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Abstract

This paper focuses on dealing with the tracking challenges such as target occlusion and
deformation. It proposes a new tracking method via extracting and evaluating multi-
features for both target region and its adjacent surroundings. The multi-features separately
describe the key factors to detect target including the color feature, the shape and contour
feature, and the distributions of structure and intensity described by the Pearson Corre-
lation Coefficient. These multi-features are proposed as the basic representation of target
template and candidates and used to define a matching algorithm between them. The best
matched candidate is taken as the final tracking result. To improve the efficiency of target
template and candidates, the region of importance (ROI) for target is proposed by
evaluating the distribution of salient values on many extended regions. The ROIs produce
more accurate regions to form target template and candidates. Finally, a new template
update method is defined based on the precision of tracked result to adapt to target state
and achieve the follow target tracking. Using 25 videos in visual tracking benchmark, we
achieve the quantitative and qualitatively evaluations of 12 different trackers. Many
experiments demonstrate that our tracker produces much better results than the present
trackers in dealing with target occlusion, deformation, rotation, background clutters.
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1 Introduction

Visual tracking is a hot topic in computer vision [28]. It can compute the location and size of a
moving target in a video. Recently, visual tracking is widely used in surveillance, automatic
drive, drone, virtual reality and so on. However, the disturbs from complex backgrounds and
drastic target deformations bring many challenges in tracking such as illumination change,
object deformation, occlusion and so on. Usually, many challenges emerge simultaneously,
and this leads the robust and fast visual tracking still under successfully solved [36].

Recently, many trackers have been proposed [36]. Some trackers are defined based on
learning methods [5, 30], and some others are based on other schemes such as the correlation
filters [2, 11, 18, 33] and sparse coding [39]. The trackers via learning usually are limited by
the training model, the accurate parameters and the training data. The trackers without learning
need suitable and smart scheme to represent and forecast target. Many researches have
demonstrated the features from multi-fields of target perform effectively in identifying target
as the multi-features provide different key cues of target by describing target from different
aspects [31]. Therefore, we define multi-features to construct target template, and utilize them
on both ROI about target and the target template to detect the accurate region of target object.

This paper proposes to utilize multi-features from both the target template and its surround-
ings to detect target object. The multi-features are defined to evaluate how similar to target
template that a candidate is. Our multi-features include the color feature describing the color
distribution, the shape feature describing shape and contour of target object, and the Pearson
correlation coefficient feature about the structure and intensity distribution of target. Mean-
while, we propose the ROI about target by heuristic probing all the probable target regions,
which greatly improves the effectiveness of candidates by rejecting redundant ones. By our
multi-features, we track a target via its important cues such as color, shape, contour, structure
and intensity to get the accurate result. Compared with 11 present trackers, our tracker
produces more favorable results by the quantitative and qualitative evaluations on the tracking
Benchmark 2013 [36].

2 Related work

Visual tracking plays an important role in computer vision for its good property in computing
the continuously changing states of moving object. The unpredictable and complex variations
of target and its surroundings bring many kinds of tracking challenges including background
clutter, deformation, occlusion and so on. Although many trackers have been proposed
recently, they still cannot successfully deal with the challenges especially when they are
emerging at the same time. Most present trackers depend on some specified kind of target
feature to search and identify target object. According to the corresponding scope of target
features, the present trackers can be classified into two kinds, including the ones based on local
features [38] and the other ones based on global features [12, 13, 35].

For the trackers based on local features, they described the target by features extracted from
the local regions or components of target. For example, Adam et al. [1] use the features of
irregular patches from target region to represent target, and the target state is computed via the
vote of these patches. Jia et al. [14] suggest dividing the target into regular patches and use
sparse coding to achieve tracking. Vojir et al. [34] select the features from the successful
tracked results to detect target. Zhang et al. [38] utilize the features by HOG to describe image
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patches and used SVM to predict target. Kwon et al. [17] propose to deal with target
deformation by updating the representation and topology of its local patches. Cai et al. [4]
employ a set of superpixels to describe target and define the match algorithm of dynamic graph
to achieve tracking. Recently, more and more people try to capture the information of video
and image by learning method. For example, Liu et al. employed the multi-level learning
method [21] to analyze the image caption [20] and the video caption [37]. In tracking field,
Guo et al. [9] use the trained local features to construct and update the appearance represen-
tation of target to deal with occlusion and deformation. Grabner et al. [8] track target by a
classifier to match the key points about target between different frames. Godec et al. [7] train
an on-line Hough forest to compute the local regions of target. Maresca et al. [24] utilize the
Hough variation and key points to track target. Many trackers based on local features have
demonstrated efficiently in dealing with some challenges such as partial occlusion. However,
this kind of trackers is not robust especially in dealing with great deformation and occlusion.
The main reason is that local features often have great and fast variations to adapt to target
appearance change. These variations introduce many errors which finally lead to tracking
failure or drift.

