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1 Introduction

Multi-modal Recommendation Systems (MRSs) have been a research focus in the community of recommendation
systems, where multi-modal contents such as product images, textual descriptions, and instructional videos are
combined for recommendation [2, 3, 10, 10, 20, 21, 28, 34, 37, 38, 42]. Multi-modal alignment is a major issue
that affects the performance of MRSs [18]. Because large semantic gaps exist among the embedding spaces of
multiple modalities, properly aligning them helps the MRSs to correlate multi-modal content, generate more
comprehensive item representations, and make more accurate predictions.

Bidirectional alignment has been widely adopted in multi-modal systems [14-16]. In bidirectional alignment,
multi-modal contents are considered parallel and describe the same concepts. Thus, the textual representations
are pulled closer to visual representations and vice versa for all samples via contrastive learning. Our previous
work FETTLE [18] challenges this conventional bidirectional alignment paradigm and points out that MRSs
should allow one-way directional alignment. FETTLE argues that multi-modal content may not serve equally
for understanding user preferences. For example, a jacket’s visual appearance is more important for making
consumption decisions than textual descriptions. Thus, the core idea of FETTLE is to self-adapt item-level
alignment direction. For each item, the “strength" of a modality for this item is estimated, e.g., if the visual
embedding of an item can produce high preference scores for users who actually click on this item, then the
visual modality is strong for this item. Then, a weaker modality is oriented towards a stronger modality to reduce
the adverse effect of low-quality contents or irrelevant modalities.

This paper extends FETTLE and further explores two key questions.

Firstly, we ask when is one-way directional alignment optimal? FETTLE adopts one-way directional alignment
and completely discards bidirectional alignment. Since modality-specific embeddings are extracted from pre-
trained models and fine-tuned in the recommendation task, we monitor their abilities to predict user preferences
throughout the training phase. We discover that modality-specific embeddings are insufficiently distinguishing
and unstable in predicting user preferences at the early stages of training. This inspires us to investigate dynamic
directional alignment. On the one hand, bidirectional alignment in early training stages allows each modality
to benefit from others and avoids "lazy" modalities or excessive reliance on ID embeddings. On the other hand,
one-way directional alignment in late training stages reduces the chance of producing predictions that conflict
with actual user preferences.

Secondly, we ask how to enhance multi-modal alignment with collaborative signals? FETTLE is a pioneer work in
utilizing collaborative signals at different levels: item-level alignment and cluster-level alignment. The item-level
alignment maps embeddings from different modalities for one item, while the cluster-level alignment matches all
modalities of items in the same cluster with the cluster prototype. The two different levels have their advantages
and flaws. The direction of item-level alignment depends on user feedback, and it is less robust due to noisy user
feedback. In contrast, cluster-level alignment does not involve user feedback, but it overly homogenizes different
items and modalities. This motivates us to introduce alignment at a medium granularity to balance the effect
of noisy user feedback and aggressive smoothing across items.

Our solutions to the above questions are integrated into CROSS (feedbaCk-oRiented multi-mQOdal alignment
in recommendation SyStem), which builds on FETTLE [18]. CROSS consists of three main components. The first
component is Dynamic Item-Level Alignment (Section 4). Dynamic Item-Level Alignment improves the
calculation of the “strength” of each modality for each item, i.e., the “strength" of modality is adjusted by the
variance of estimated user feedback. Thus, in early training stages, a low estimation score is offset by a large
uncertainty, preventing the weaker modality from being overshadowed. The second component is Multi-Modal
Alignment (Section 5), which refines item representations and resolves conflicting directional signals between
modalities. This component is consistent with FETTLE. The third component is Multi-grained Collaborative
Alignment (Section 6), which implements alignment at different granularities. In addition to the item-level and
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cluster-level alignment in FETTLE, CROSS identifies robust neighboring items that share similar user feedback
profiles and align the modality-specific embeddings for these neighbors.

CROSS is a plug-and-play framework that works seamlessly with any existing item embeddings derived from a
Recommendation System and any pre-trained multi-modal content features. We conduct extensive experiments
on four real datasets of textual and visual modalities, including three datasets as in [18] and one new dataset. We
apply CROSS to five conventional RSs and six MRSs. CROSS demonstrates significant performance improvements,
average 21.52% — 70.78% improvements for conventional RSs and 8.70% — 20.73% for MRSs. Compared with
FETTLE, CROSS achieves 3.82% — 5.24% improvements.

To summarize, this paper is a comprehensive extension of the previously proposed, non-invasive, and easily
adaptable multi-modal alignment method FETTLE. This paper highlights two directions to improve FETTLE,
i.e., adopt Dynamic Item-Level Alignment and incorporate Multi-grained Collaborative Alignment to
further improve FETTLE’s performance. The effectiveness of FETTLE and the proposed improvements are verified
on more real datasets.

2 Related Works

Multi-modal Alignment. Most state-of-the-art Multi-Modal Models (MMMs) implement multi-modal alignment
using contrastive learning techniques [4, 14-17, 39]. For instance, in a bidirectional alignment process, an instance
in the visual modality can be treated as the anchor sample, with its corresponding instance in the textual modality
serving as the positive sample, while all other instances in the textual modality are treated as negative samples.
Conversely, when an instance in the textual modality is used as the anchor, its counterpart in the visual modality
is considered the positive sample, and all other visual instances act as negative samples. This bidirectional
alignment ensures that each modality is closely associated with its corresponding counterpart while being
distinctly separated from unrelated instances.

