Obj.3 Obj.4 Obj.5 Obj.6 Obj.7 Obj.8 Obj.9 Obj.10 Total

Paper reviews

Human’s consistency 0.67 0.80 0.84 0.91 0.86 0.80 0.75 0.75 0.80 0.68 0.82

LLM’s accuracy (%) 80 73 80 93 93 93 80 80 87 80 84

Dataset reviews

Human’s consistency 0.66 0.7 0.66 1.00 0.70 0.70 1.00 1.00 1.00 0.73 0.84

LLM’s accuracy (%) 80 80 80 80 60 80 100 80 100 100 84

intuition can offer an edge in certain cases. (2) Figure 8(b) presents a similar pattern in dataset retrieval.
The LLM outperforms human participants in retrieving useful datasets for eight objectives, particularly
objective 3, where the LLM retrieved an average of six datasets compared to the human average of one-
third. This indicates that only one human participant successfully generated queries that retrieved one
useful dataset. Conversely, for objectives such as objectives 2 and 10, human-generated queries show a
slight advantage.

However, a key advantage of LLMs lies in their efficiency and scalability. Unlike human participants,
who may take longer to generate queries and may experience fatigue, LLMs can quickly generate multiple
queries with minimal effort. Furthermore, LLMs can mitigate performance gaps in challenging objectives
by repeating query generation to increase the chances of retrieving relevant papers and datasets. This
iterative capability allows LLMs to adapt and improve results, making them highly effective for large-scale
or repetitive search tasks.

5.3.2 Effect of LLM-based filter agent

To assess the precision of the ratings assigned by the LLM-based filter agent, we engage human reviewers
to undertake a parallel assessment using the scoring criteria outlined in Appendix D (Table D1). Both
the filter agent and human reviewers evaluate the same set of papers and datasets, with their ratings
based solely on each paper’s title and abstract or the dataset’s description. We use Kendall’s W to assess
agreement for the ordinal ratings of 150 papers, as it is suitable for measuring concordance in ordinal
data. For the binary ratings of 50 datasets, we apply Fleiss’ kappa, which evaluates inter-rater agreement
for categorical data among multiple raters. These papers and datasets are sampled from the search
results of 10 topics listed in Appendix C (Table C2). Higher values in both metrics indicate stronger
agreement, enhancing the reliability of the human ratings. A majority voting mechanism establishes the
ground truth for human ratings, which serves as the benchmark for calculating the model’s accuracy. For
papers, those with scores of 4 or higher are classified as useful, while others are deemed not useful, and
the accuracy is calculated based on this binary classification. The results of this study are represented
in Table 5.

The results indicate strong consistency among human reviewers and notable accuracy of the LLM-based
filter. For paper reviews, human consistency, measured by Kendall’s W, shows an overall concordance of
0.82, reflecting substantial agreement. Based on the established human ground truth, the filter achieves
an average accuracy of 84% in classifying papers as useful or not. The filter’s accuracy peaks at 93% for
several objectives, underscoring its effectiveness in aligning with human assessments. In dataset reviews,
human consistency, assessed using Fleiss’ kappa, exhibits strong agreement with a value of 0.84. The
filter maintains an average accuracy of 84%, with perfect accuracy in specific objectives, highlighting its
reliability in dataset classification. The statistical significance of these results, confirmed by p-values less
than 0.05, reinforces the robustness of the filter in achieving high concordance with human evaluations
across both domains.

5.4 Performance of report generation

To test the impact of our hierarchical report generation method, we compare its reports against those
produced by ReAct, Plan-and-Execute, and a naive single-step LLM approach. Specifically, we standard-
ized 20 papers into an experimental report format using each method. None of the methods are equipped
with any additional tools. We prompt an LLM to evaluate the reports across four dimensions: logical
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Figure 9 Boxplot of scores for experimental reports generated by different methods.

Table 6 Scores of experimental protocols generated by various methods. The best results are in bold. ‘Detail’ and ‘Structure’

refer to ‘level of detail’ and ‘structural soundness’, respectively.

Method Completeness Detail Correctness Logical soundness Structure Overall lsteps ntotal steps

RAG 0.451 0.843 0.506 0.970 0.941 3.711 2.005 10.178

ReAct 0.445 0.778 0.516 0.972 0.926 3.636 1.949 9.244

Plan and execute 0.388 0.727 0.544 0.965 0.920 3.544 1.987 8.133

Our method 0.582 0.901 0.946 0.979 0.913 4.321 6.477 15.289

soundness, level of detail, consistency with the original paper, and readability. The model assigns a score
ranging from 1 to 5 for each dimension, with the scoring criteria detailed in Appendix D (Table D2). The
final score is calculated as the average across these four dimensions. Figure 9 presents a box plot of the
scores for reports generated by the four different methods.