For the trackers of global features, they get features from the whole target region or a
candidate and detect target by evaluating these global features. For example, Zhu et al. [41]
propose to combine gradient and color histogram to form the global feature to identify target.
Zhu et al. [42] define the global feature via the contours and the structure information of target.
Hong et al. [13] construct the global feature by the information of target recorded at three-time
intervals, namely the instant memory, the short-time memory and the long-time memory. To
match the global features between target and candidates, different people suggest different
methods. For example, Bolme et al. [3] suggested to use the least square error and the
correlative filters to adapt to the changes of appearance such as the scale variation of target.
Henriques et al. [11] advise to utilize the Least square classifier and the kernel related filter
(KCF) to achieve tracking. They improved the tracking accuracy and reduced the implement
time by using the cyclic matrix to describe the dense samples around the predicted target
region. The trackers based on KCF get target very quickly at even support the on-line tracking
process, but they sometimes introduced tracking drift especially when dealing with complex
surroundings or occlusion of target. Some people improved KCF by defining multi-features of
target [23] or a new fusing scheme [22]. However, many experiments have demonstrated that
the trackers based on global features perform favorable in describing the whole changes of
target especially when they use more than one kind of target feature. However, this kind of
trackers is very sensitive to the predicted region about target which is used to produce samples
[36]. When the predicted region covers too much background, the results will drift from the
ideal target region, but when it covers only part of target, the results may become totally failed.

Therefore, this paper proposes a new tracker by predicting an accurate searching region of
target and constructing multi-features to describe target. There are two advantages of our
tracker. First, we define an algorithm of ROI based on salient values to predict the region
which covering target and being robust for candidates. This ROI improves the tracking
efficiency and reduces the implement time by accurately predicting the searching region of
target. Second, we define multi-features from different aspects of target object to reduce the
disturbs from background and improve tracking accuracy. Compared with the present trackers,
especially with the Deep Learning (DL), our method successfully improves the tracking
accuracy without high time cost and some pre-training which usually happens on the recent
DL trackers.
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3 The proposed tracker

This section describes the framework of our tracker as shown in Fig. 1 and the details how to
construct it.

3.1 The framework of our tracker

This paper proposes a new tracker by matching the multi-features between target
template with samples and employing the ROI of target to design our effective
candidates. Our tracker is achieved by the following five steps one by one as shown
in Fig. 1. First, we compute the ROI of target (as Fig. 1(c)) by evaluating the salient
values of many extended regions of target (as Fig. 1(b)) and use the ROIs to get the
optimal extended region (OER). Second, we construct a target template by the multi-
features of the first specified target region and its ROI as shown in Fig. 1(d). Third, we
transmit the current optimal extended region to the next frame and use its ROI to
optimize the candidates. The red points in the bottom of Fig. 1(e) are the selected
optimal candidates’ centers from the points in the top. Fourth, we match target template
with candidates (as Fig. 1(f)) to get tracked result (as Fig. 1(g)). Finally, we update the
target template (as Fig. 1(d)) based on new result to adapt to the changes of target and
its surroundings to do following tracking. The main processes of our tracker:

(1) Compute the ROI of target on the first frame. By the specified target on the first frame,
we construct many extended regions by adding some background around the target
region. Then, we take the connected region with the biggest salience and big area of each
extended region as its ROI such as the white regions in the second column of Fig. 1(b).
The ROI most similar to the target is defined as the ROI of target, and the extended
region with it is the Optimal Extended Region in which the target is preserved as the most
salient object.