Multi-modal Recommendation Systems. Existing Multi-modal Recommendation Systems (MRSs)[10, 26,
28, 31, 32, 38, 42] generally adhere to a standardized workflow. In the preprocessing stage, user ID embeddings
and item ID embeddings are generated using feed-forward networks (FFNs), while multimodal embeddings are
extracted from pre-trained models and aligned through a projector to ensure dimensional consistency. During
the learning stage, multimodal embeddings and item ID embeddings are fine-tuned using either an FFN[10] or a
graph neural network (GNN) constructed on a user-item bipartite graph [28, 31, 32] or an item-item graph [38, 42].
In the merging stage, multimodal embeddings and item ID embeddings are either concatenated [26] or combined
through element-wise addition [26, 28, 31, 32, 38, 42], and jointly optimized with user ID embeddings using the
Bayesian Personalized Ranking (BPR) loss [25].

Remarks. To the best of our knowledge, the recent study [43] explicitly incorporates multi-modal correspon-
dence in MRS by minimizing the cosine distance between multi-modal embeddings and ID embeddings. However,
this approach differs from our previous work, FETTLE [18]. BM3 adopts a bidirectional alignment strategy,
while FETTLE advocates for a one-way directional approach. Building upon FETTLE, we propose CROSS, which
introduces Dynamic Item-Level Alignment to make the one-way alignment mechanism for multi-modal user
preferences more intelligent. Additionally, we introduce Multi-grained Collaborative Alignment, which
aligns the stable neighbor items to bridge item-level and cluster-level alignment.

3  Framework Overview

We begin by briefly describing the workflow of a Recommendation System (RS). For simplicity, let the RS model
accept three primary inputs: a user set U, an item set 7, and a binary user feedback matrix Y. Here, ¥,,; = 1,
for u € U, i € I indicates that user u has interacted with item i. In the case of a Multi-modal Recommendation
System (MRS), the input also includes multi-modal content features extracted by pre-trained models. In this paper,
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Fig. 1. The overall framework: CROSS works on an arbitrary RS’s derived item representation and the pre-trained multi-modal
content features; CROSS adds four loss terms to the RS’s original BPR loss.

we focus on visual and textual content, specifically image and text embeddings for each item. The RS learns
vector representations for both items and users, denoted by i'® € RE for item i and u € RE for user u, where
L is the embedding dimension. Typically, these user and item representations are optimized via the Bayesian
Personalized Ranking (BPR) loss [25].

Similar as FETTLE, CROSS is designed as a plug-and-play framework that can be applied to any existing RS
model, regardless of whether it is a multi-modal recommendation system (MRS) or a traditional collaborative
filtering (CF) approach. As such, CROSS only operates on the input data (i.e., i",i’,Vi € 7,Y) and the output
data (i.e., il® Vie I,u,Vu € U), without interfering with the computation of the BPR loss. In this regard, CROSS
is positioned as an independent component stacked on top of existing RS models, as illustrated in Figure 1. In
general, CROSS is comprised of two main components.

(1) Pre-processing the input. Since the dimensionality of image embeddings i" and text embeddings i’ are
different. CROSS first applies a projection layer to align them to a uniform embedding size. Concurrently,
the existing RS model generates item representations referred to as the ID modality i'® Thus, each item is
associated with three distinct modalities, M = {ID, V, T}. The vectors i'®,i", i’ and u are all L-dimensional
embeddings.

(2) Regularizing the BPR loss. To provide a non-invasive framework, CROSS introduces four regularization
terms to the original RS’s BPR loss: namely the Item-Level Dynamic Alignment loss (Section 4), the
Multi-Modal Alignment loss (Section 5), and the Multi-grained Collaborative Alignment loss (Section 6).

4 Dynamic Item-Level Alignment
4.1 Motivation

Bidirectional alignment has been widely employed in Multi-Modal Models (MMMs)[4, 14, 15, 23], which brings
different modalities closer in the embedding space. Suppose we are handling three modalities. The bidirectional
alignment essentially assigns each item i € 7 with three pairs of parallel loss terms, i.e., LIV"T, LiT_’V, L}’_’ID ,
L{D -V LiT_’ID , L{D =T where V, T, ID are the visual, textual, and ID modalities.

Our previous work FETTLE [18] proposes one-way directional alignment, which assigns each item one loss term
for a pair of modalities. Specifically, FETTLE computes the “strength" score s/ of modality m for item i for each
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Fig. 2. Change of estimated user preference scores during the training

modality m € M:

st = avgyu’l:leg(urim), (1)
where u denotes the RS’s derived user embedding, and i™ represents the modality-specific item embedding,
Y,i =1 € B refers to the interacted users within the training batch for item i.

Thus, s estimates the average user feedback. For any pair of modalities, e.g., m,n € M, if s[* # s, then for
item i, the modality m should be aligned with the modality n, denoted as the loss term .L"7". This strategy
considers the quality of modality, e.g., which modality has higher quality and better relevance in predicting
true user interactions. It avoids performance deterioration that is caused by aligning high-quality modality to
low-quality modality.

Since FETTLE determines the alignment direction for each item i by estimating the user feedback score s}*, we
are curious how s" changes during the entire training phase. We calculate the average estimation across all items
s™ = avg, ;s and the variance of estimation o?(s™) = at each training epoch. As shown in Figure 2(a), in the
early training stage, e.g., training epochs 1 to 10, the estimated user preference scores are low for all modalities,
and the scores are close to each other. In the late training stage, the ID modality generates the highest estimated
user feedback on truly interacted users. As illustrated in Figure 2(b), the variance of estimated user preference
scores drastically declines as the training proceeds.