As illustrated in Figure 9, our method consistently outperforms the others, demonstrating significantly
higher median values and narrower interquartile ranges, indicative of both superior performance and
stability. Conversely, the three baseline models fail to generate high-quality reports. Among them, the
Naive LLM shows the greatest score variability, ranging from 2.92 to 4.17, underscoring its instability.
In contrast, the results for ReAct and Plan-and-Execute are concentrated around 3.5 points and do not
exceed 4 points, reflecting their limited potential. We attribute the poor performance of the baselines
to their failure to generate high-quality, long-length outputs when handling the extensive context of an
entire paper. Our method, employing a hierarchical approach, enables the model to iteratively generate
shorter outputs, which are then integrated into coherent, high-quality reports. These detailed, accurate,
and well-structured reports provide excellent references for subsequent experimental design.

5.5 Performance of experimental design

To validate the efficacy of the experimental design module, we construct a comparison experiment against
the three baselines introduced in Subsection 5.1. We employ the search module and literature processing
module of BioResearcher for 15 research objectives listed in Appendix C (Table C3), thereby obtaining
reports and analyses that serve as a knowledge base. The three baselines can invoke search tools to
retrieve relevant content from this knowledge base. All experiments are repeated three times, and the
evaluation results are averaged and presented in Table 6.

The results in Table 6 show that our methodology surpasses the three baseline methods in all metrics
except structural soundness. Specifically, our approach exhibits superior performance in completeness,
level of detail, correctness, and logical soundness, exceeding the best baseline scores by 0.131 (29.0%),
0.058 (6.9%), 0.402 (73.9%), and 0.007 (0.7%), respectively. This indicates a more comprehensive, de-
tailed, accurate, and logically sound generation of experimental protocols. Although our method does
not lead in the structural soundness metric, it still achieves a commendable score of 0.913, and its overall
performance is the highest among all methods. These findings confirm that our hierarchical learning
approach, which incrementally designs experimental protocols, effectively addresses the challenges posed
by lengthy inputs and outputs, resulting in higher-quality experimental protocols.
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Table 7 Scores of experimental protocols generated by BioResearcher without experimental report analyst or reviewer. ‘Detail’

and ‘Structure’ refer to ‘level of detail’ and ‘structural soundness’, respectively.

Method Completeness Detail Correctness Logical soundness Structure Overall lsteps ntotal steps

Our method 0.582 0.901 0.946 0.979 0.913 4.321 6.477 15.289

w/o reviewers 0.550 0.884 0.901 0.970 0.918 4.223 4.583 15.333

w/o analyst 0.559 0.901 0.947 0.982 0.919 4.308 6.586 14.978

Referring to Table 2, we observe an improvement in the average performance of all three baseline
methods, particularly in completeness (0.373 to 0.428), level of detail (0.666 to 0.783), and correctness
(0.481 to 0.522). Their average lsteps and ntotal steps also increase, with the averages rising from 1.239
to 1.980 and 7.111 to 9.185, respectively. The complexity of the research objectives discussed in this
section is consistent with those in Table 2, rendering this comparison meaningful. It also underscores
the significant role of our report generation in reducing irrelevant information and providing a valuable
reference for experimental design.

Additionally, we assess the role of the LLM Reviewers in quality control for the automation of biomedi-
cal research. Removing the reviewers from both the literature processing and experimental design modules
leads to a decline in performance across most metrics, as shown in Table 7. Specifically, the inclusion
of the LLM Reviewers results in an overall score increase of 0.098, with the most notable improvement
of 0.045 in Correctness. This indicates that the LLM reviewers effectively identify and correct errors in
literature processing and experimental design, thereby enhancing the accuracy of the output. Moreover,
our system with reviewers generates more detailed and comprehensive protocols, as evidenced by higher
scores in completeness, level of detail, and the average number of sentences per step.

To evaluate the impact of the report analyst agent within the literature processing module, we remove
this agent from BioResearcher. Instead, we use the same retrieval model employed in the baselines to
extract relevant content from reports as references for protocol generation. As shown in Table 7, the
completeness score significantly declines from 0.582 to 0.559. This drop is due to the analyst providing
specific references and modification suggestions that enhance protocol completeness. However, in the
other four dimensions, removing the report analyst does not negatively affect outcomes and even results in
slight improvements. These minor improvements, averaging an increase of only 0.0025, can be considered
normal fluctuations. Furthermore, from the perspectives of system interpretability and user-friendliness,
the report analyst helps users understand how the system designs new experimental protocols based on
relevant materials.

6 Conclusion

In this study, we introduced BioResearcher, an intelligent research assistant that automates the biomed-
ical research process. Utilizing a modular LLM-based multi-agent architecture, BioResearcher addresses
the multidisciplinary demands, logical complexities, and performance evaluation challenges of biomedical
research. It automates tasks such as literature review, experimental protocol design, and code implemen-
tation, significantly improving research efficiency and reducing manual workload. We developed novel
evaluation metrics focusing on protocol quality and experimental automation, providing a robust frame-
work for assessing performance. Our results show that BioResearcher designs executable experimental
protocols with a high success rate, outperforming existing typical agent systems.

The practical significance of BioResearcher lies in its ability to automate the research pipeline, al-
lowing researchers to focus on strategic decision-making and innovation. This advancement accelerates
biomedical discoveries and future developments in automated research systems. By potentially extending
its capabilities to wet lab experiments, BioResearcher promises broader applications. This study lays the
groundwork for enhancing automated research technologies, contributing to global health and scientific
progress.
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