(2) Construct the target template. The ROI of target describes the region of our target
template. We use its multi-features (including color feature, shape feature, Pearson
correlation coefficient feature about the structure and intensity) to describe target
template.

(3) Get efficient candidates. By the OER of last frame, we first obtain the OER of current
frame. Then, we sample candidates around its ROI and discard the invalid samples to get
efficient candidates.

. B0 B -
Q l o

(a) (d)

Fig. 1 The Flowchart of our method. First, we input the first frame with the initialized target region (a) and
compute many ROIs (b) to search the ROI of target (c). Second, we construct target template by computing the
multi-features of target as (d) and implement the sampling (f) based on (c). Third, we evaluate samples by
matching the multi-features between them (the sy,...,s, in (f)) and the target (T in (f)). Finally, we get the tracking
result (g) by the above evaluation
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(4) Match target template with candidates. We evaluate the differences between the multi-
features of target template and a candidate to achieve the matching. The matched
candidate with the minimum distance is taken as the tracking result.

(5) Update target template. To adapt to the changes of target and its surroundings, we update
target template by updating its multi-features with the multi-features from new tracked
result. An update factor is defined to decide whether and how much we need update.

3.2 Construct the target template

The target template region is first specified on the first frame. For the following frame,
it is computed by four steps. First, we compute the extended regions of target. Second,
for each extended region, we calculate its ROI. Third, by comparing the features about
shape and center locations of target from the ROIs and target region, we get the OER
about target. Finally, we construct the target template by extracting its multi-features to
describe target.

(1) Compute the extended regions

With the target region on the first frame, we compute the extended regions of target
by expanding the target region such as the dotted rectangles in Fig. 2(b). The
expansions are achieved by adding some surrounding background along different
directions. An expansion is done by (Lexp, Rexp, Texp, Bexp). The Lexp describes
the displacement between the left boundaries of an extended region and target region
while the Rexp is the displacement of the right boundaries, the Texp is the displace-
ment of the top boundaries and the Bexp is the displacement of the bottom bound-
aries. In our experiments, Lexp is max (0,Cx-Width*Xratio), Rexp is min (Cx+
Width*Xratio,Xsize). Texp is set to min(Cy + Height*Yratio,Ysize). Bexp is computed
by max(0, Cy-Height*Yratio). Here, (Cx, Cy) are the center of target region, and
(Width, Height) are its width and height. The (Xsize, Ysize) are the boundary value
of the video frame. The (Xratio, Yratio) decides the ratio to enlarge the target region.
In our experiments, we set the ratios to be (1.2,1.2) to control the ROI not too big or
small (Fig. 3).

(b)

Fig. 2 The extended regions of target. (a) green rectangle denotes target, (b) dotted rectangles are extended
regions
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Fig. 3 The ROIs of extended regions. The left images in (a-d) are the extended regions while the right ones are
their ROIs. The red rectangle describes the ROI while the green rectangle describes the target region

(2) Calculate the ROIs of extended regions

For an extended region, we use the method proposed by Tu [32] to get the salient values of its
pixels. This saliency is defined based on the minimum spanning tree and the geodesic distance.
It produces more accurate and faster saliency than the traditional saliency methods. With this
method, bigger saliency means more possible to be object. We select the connected region
with the biggest saliency and biggest area of an extended region as its region of importance
(ROI). Here, we do a binarization process on the saliency map to delete the pixels with small
salient value. Following this, the ROI has the maximum probability to be the target. We use the
4-connected method to justify the connected region.
(3) Get the optimal extended region about target

This paper defines a similarity measure to compute the matched degree between the ROIs and
the specified target region. The extended region whose ROI is most similar to target is taken as
the optimal extended region. The similarity measure is combined by:

* The differences of the width and height between target rectangle (as green rectangles in
Fig. 4(a-d)) and the bounding box of a ROI (as red rectangles in Fig. 4(a-d)).

* The differences between the centers of target rectangle and the bounding box of a ROI.

* The combination of the above differences with two coefficients to adjust their weights.