The findings in Figure 2 suggest that we adopt Dynamic Item-Level Alignment for several reasons. (1) The
user embeddings in early training stages are inaccurate to determine the alignment direction. (2) The modality-
specific embeddings are insufficiently fine-tuned in the early training stages. Forcing one-way directional
alignment at this point may cause information loss. (3) Image and text modalities have a relative disadvantage
compared to the ID modality, which can lead to lazy’ evolvement, causing the MRS to degrade into a collaborative
filtering (CF)model based solely on ID information.

We illustrate the difference among bidirectional alignment, FETTLE’s one-way directional alignment, and
Dynamic Item-Level Alignment in Figure 3. After bidirectional alighment, the three modality-specific embed-
ding spaces, i.e., the embeddings of all items as a whole, are pulled toward a single centroid region (the gray area).
Thus, bidirectional alignment compresses the three modalities into a unified space. After FETTLE’s unidirectional
alignment, the embeddings of various items are dragged along different directions. Thus, each item can maintain
the distinctions between different modalities. In Dynamic Item-Level Alignment, different modality-specific
embeddings are drawn closer and then tugged along a particular direction. Thus, the mutual movement can
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speed up multi-modal fusion, and the unidirectional movement can preserve the information richness among
items and modalities.

4.2 Implementation

To capture the dynamics of alignment direction, we first define a compensation score:
m _ 2/.m 1-s
g = ot s™ (e - 1)), @

where o2(s™) = E[(s{” - 37")2] is the variance of /" across all items i € I, s™ = avg;. ;s/" is the average of s
across all items.

We now determine the alignment direction. We separately examine two criteria for any pair of modalities
m,n € M.Ifs!' < sT", then the modality n should be aligned with the modality m, denoted as n — m; if s +g7" > s
for item i, then m — n.

Here, the compensation score is an offset threshold to trigger bidirectional alignment dynamically. Recall
our discussion in Figure 2. In the early training stages, the difference among modalities is small, the value of
estimated user feedback s is small, and the variance o” is large, meaning the strength difference between s/, s"
is small, and the compensation score is large. The bidirectional alignment is more likely to appear for i.

Consequently, we can derive the item-level dynamic directed alignment loss. For item i, given the alignment
directionm — n determined as above, we aim to maximize the similarity between i and i". To capture the
specific information that needs to be emphasized in the alignment more effectively, we project i” before the
alignment using a Feed-Forward Network (FFN) with a residual structure. In contrast to existing approaches, such
as ALBEF [16], which utilize only a standard FFN before alignment, the residual structure offers the advantage of
explicitly representing the additional information required during alignment from m to n. Formally,

im—m — im +fm—>n(im)’ (3)

where f™7"(i"™) is a FFN for aligning m — n.
Thus, the item-level dynamic alignment loss is defined as:

ieB ZjEBeXp(SIm(lm—)ns sg(.]n))/}'f)

4)
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where sim(, ) represents the cosine similarity, sg() is the stop gradient backward operation, Ay is the temperature
parameter, avg, , means the ILDA loss is calculated over all item-level alignment directions m — n, which will
be further explained in Section 5.

5 Multi-Modal Alignment

When enumerating item-level alignment directions m — n in Equation 4 across |[M| > 2 modalities, two
strategies can be considered. The Topmost approach aligns all remaining | M| — 1 modalities to the highest-scoring
modality for each item. In contrast, the Pairwise approach constructs | M|(| M| — 1)/2 modality pairs and aligns
the lower-scoring modality to the higher-scoring modality within each pair. It is evident that the first approach
may result in laziness in the modality [6]. Specifically, the ID modality, having been sufficiently optimized within
the recommendation system (RS), is likely to be the highest-scored modality for most items. As a consequence,
other modalities may become dominated by the ID modality, leading to their inactivity and reduced significance
in the optimization process.

Based on the rationale presented above, we adopt the pairwise approach. Given three different modalities,
there are six possible pairs: V.- T,V — ID,T — V,T — ID,ID — V,and ID — T. We can partition the items
into different subsets based on these alignment directions. Formally, ™" denotes the set of items that support
the alignment direction m — n.

DM ={i| s < st} (5)

Note that only three pairs can be constructed for any item, based on the values of S;. For example, as shown in
Figure 1(c), ifsly < siT < S{D, we havei e DV2T ie DV=IP andie DT,

A limitation of pairwise alignment is that a single low-scoring modality may end up aligning to two different
modalities simultaneously. For example, there exists an item i € 7 such that i € (DV=T N DVIP), We refer to
this issue as direction inconsistency, which can confuse the model and hinder the correct alignment.

To address this limitation, we propose an intuitive solution, as illustrated in Figure 4. Once alignment is
performed, all modality-specific embeddings should lie within the same vector space spanned by two basis
vectors: a user-preference-relevant vector (denoted as (u) in Figure 4) and a user-preference-irrelevant vector
(denoted as (n) in Figure 4). Each modality-specific embedding of an item will then be decomposed into these
two basis vectors. For instance, in Figure 4(a), the text “Nike Men’s Sportswear Graphic T-shirt Black” can be
split such that “Nike Graphic T-shirt” is user-preference-relevant, whereas “Men’s Sportswear Black” is not. If
the visual modality aligns to the textual modality, the resulting image still includes irrelevant attributes like

ACM Trans. Recomm. Syst.



8 « Y.lLietal

Summer Infant

Deluxe Comfort E Best Bottom Diaper

Booster- Tan Insert - Overnight E

I

|

!

i (I
- o A | . | \ 7049 o . |
e T A it ' | ! ,6:‘1 ---------------------------------- '
. 5055! 1 1 ) 4946
: e Newborn Rock n' l i - < gg;te%gtfosmflcith ;
E Play Sleeper ! | E Best Bottom Stay OI P sh bpt !
! o 1 Dry Inserts, Large, range sherbe i
S oo N\ T
! | o Medela Quick Clean
Best Botiom Stay . @ Micro-Steam Bags - |
Dry Inserts, Large, 3 v 2 Pack |
Count - = :
(a) User 46 and his/her interact items (b) Item 7049 and its’ co-occur neighbors
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“Sportswear Black.” Similarly, in Figure 4(b), the ID modality can be decomposed into user-preference-relevant
parts such as “red graphic” and irrelevant parts like “white simple.” If the visual modality aligns with the ID
modality, it may inherit irrelevant elements like “simple.”

We resolve this inconsistency by ensuring that alignment directions coincide with the user-preference-relevant
component. Concretely, we adjust the alignment direction by maximizing the post-alignment user preference
score of each modality embedding. As shown in Figure 4(c), combining two alignment directions might leave
certain undesired features (e.g., “black simple”) in the image embedding. After direction tuning, the embedding
retains only the user-preferred elements, such as “Nike T-shirt red graphic” Formally, we define the direction
tuning loss £LP7 as

1 ‘m—
L ST 2 Esmien( ). ©

mnie D,y n

6 Multi-grained Collaborative Alignment

The alignments discussed previously rely on user feedback, which includes noisy interactions. We present an
illustrative example from the Amazon baby dataset. As shown in Figure 5(a), User 46 interacted with booster
seats and rocking chairs, suggesting a preference for furniture . However, the user also interacted with unrelated
diaper accessories, possibly due to a misclick. This type of noisy behavior can adversely affect the ILDA strategy
by incorporating the irrelevant preferences of User 46 when determining the modality “strength” for Item 7049. In
contrast, Figure 5(b) displays the co-occurring neighbors of Item 7049. These neighbors, including night inserts,
cloth diapers, and steam sterilization bags, are all essential accessories within the diaper category. Aligning the
modalities of Item 7049 with those of its neighbors allows the model to capture the genuine interests of the user
community. Moreover, this approach mitigates the impact of noisy interactions from unrelated users, such as
User 46, thereby enhancing the robustness of the alignment.

IThis case is extracted from the baby dataset, so all item categories are related to baby products

ACM Trans. Recomm. Syst.
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6.1 Item Neighbor-Level Alignment

We can directly utilize the concept of neighbor items for alignment. Specifically, we first calculate the similarity
of user preferences between items to obtain an item co-occurrence matrix C, using the user feedback matrix Y.

Cij =sim(Y.;, Y.;), (7)

where Yu, j represents the interaction between item j and user u.

Each item’s top-K similar items, as determined by C, are regarded as its neighbors. Formally, we define the
neighbor item k € N; of an item i as the set of K items with the highest co-occurrence similarity C; .

To yield a more robust alignment target from the neighborhood, we apply mean pooling on the neighbor items.

- K"
i = meanpooling(w, ke N), (8)
2

where k™ represents neighbor k’s modality-specific embedding on m.

We perform neighbor-level alignment by pulling the item closer to its neighborhood and pushing it away from
other items. Accordingly, the neighbor-level alignment loss is formulated as follows:

LONA _ Z log exp(sim(.imjm)l/l,,) ’ )
i€B ZjEB exp(sim(i™, j™)/Ay)

where A, represents the temperature parameter.

6.2 Item Cluster-Level Alignment

We introduce a cluster-level alignment for items, where different modalities are aligned with the cluster center
for a more coarse alignment.

To cluster items efficiently, we draw inspiration from SwAV [1]. Conventional clustering methods like
KMeans [8] can be computationally expensive. By contrast, we learn a codebook in a dynamic manner, up-
dating item cluster assignments on the fly without requiring a finalized codebook. This substantially reduces the
time complexity typically associated with clustering.

We construct a codebook C'TV for different modalities {ID, T, V}, which records the vectorized representations
of typical items in a cluster (i.e., cluster prototypes). Formally, a codebook in the vector space is defined as
C'™V = {cy, ¢y, ..., cp} € REXP, where P is the number of prototypes, and c, € RL (for p < P)is the learnable
representation of the p-th cluster prototype. The codebook is initialized randomly.

For each item’s modality-specific embedding i, we can obtain its cluster assignment, referred to as the code
q™! € R”. Ideally, the code is determined by matching the embedding i™ to the cluster prototypes using the
softmax function, i.e., Softl\/Iax(i’"CITV /7), where 7 is a temperature parameter. In the context of recommenda-
tion systems, uniformity of item assignments is essential [27]. For instance, popularity bias arises when item
distributions are non-uniform, i.e., when most items are assigned to a dominant cluster. To address this, we
ensure that the code assignments follow a uniform distribution across clusters. To achieve this, we utilize the
Sinkhorn [5] optimal transport algorithm, which generates codes that preserve information integrity while
promoting relatively uniform spatial distributions.

im CITV

qmi = lim diag(r™) - SoftMax( ) - diag(s\™), (10)
n—

T
where q’"’i, CITV are iteratively refined for N times, and r", s represent the renormalization vectors at round n,
and r°, s° are initialized with matrices filled with all ones.

The item cluster-level alignment assumes that the cluster assignments for the different modalities of an item

are consistent. To enforce this, we utilize the cross-entropy loss between the code q™' and the "ground-truth"

ACM Trans. Recomm. Syst.
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assignment, which is derived from SoftMax(i™C'"V /7). Formally, we minimize the cluster-level alignment loss
for items as follows:

CLA im ITV
Ly = i Z Z [q" log (SoftMax(- )
i€l mne M,m#n
in 1TV
+q™ log (SoftMax( N1,
ml ITV _n,i , .n~ITV_m,i (11)
:|I|ZZ cHVg™ +i*tC ™)
lEImnEM
- 1ogZ exp(—) - 1ogZ exp(—)]
p=1 Ae

in

where q™, ¢! are obtained by Equation 10, SoftMax(

) is the calculated "ground-truth" cluster assignment,

the softmax function ensures the calculated a551gnment is a correct probability distribution, ! ) TV) computes the
similarity between the modality-specific embedding and the codebook, A, is the temperature parameter.