It is defined as:
Dy = a1 XS+ ap X E (1)

where S defined in Eq. 2 is the shape distance to describe the first difference and E defined in
Eq. 3 is the center distance to describe the second difference. o, o, are weights. According to
our many experiments, we get that (a; =0.2,a, =0.8) leads to good performance. Therefore,
we set the two factors based on the experiment values.
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(@)

Fig. 4 The ROIs of extended regions. The left images in (a-d) are the extended regions while the right ones are
their ROIs. The red rectangle describes the ROI while the green rectangle describes the target region

If (N}, N,,) are the height and width of the target rectangle and (M, M,,) are the height width
of the bounding box of a ROI. The shape distance S is:

S = |M;=Ny| + |M,,—N,,| (2)

If (P(n, x), P(n, y)) describe the x-coordinate and y-coordinate of the center of target rectangle
and (P(m, x), P(m, y)) are denoted as the x-coordinate and y-coordinate of the center of the
bounding box of a ROL The center distance E by:

E= \/(P(mﬁ)—P(naX))z + (P(m,y)=P(n,))* (3)

(4) Construct target template via multi-features

We construct the target template by the multi-features of the target region. Three kinds of
features are utilized to describe the target template. One is the color feature which is defined by
the histogram of the HSV color information on the target region, which reflects the main
distribution about color information of target. Another one is the shape feature which describes
the object area with irregular contour of the ROI in the optimal extended region of target such
as the white region in Fig. 4(d). The third one is the Pearson correlation coefficient between the
target and a candidate which describes the difference about the structure and intensity
distribution between target and candidate. These multi-features describe the target from
different aspects and provide robust descriptions of target.

3.3 Get candidates via transmitting and filtering

To sample efficient candidates, we first compute the ROI on the current frame by transmitting
the optimal extended region of the last frame. Then, we densely sample candidates by
randomly selecting their center points in the ROI. Finally, we filter out some invalid candidates
to improve accuracy and reduce time cost.

First, we compute the ROI on the current frame According to the optimal extended region
in section 3.2, the target on the current frame locate in its ROI. However, the OER is calculated
based on the known target region on the same frame. Therefore, we cannot get it on current
frame because the target region is unknown. For the OER changes very little in adjacent
frames, we transmit it from the last frame to the current frame. It means the OER on the current

@ Springer



16374 Multimedia Tools and Applications (2021) 80:16367-16395

frame has the same center position, width and height with the last one. Then, we use the
method in [32] to compute the ROI of target on the current frame by this OER.

Second, we construct candidates based on the ROl With the bounding box of ROI on
current frame, we randomly sample dense points in it as the center positions of candidates. The
width and height of a candidate are the same with the last target. When the boundary of a
candidate across the boundary of the current optimal extended region, we denote it as an
invalid sample. This kind of candidates often covers too much background with too little
object, and drifts away from the ROI. By filtering out all the invalid candidates from the initial
samples, we form the final candidates to detect target (Fig. 5).

3.4 Evaluating candidates by their multi-features

This paper defines a match measure to compute the similarity between a candidate and target
template. The candidate best matched to target template is the tracking result on current frame.
Our match measure D is defined by matching the multi-features about target and its candidates,
including: the items of color feature match D,, shape feature match Dj, structure and intensity
match D, computed by the Pearson correlation coefficient. We define D by:

D =By X D¢+ By X Ds + 33 x D, (4)

where 3, 3,35 are the coefficients and satisfy (3; + 3, + 33 =1). In this paper, we set 3, =
0.25, 5,=0.25,43;=0.5 based on experiments. Bigger value of D means better matched. The
best matched sample is the sample owns the biggest value of D. Compared with the other
image feature such the Haar, LBP and HOG, our multi-features can describe target object more
accurate from both local texture details by color feature, and the global object level measure by
the shape feature and person correlation coefficient. The advantages using both local feature
and global features has been demonstrated in many work [40]. The D,, D and D, are defined
as follows.

e The color feature match D,

This paper utilizes the histogram of color information in HSV space to describe the color
feature of target template and the candidates. By this histogram, our color feature describes the

(b)

Fig. 5 Sampling the candidates. (a) is the optimal extended region of target, the red points in (b) and (c) are the
centers of candidates before and after filtering
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ratios of different colors and is irrelevant with space information. It is a set of the histograms of
different color ranges, and the histogram of color range 7 is:

H(i) =n/Y5n (i=0,1,2,....k-1) (5)

Where i is the color range describing the i'#/ interval of color values. The #; is the number of
pixels in range i. The k is the number of color ranges.