The item cluster-level alignment process alternatively update the codebook C'™V and the codes q™,Vi €
7,Ym € M by optimizing LK.

6.3 User Cluster-Level Alignment

. The previous alignments focus solely on items, neglecting user embeddings. However, directly aligning user
embeddings with item embeddings presents challenges. User embeddings are dynamic during the training process,
and even subtle fluctuations can lead to unstable results. To address this, we propose aligning users with items at
the cluster level, ensuring more stability and robustness in the alignment process.

Similarly, we maintain a codebook CU! for users and items to represent a set of preference cluster prototypes.
For an interacted user-item pair Y,,; = 1 € B, the codes q“ and q' should be similar. For instance, if a user prefers
"comedy" and "horror" movies, their interacted movies are likely to belong to these genres. Therefore, similar to
Equation 11, we define the cluster-level alignment loss for users as follows:

LG = 1 Z [_(uCUqu+11DCUI ”)—logZeXp
|B| Ac
Yyui=1€8 p=1

P ilD
—log Z exp( pl
p=1

q“ 11m dlag(r(")) SoftMax(

(12)

) dlag(s("))

ID

¢’ = lim diag(r(")) . SoftMaX(1 I) - diag(s™).
n—N

Remarks. Unlike item-level alignment, cluster-level alignment is inherently bidirectional for two main reasons:
(1) Cluster-level alignment captures more abstract user, item, and multi-modal features, making it more stable
during the learning process. Consequently, updating the cluster-level alignment and the codebook will not degrade
the quality of modality-specific embedding vectors. (2) Unlike item-level alignment, which is guided by user
feedback, cluster-level alignment aims to capture the high-level categories of items and user communities. Since
clustering is inherently reciprocal, it is unnecessary to restrict cluster-level alignment to a one-way direction.
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Table 1. Statistics of the datasets.

Datasets #Users #Items #Inter #Sparsity #AvgImage Sim #Avg Text Sim

Baby 19,445 7,050 160,792  99.88% 0.2240 0.2627
Sports 33,598 18,357 296,337  99.95% 0.2085 0.2184
Clothing 39,387 23,033 278,677 99.97% 0.2239 0.3880
TikTok 9,308 6,710 68,722 99.89% 0.8556 0.7113

7 Experiments
We conduct experiments to answer the following questions.

RQ1 Can CROSS improve the performance of existing recommendation methods?

RQ2 What is the impact of each component on CROSS’s performance?

RQ3 Is the dynamic directional alignment more suitable for MRSs?

RQ4 How does CROSS perform under scenarios involving missing/noisy multi-modal contents and noisy user
feedback?

RQ5 Can CROSS address the issue of modality misalignment?

RQ6 Does Multi-Grained Collaborative Alignment help reduce popularity bias in MRS?

RQ7 How sensitive is CROSS to its hyper-parameters?

7.1 Experimental Setup

Dataset. Following previous multi-modal recommendation systems [38, 42, 43], we conduct experiments on three
categories of Amazon review datasets [22]: Baby, Sports, and Clothing. Each item in these datasets is associated
with a 4096-dimensional visual feature vector [9] extracted using a pre-trained Convolutional Neural Network,
as well as a 384-dimensional textual feature vector obtained from a sentence transformer [24]. The statistics for
each dataset are presented in Table 1. To verify the effectiveness of CROSS in various domains, we further conduct
experiments on the TikTok dataset following [30].

The TikTok dataset, collected from the streaming media platform TikTok, encompasses visual, textual, and
audio modalities, whereas the Amazon dataset is sourced from an e-commerce site. To maintain consistency with
our previous experiments, our analysis focuses exclusively on the image and text modalities. We consider that
the TikTok dataset is inherently noisier than the Amazon dataset, as bloggers are generally less motivated than
merchants to produce high-quality media content. To evaluate this, we calculate the cosine similarity between
each pair of items and subsequently compute the average visual and textual similarities. As presented in Table 1,
the TikTok dataset exhibits significantly higher inter-item similarities in both visual and textual modalities, with
average image and text similarities of 0.8556 and 0.7113, respectively, and 0.2188 and 0.2897 in the Amazon dataset.
These findings indicate that the TikTok dataset poses substantial challenges for Multi-modal Recommendation
Systems (MRSs), because it is difficult to discriminate user preferences from highly similar multi-modal contents.

Evaluation Protocols. We evaluate following the approach used in many prior works [35, 38, 40, 42, 43].
Specifically, we adopt an 80-10-10 split for training, validation, and testing. Two widely used evaluation metrics
are employed: Recall@K (R@K) and NDCG@K (N@K). The reported results are the average values across all
users in the test dataset, with K = {10, 20}.