If we use A; andB; to separately describe the histogram of color range i for a candidate and
the target. We define the color feature match D, by:

YiAB;
VI A5, (8

D.=1-

(6)

*  The shape feature match Dy

According to the calculation about the ROI of target, we known the ROI is the region only
covering the target object without any background. Therefore, if a candidate covers larger area
of RO, it includes both target and background. As following the above sampling method, each
candidate includes part of the ROIL. We define the part of the ROI included in a candidate is its
important region. Then we define the shape feature match by comparing the important region
of a candidate to the ROI of target as:

_ StarnScan

Do =
S Star UScan

(7)
Where S, and S,,, are the areas of ROI of target and the important region of a candidate. In
this paper, we compute the area by counting its pixels, namely the pixel values included in
each area is set to its area value. N is the intersection of the two areas and u is the union of
them. S,is computed by the target region on last frame. When Dy is small, it means the
candidate includes much background and little target. Otherwise, it means the candidate
includes little background and much target, which is more possible to be the target region
for the current frame.

* The structure and intensity match D,

We define the structure and intensity match by comparing the matrix between the target and a
candidate using the Pearson correlation coefficient. As the matrix values describe the changes
of color value pixel by pixel, these changes carefully describe the structure and intensity of the
target and candidates. If the matrix of a candidate is more matched with that of target, the
candidate has bigger probability to be target. Therefore, we define the structure and intensity
match by the Pearson correlation coefficient which demonstrates effectiveness in comparing
two matrixes [27].

In this paper, we use T},,, to describe the matrix of target with size (m x n),use T to describe
the mean value of T}, use C,,, to describe the matrix of a candidate and C is its mean value.
According to the sampling method, C,,, has the same size with 7,,,. The the measure of
structure and intensity match D, via the Pearson Correlation Coefficient is defined by:
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b Yy (Tm,,77> (cmnf) N

\/ (227 T) ) (22 (o))

In Eq. 8, the candidate with bigger value has more probability to be the target region.

3.5 Update the target template

To satisfy the gradually appearance changes of target object, the target template is updated
according to the tracked results. We define an update factor C, on frame ¢ to evaluate whether
to implement update by:

Cr =7, X D.(1,1) + v, x D(t,t-1) 9)

where D.(1, f) describes the color feature between the target regions on framet and the first
frame, and it is computed by Eq. 6. D(¢, 1 — 1) is the match measure between the target regions
on framer and frame 7— 1, and it is calculated by Eq. 4. Bigger value of C; means that the
appearance of target on frame ¢ has smaller variation from the target on the first frame and
bigger match measure with the target on frame 7— 1. The coefficients of v; and ~, are
separately set to be 0.3 and 0.7 via the demonstrations of many experiments.

We achieve the update on frame ¢ according to the update factor by the following three steps.
First, we separately compute the update factors on frame 7— 1 and frame 7. Then, we calculate the
distance between the above two update factors. Third, we compare the distance with a threshold 6 to
decide whether to update. In this paper, we set 6 to be 0.01 based on the experiments. If the
difference is smaller than 6, it means the adjacent target regions on the two frames are very similar,
and they both can effectively represent the initialized target object. In this case, we update target
template directly by replacing the multi-features with the ones from the new tracked result on frame
t. Otherwise, we preserve the multi-features unchanged as the new target template.

If we use gtl to describe the ground truth of framel, and use OERi to describe the OER of
frame 1, we can construct the pseudocode of our tracker by the following Table 1.

4 Experiments and evaluations

This paper demonstrates the effectiveness and efficiency of our method on the popular Visual
Tracking Benchmark [36] which is widely used to evaluate different trackers. Our method is
implemented by using Matlab R2014a (64bit) on a PC with an Intel(R) Core(TM) @2.5GHz
2.5GHz processor, RAM 16GB DDR3 memory on Windows 8.1 version. Eleven present trackers
which are recently proposed and widely used in tracker evaluation are used to do comparison. These
trackers include the CSK [11], CT [39], CXT [6], DFT [29], LOT [26], LSK [19], Struck [10], VTD
[16], VTS [15], DLSSVM [25] and TRA [2]. 25 videos of the Benchmark are used to do
experiments which covers ten challenges including the occlusion (OCC), deformation (DEF), fast
move (FM), motion blur (MB), background clutter (BC), illumination variation (IV), in-plane
rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV) and scale variation (SV).

As shown in the recent work [36], the precision plot and success plot are used to do the
quantitative evaluations of trackers. The success plot describes the percentage of successfully
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Table 1 The pseudocode of our proposed method

/* Initialize the target template
Input (video,gt1,n=length(video));
compute the ROIs of framel;
OER1=min(Dsn(ROIs,gtl));

Initialize template T based OER1;

fori=2:n
compute the OERi of framei;
candidates=sample(OERi);
/* compute the tracking result Resulti of framei
forj=1: number(candidates)
compute Dc(j), Ds(j), Dr(j);
D(j) = f(Dc(j), Ds(j),Dr(j));
end
Resulti= min(D(1),D(2),...,D(humber(candidates)));
/* update target template
compute Ct-1, Ct;
B=distance(Ct,Ct-1);
if 6< 0.01
update Template T based Resulti;
else no update;

end

@ Springer



16378 Multimedia Tools and Applications (2021) 80:16367-16395

tracked frames by the Intersection Over Union (IOU). Bigger value of success plot reflects the
better result. We calculate the IOU by the ratio between the intersection and the union of a
tracked box and ground truth. When the IOU of a frame is bigger than 0.5, we denote that the
tracked result on this frame is successful. We compute the precision plot by the percentage of
successfully tracked frames based on the Center Location Error (CLE) with a given threshold
TC (TC=20 in our experiments). Bigger precision plot means more accurate results. In
addition, we do the one-pass evaluation (OPE) in tracking. For more details about CLE,
IOU and OPE, please review the work proposed in benchmark [36]. More evaluation results
are demonstrated by Appendix 1 Figs. 11, 12, Appendix 2 Figs. 13, 14, 15, 16 (include the
comparisons of total 25 videos).

4.1 Qualitative evaluations

According to the experiments, the proposed method performs very well in dealing with five
challenges including occlusion, deformation, background clutter, motion blur and out-of-plane
rotation. In this section, we mainly analyze the performances of our tracker on these five
challenges. For the other challenges, our tracker is not the best one among the evaluated ten
trackers, but it is mostly ranked as the top three trackers as demonstrated on section 4.2.

For occlusion challenge In occlusion, the target is occluded by some background. As shown in
the first row of Fig. 6, the human is partly occluded by a tree. Most of compared trackers (as the
Struck, VID and VTS) introduce failures especially when the human reappears from the occlusion.
Recently, people propose many trackers to deal with occlusions. For example, the DLSSVM uses
the dual linear structured SVM and the RPT utilizes irregular patches. However, they still cannot
produce favorable results especially in heavy occlusion as shown in Fig. 7. Our tracker can
successfully reidentify the reappeared target from the heavy occlusion such as the girl and the
runner in Fig. 7. That is because our update algorithm preserving the main features of the occluded
target and our sampling method produce efficient candidates (Fig. 8).

=== DLSSVM

Fig. 6 The comparisons of different trackers with good performances on 5 videos
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Fig. 7 The performances on heavy occlusion

For background clutter challenge This challenge often introduces the tracking drift away
from the ideal target region for the interference of background. For example, the background in
the second row of Fig. 6 is very cluttered and quickly changed. The results of some popular
trackers such as the CXT and LOT are drifted from the right target region. Our result is more
accurate as shown by the red rectangle. The main reason is we use ROI to get candidates which
efficiently reduces the disturbs of cluttered background by rejecting the invalid candidates with
lower salient values for owning many backgrounds.

For out-of-plane rotation challenge This challenge often brings great changes of target appear-
ance such as the bolt in the third row and the fifth row of Fig. 6. Many trackers deal with it by
quickly updating target template. However, it is disturbed by the surrounding background of target
such as the advertising board in the fifth row of Fig. 6. Therefore, many trackers take the background
as target such as the black and green rectangles in the third row and the fifth row of Fig. 6. Our
tracker gradually updates the target template by defining an update factor to measure the appearance
Figs. 9 and 10 separately describes the trends of precision plot and success plot about the 10 trackers.
They reflect the average accuracy and robust of the results for all the trackers. The one on the first
row and first column shows the trend of all the videos. The other five subfigures show the average
trends about the videos owning the challenges of the OCC, DEF, BC, MB and OPR. According to
Fig. 9, our method is the most accurate tracker among the ten trackers for owning the biggest values
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Fig. 8 The performances on drastic deformation

in these challenges. Similarly, according to Fig. 10, our method is the most robust tracker for owning
the biggest Success plot.changes between adjacent target results. This update scheme preserves the
primary features of target when it undergoes out of plane rotation which finally makes our tracker
more robust and accurate.