Implementation. Building on previous work [11, 38, 42, 43], we set the embedding size for both users and
items to 64 across all models. The model parameters are initialized using the Xavier method [7], and Adam [13]
is used as the optimizer. CROSS is developed on the classical multi-modal recommendation platform, MMRec [41].
The platform includes numerous classic and state-of-the-art MRS backbone architectures. To ensure fairness,
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CROSS directly adopts the platform’s complete training configurations, including learning rates, embedding
dimensions, and hyperparameter settings of all backbone models. A grid search is conducted to identify the
optimal hyperparameters of CROSS for different backbone models. Specifically, for CF models, we search the
values of  and « within {1, 10, 100}, while for multimodal models, we search within {0.0001, 0.001, 0.01}. For the
value of y, we keep the same value with a. For the regularization parameters A., A f and A,, we search within {0.1,
0.2, 0.3}, {0.05, 0.1, 0.15} and {0.2, 2, 20}, respectively. The number of prototypes is set to P = {10240, 20480} for
CITV and CYL, respectively. The neighbor number is set to K = {3, 5, 10}. The number of iterations is set to N = 3.
To accelerate convergence, we employ an early-stopping strategy, using Recall@20 (R@20) on the validation data
as the criterion for early stopping. Following prior works [35, 38, 40, 42, 43], the training is performed separately
on each dataset.

Backbones. CROSS is a plug-and-play framework that can be seamlessly integrated with various backbone
recommendation systems (RS). In our experiments, we evaluate several widely used collaborative filtering models
(CF backbones), which rely solely on interaction data. These include BPR [25], LightGCN [11], SGL [33],
DirectAU [27], and NCL [19]. Additionally, we experiment with multi-modal recommendation models (MRS
backbones), which incorporate multi-modal content features, such as text and image embeddings from the
three datasets. These models include VBPR [10], GRCN [31], DualGNN [28], SLMRec [26], LATTICE [38], and
FREEDOM [42].

Competitors. To the best of our knowledge, the most recent work, FETTLE [43], proposes a fine-grained
multimodal alignment strategy in multimodal recommendation systems (MRS). In FETTLE, the multimodal
alignment direction is based on the modal’s user preference score. For each item, the low score modal aligns with
the high score modal.

For all the backbone models, we use the open-source implementation available at 2. Our code is publicly
accessible at >.

7.2 Comparative Study

To address RQ1, we integrate CROSS and FETTLE with various backbone recommendation models. Table 2 and 3
present the performance of these backbone models both before and after applying multi-modal alignment with
FETTLE and CROSS. The following observations can be made.

(1) CROSS demonstrates substantial improvements across all backbone models. Specifically, for collaborative filter-
ing (CF) backbones, CROSS achieves average enhancements of 39.71% in R@10, 36.55% in R@20, 37.32% in N@10,
and 36.15% in N@20. For multi-modal recommendation system (MRS) backbones, the average improvements are
14.22%, 12.55%, 15.88%, and 14.71%, respectively. Even for the top-performing MRS backbone, FREEDOM, CROSS
delivers average gains of 6.90%, 5.85%, 8.65%, and 7.74%. Notably, the improvement is generally smaller for MRS
backbones than for CF backbones, likely because MRS models already integrate multi-modal information to some
extent. Nevertheless, CROSS still offers a significant boost of approximately 14.34% on average, indicating that
even models leveraging multi-modal content can fail to fully exploit its potential without proper multi-modal
alignment. By addressing this gap, CROSS further enhances recommendation performance.

(2) CROSS demonstrates consistent performance across all datasets. Specifically, it achieves average improvements
of 23.94%, 22.02%, 25.05%, and 23.28% (R@10, R@20, N@10, N@20) on the Baby dataset; 18.17%, 17.13%, 17.64%, and
17.17% on the Sports dataset; and 43.48%, 39.38%, 42.99%, and 42.24% on the Clothing dataset. On the TikTok dataset,
CROSS attains average improvements of 17.65%, 15.29%, 16.82%, and 15.15%. Notably, CROSS exhibits the most
substantial gains on the Clothing dataset, whereas the improvements on TikTok are comparatively modest. This
discrepancy can be attributed to the intrinsic characteristics of the datasets: the Clothing dataset, which focuses on

2https://github.com/enoche/MMRec/
Shttps://github.com/XMUDM/FETTLE/tree/main/CROSS/
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Table 2. Performance of CF/MRS models before and after applying FETTLE and CROSS in Baby and Sports. The best
performance is highlighted in bold. Almp. indicates improvements over vanilla models in percentage.

Models Baby Sports
R@10 R@20 N@10 N@20 | R@10 R@20 N@10 N@20
BPR 0.0382  0.0595 0.0207 0.0263 | 0.0417 0.0633 0.0232 0.0288
+FETTLE 0.0500 0.0790 0.0272 0.0347 | 0.0579 0.0874 0.0310 0.0385
+CROSS 0.0562 0.0850 0.0307 0.0381 | 0.0611 0.0942 0.0340 0.0426
LightGCN 0.0465 0.0754 0.0250 0.0325 | 0.0561 0.0846 0.0308 0.0381
+FETTLE 0.0576  0.0884 0.0317 0.0395 | 0.0645 0.0967 0.0351 0.0434
+CROSS 0.0592 0.0913 0.0326 0.0408 | 0.0693 0.1032 0.0384 0.0472
SGL 0.0532  0.0820 0.0289 0.0363 | 0.0620 0.0944 0.0339  0.0423
CF +FETTLE 0.0585 0.0903 0.0325 0.0407 | 0.0706 0.1057.  0.0386 ~ 0.0476
+CROSS 0.0594 0.0916 0.0325 0.0407 | 0.0720 0.1071 0.0396 0.0486
DirectAU 0.0231 0.0342 0.0128 0.0156 | 0.0391 - 0.0570 0.0218 0.0264
+FETTLE 0.0400 0.0619 0.0215 0.0272 | 0.0553 = 0.0828 0.0298 0.0369
+CROSS 0.0404 0.0625 0.0218 0.0274 | 0.0565 0.0840 0.0306 0.0377
NCL 0.0463 0.0750 0.0249 0.0323 | 0.0560 0.0842 0.0308 0.0381
+FETTLE 0.0552 0.0836 0.0298 0.0371 | 0.0643 0.0966 0.0354 0.0438
+CROSS 0.0575 0.0907 0.0314 0.0399 | 0.0655 0.0993 0.0355 0.0442
+FETTLE Avg AImp. | 31.14% 30.52% 31.66% . 30.96% | 24.79% 24.87% 22.62% 22.97%
+CROSS Avg Almp. 37.03% 35.87% 37.52% 36.34% | 29.53% 29.91% 28.73% 29.10%
VBPR 0.0424 0.0662 0.0223 0.0284 | 0.0560 0.0857 0.0307 0.0384
+FETTLE 0.0555 0.0842 0.0297 0.0372 | 0.0622 0.0957 0.0330 0.0417
+CROSS 0.0564 0.0862 0.0308 0.0384 | 0.0646 0.0952 0.0351 0.0430
DualGNN 0.0507  0.0808 0.0277 0.0354 | 0.0589 0.0902 0.0325 0.0405
+FETTLE 0.0532 © 0.0830  0.0285 0.0362 | 0.0624 0.0910 0.0343 0.0417
+CROSS 0.0540 0.0841 0.0297 0.0375 | 0.0656 0.0938 0.0364 0.0438
GRCN 0.0520 0.0841 0.0284 0.0367 | 0.0603 0.0911 0.0327 0.0407
+FETTLE 0.0578 0.0900 0.0311 0.0394 | 0.0632 0.0964 0.0341 0.0426
MRS +CROSS 0.0584 0.0913 0.0316 0.0401 | 0.0642 0.0966 0.0348 0.0431
SLMRec 0.0535 0.0820 0.0293 0.0366 | 0.0660 0.0989 0.0365 0.0449
+FETTLE 0.0555 0.0840 0.0299 0.0375 | 0.0681 0.1008 0.0373  0.0457
+CROSS 0.0574 0.0852 0.0319 0.039 | 0.0691 0.1034 0.0378 0.0466
LATTICE 0.0547 0.0843 0.0291 0.0367 | 0.0622 0.0953 0.0338 0.0423
+FETTLE 0.0569 0.0915 0.0310 0.0398 | 0.0655 0.0986 0.0351 0.0436
+CROSS 0.0599 0.0927 0.0328 0.0402 | 0.0672 0.1020 0.0361 0.0451
FREEDOM 0.0626  0.0986 0.0327 0.0420 | 0.0719 0.1076  0.0385 0.0477
+FETTLE 0.0672 0.1029 0.0355 0.0447 | 0.0745 0.1115 0.0397 0.0492
+CROSS 0.0686 0.1047 0.0359 0.0453 | 0.0764 0.1143 0.0413 0.0510
+FETTLE Avg AImp. | 10.35% 8.85% 10.45% 9.66% 5.66%  4.56% 4.41%  4.04%
+CROSS Avg Almp. 13.04% 10.49% 14.66% 12.39% | 8.70% 6.49% 8.40% 7.22%
v.s. FETTLE 4.02% 3.32% 4.96% 3.94% | 3.82% 3.34% 4.96% 4.53%
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Table 3. Performance of CF/MRS models before and after applying FETTLE and CROSS in Clothing and TikTok. The best
performance is highlighted in bold. Almp. indicates improvements over vanilla models in percentage.

Models Clothing Tiktok
R@10 R@20 N@10 N@20 | R@10 R@20 N@10 N@20
BPR 0.0200 0.0295 0.0111 0.0135 | 0.0355 0.0538 0.0191 0.0237
+FETTLE 0.0451 0.0696 0.0248 0.0310 | 0.0430 0.0637 0.0214 0.0267
+CROSS 0.0502 0.0738 0.0274 0.0334 | 0.0473 0.0742 0.0235 0.0303
LightGCN 0.0341  0.0527 0.0189 0.0236 | 0.0584 0.0932 0.0312 0.0399
+FETTLE 0.0473  0.0698 0.0253  0.031 | 0.0620 0.0952 0.0340 0.0423
+CROSS 0.0499 0.0735 0.0270 0.0330 | 0.0624 0.1031 0.0345 0.0447
SGL 0.0332  0.0586 0.0216 0.0266 | 0.0522 0.0916 0.0251  0.0348
CF +FETTLE 0.0516  0.0765 0.0284 0.0347 | 0.0561 0.0959  0.0263 = 0.0362
+CROSS 0.0527 0.0783 0.0292 0.0357 | 0.0594 0.0962 0.0286 0.0377
DirectAU 0.0302  0.0455 0.0165 0.0204 | 0.0276 - 0.0515 0.0125 0.0186
+FETTLE 0.0497 0.0731 0.0266 0.0326 | 0.0381 0.0643 0.0173 0.0239
+CROSS 0.0510 0.0740 0.0274 0.0333 | 0.0401 0.0640 0.0176 0.0236
NCL 0.0342 0.0499 0.0183 0.0224 .| 0.0666 0.1028 0.0363  0.0454
+FETTLE 0.0433 0.0643 0.0234 0.0287 | 0.0709 0.1113 0.0359 0.0461
+CROSS 0.0441 0.0649 0.0239 0.0292 | 0.0722 0.1113 0.0382 0.0480

+FETTLE Avg AImp. | 62.16% 57.69% 55.57% . 55.87% | 15.85% 11.67% 12.62% 10.55%
+CROSS Avg Almp. | 70.78% 63.19% 64.31% 63.01% | 21.52% 17.22% 18.72% 16.16%