For deformation challenge This challenge usually introduces great changes of target appear-
ance representation. For example, the deformation in the second row of Fig. 6 leads the white
region (the mouth of tiger) turning from left to right. Similarly, the deformation on the panda
and dog in Fig. 8 makes the appearance of target object undergoes drastic variation. Many
present trackers such as the CSK and TRA introduce tracking drift in dealing with deformation
challenge. Our tracker produces much more favorable results than the present trackers in Fig. 6
and Fig. 8. The main reason is we use the color histogram to construct our matching method
which are not influenced by shape changes or the layout variation of target appearance.

For motion blur challenge Motion blur often makes the differences between target and
background very week by introducing many noises. The features of target and background
are very similar which finally lead some trackers mistaking the background as target such as
the tiger in the second row of Fig. 6 and the girl in the third row of Fig. 6. The tracking failures
of these trackers such as the Struck and VTS come from the imprecise and unstable ability to
distinguish target and background. Our method overcomes it by using three kinds of to
construct target template which can efficiently reduce the disturbs of moving blurs.

4.2 Quantitative evaluations
We achieve the quantitative evaluations by Tables 2, 3, Fig. 9 and Fig. 10. Tables 2 and 3
show the precision plot and success plot of ten trackers on 25 videos. For the two evaluations,

the bigger value means better tracker. In the two tables, the red, green and blue words
separately describe the best, second and third tracker.
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Fig. 9 The evaluations on Precision plot of some challenges that our method has favorable performance

According to Tables 2 and 3, our method performs well in many challenges. For the
challenges of BC, MB, DEF, OCC and OPR, our method produced the best results for owning
the biggest precision plot and success plot. It means that our method not only produces
accurate results but also performs very robust. For dealing with the challenges of FM, IPR,
OV and SV, our method performed as the second or the third tracker. The reason is our update
scheme gradually adapts to the changes of target appearance which are common in these
challenges. For the challenge of IV, the CSK produces favorable results because it efficiently
learns the changes of surrounding backgrounds in tracking. The Struck tracker produces good
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Fig. 10 The evaluations on Success plot of some challenges that our method has favorable performance

results especially for FM and IPR because it effectively deals with the noises introduced by
them. Totally, the proposed tracker performs as the best tracker among all 25 videos as shown

in the column of “ALL” in Tables 2 and 3.

Figures 9 and 10 separately describes the trends of precision plot and success plot
about the 10 trackers. They reflect the average accuracy and robust of the results for all
the trackers. The one on the first row and first column shows the trend of all the
videos. The other five subfigures show the average trends about the videos owning the
challenges of the OCC, DEF, BC, MB and OPR. According to Fig. 9, our method is
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Table 2 The Precision Plot of the Ten Trackers on 25 Videos with Ten Challenges

Trackers ALL M BC MB DEF v IPR occ OPR ov sv

Ours 0.647 0.622 0.787 0.611 0.676 0.494 0.639 0.666 0.683 0.648 0.577
Struck 0.646  0.707 0.714 0.491 0.636 0.584 0.641 0.539 0.632 0.740 0.678
V1D 0.546  0.434 0.499 0.367 0.538 0.536 0.581 0.497 0.589 0.519 0.580
VTS 0.543 0.432 0.503 0.366 0.537 0.545 0.566 0.491 0.580 0.522 0.578
CSK 0.539 0.514 0.652 0.242 0.528 0.598 0.503 0.401 0.555 0.352 0.516
LOT 0.533 0.440 0.561 0.451 0.569 0.343 0.517 0.486 0.552 0.241 0.552
LSK 0.509 0.454 0.458 0.489 0.520 0.470 0.547 0.573 0.495 0.443 0.456
DFT 0.496 0.458 0.685 0.399 0.501 0.573 0.447 0.501 0.490 0.623 0.373
CXT 0.461 0.509 0.427 0.349 0.450 0.399 0.491 0.319 0.503 0.499 0.533
cT 0.447 0.446 0.525 0.387 0.446 0.358 0.394 0.403 0.480 0.577 0.475

(Red, green and blue separately means the best, the second and the third)

the most accurate tracker among the ten trackers for owning the biggest values in these
challenges. Similarly, according to Fig. 10, our method is the most robust tracker for
owning the biggest Success plot.

4.3 Implement efficiency

The frames processed per second (fps) is often used to describe the efficiency of trackers. Only
with the big value of fps, the tracker can support the online process. Table 4 describes the fps
of all the 12 trackers. The CSK and TRA methods track target very fast for owning 362 fps and
282 fps. The reason is they utilize the circled matrix to achieve tracking. Our tracker produces
137.6 frames per second which can achieve online tracking. The reason is our methods to
match and update target template is very fast and robust.

Table 3 The Success Plot of the Ten Trackers on 25 Videos with Ten Challenges

Trackers ALL M BC MB DEF v IPR occ OPR ov sv

Ours 0.488 0.528 0.593 0.558 0.506 0.432 0.505 0.526 0.520 0.529 0.436
Struck 0.487  0.602 0.559 0.456 0.492 0.457 0.523 0.413 0.482 0.594 0.484
V1D 0.420 0.403 0.397 0.397 0.419 0.430 0.478 0.398 0.451 0.458 0.431
VTS 0.427 0.416 0.415 0.398 0.427 0.449 0.469 0.405 0.452 0.462 0.436
CSK 0.428 0.456 0.520 0.275 0.429 0.494 0.431 0.345 0.423 0.338 0.390
LOT 0.408 0.374 0.424 0.423 0.433 0.301 0.389 0.399 0.411 0.235 0.416
LSK 0.413 0.417 0.390 0.457 0.427 0.388 0.458 0.450 0.403 0.395 0.370
DFT 0.410 0.436 0.573 0.402 0.419 0.494 0.391 0.423 0.392 0.544 0.302

(Red, green and blue separately means the best, the second and the third)
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Table 4 The Numbers of Frames Processed Per Second (fps) with Different Trackers

Tracker Ours Struck VID VIS CSK LOT LSK DFT CXT CT TRA DLSSVM

FPS 137.6 202 5.7 5.7 362 0.7 5.5 132 153 644 282 25

5 Conclusion

This paper proposes a robust and fast visual tracking method by identifying and
matching target template. Our method constructs target template by three kinds of
features related to the color feature, shape and contour feature, the features about the
distributions of structure and intensity. A new method to compute the ROIs is defined
which improving the efficiency of candidates by providing accurate sampling region
and reducing redundant samples. Many experiments have done using 25videos with 10
kinds of tracking challenges from the tracking benchmark 2013. By the quantitative and
qualitative evaluations, our tracker performs more favorable than the famous present 11
trackers especially in the challenges of BC, MB, DEF, OCC and OPR. As our target
template cannot reduce the noise from low resolution, our tracker sometimes fails in
tracking target shot in low resolution and with fast movement. In the future, we will
introduce more features in the target template to overcome the challenge from low
resolution and motion blur from fast target movement.
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Appendix 1: All The Precision Plots and Success Plots
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Fig. 11 The total precision plots and success plots
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. Precision plots of OPE - in-plane rotation (10) , Success plots of OPE - in-plane rotation (10)
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Fig. 12 The total precision plots and success plots
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Fig. 12 (continued)
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Precision plots of OPE - deformation (23) ; Success plots of OPE - deformation (23)
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Fig. 12 (contin\ued)
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Appendix 2 The comparisons of total 25 videos

— Ours . LOT - CXT VTS
mm CT === LSK == CSK == DFT

Fig. 13 comparisons of eight videos.
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m— OUrs =~ LOT - CXT VTS
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Fig. 14 Comparisons of seven videos
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m— OUrS e LOT  wmwm CXT VTS == VTD
== CT

Fig. 15 Comparisons of seven videos.
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Fig. 16 Comparisons of three videos
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