VBPR 0.0282  0.0420 0.0156 0.0191 | 0.0286 0.0486 0.0139 0.0189
+FETTLE 0.0454 0.0675 0.0242  0.0299 | 0.0410 0.0637 0.0217 0.0274
+CROSS 0.0463 0.0691 0.0248 0.0306 | 0.045 0.0696 0.0232 0.0294
DualGNN 0.0458  0.0689 0.0243 0.0301 | 0.0555 0.0867 0.0278 0.0356
+FETTLE 0.0511 © 0.0739  0.0278 0.0336 | 0.0558 0.0854 0.0298 0.0373
+CROSS 0.0514 0.0747 0.0281 0.034 | 0.0584 0.0873 0.0299 0.0371
GRCN 0.0428 0.0659 0.0225 0.0284 | 0.0446 0.0719 0.0217 0.0286
+FETTLE 0.0502 0.0750 0.0266 0.0329 | 0.0463 0.0749 0.0219 0.0291
MRS +CROSS 0.0505 0.0761 0.0267 0.0332 | 0.0492 0.0801 0.0225 0.0302
SLMRec 0.0451 0.0670 0.0243 0.0299 | 0.0686 0.1047 0.0358  0.0448
+FETTLE 0.0477 0.0697 0.0257 0.0313 | 0.0709 0.1044 0.0370 0.0454
+CROSS 0.0494 0.0747 0.0269 0.0334 | 0.0729 0.1090 0.0367 0.0457
LATTICE 0.0486  0.0717 0.0265 0.0324 | 0.0591 0.0877 0.0315 0.0388
+FETTLE 0.0531  0.0783 0.0288 0.0351 | 0.0598 0.0923 0.0306 0.0388
+CROSS 0.0556 0.0810 0.0370 0.0458 | 0.0601 0.1018 0.0318 0.0422
FREEDOM 0.0627  0.0940 0.0336  0.0415 | 0.0581 0.0890 0.0316  0.0393
+FETTLE 0.0658 0.0970 0.0356  0.0435 | 0.0620 0.0936 0.0333  0.0412
+CROSS 0.0665 0.0981 0.0362 0.0442 | 0.0614 0.0949 0.0347 0.0431

+FETTLE Avg AImp. | 18.30% 16.37% 18.02% 16.98% | 9.83%  7.31% 11.68% 9.61%
+CROSS Avg Almp. | 20.73% 19.54% 25.22% 24.94% | 14.42% 13.69% 15.24% 14.30%
v.s. FETTLE 5.24% 4.23% 7.90% 7.59% | 5.08% 6.00% 4.71% 5.11%
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Fig. 6. Performance of each component on Baby and Sports datasets

fashion items (e.g., apparel and accessories), contains cleaner multi-modal data with clearly distinguishable image
and text modalities. As both style-driven visuals and detailed textual descriptions play pivotal roles in fashion-
related recommendations, aligning these modalities yields substantial benefits. In contrast, TikTok consists
predominantly of short-form videos, placing a greater emphasis on the image modality. More importantly, the
modals of items in the TikTok dataset exhibit higher noise and smaller inter-item differences, posing significant
challenges for MRSs. Consequently, while CROSS excels at leveraging the dual-modal information in the Clothing
dataset, it still provides notable improvements on TikTok, despite the lower multi-modal content quality.

(3) CROSS consistently outperforms FETTLE. While FETTLE demonstrates commendable performance, CROSS
achieves even greater enhancements. Specifically, FETTLE attains average improvements of 21.27% in R@10,
19.23% in R@20, 19.99% in N@10, and 19.17% in N@20. CROSS achieves average improvements of 25.81% in R@10,
23.46% in R@20, 25.63% in N@10, and 24.46% in N@20. Across the majority of backbone models, CROSS surpasses
FETTLE in performance metrics. This finding supports our hypothesis that One-way directional multi-modal
alignment, which merely aligns low-score modalities to high-score ones, is not always optimal for Multi-modal
Recommendation Systems (MRSs). Conversely, CROSS employs a dynamic alignment direction—combining both
One-way directional and bidirectional strategies—based on user preferences and a compensation mechanism.
This adaptive approach enables CROSS to achieve significant performance improvements, highlighting its superior
efficacy in leveraging multi-modal information for enhanced recommendation accuracy. We will deeply discuss
the influence of modality alignment ways for MRSs in Section 7.4.

7.3 Ablation Study

To address RQ2, we conduct a series of experiments to evaluate the contribution of each component in CROSS. For
more robust results, we use the well-performed MRS, FREEDOM [42], as the backbone, progressively incorporate
combinations of four components of CROSS, and report the R@10 and N@10 performance on Baby and Sports
datasets. The four components include (1) Dynamic Item-Level Alignment (ILDA) determines the alignment
direction based on user feedback and then adjusts the alignment scores using a compensation mechanism. This
mechanism takes into account both the modality’s initial score and its associated uncertainty. It utilizes the
pairwise £P4 described in Section 4. (2) The multi-modal alignment with Direction Tuning loss (DT) addresses
the issue of direction inconsistency that occurs when aligning multiple modalities simultaneously, using the
LPT described in Section 5. (3) Multi-grained Collaborative Alignment (CNA) identifies stable neighboring
items that share similar user feedback profiles with the target item. By aligning modalities among these neighbors,
CNA helps filter out noise from random interactions, as spurious or erroneous feedback usually lacks consistent
neighbor-based support. This is achieved through the £N4 described in Section 6. (4) Cluster-level Alignment

ACM Trans. Recomm. Syst.



16 « Y.Lietal.

LightGCN NCL VBPR SLMRec
0.08 0.08 0.08 0.08
0.0709 0-0722 0.0700 0:0729
0.07 0.0710.0666 ( 1c47 0.07 | 0.07 | 0-0686
0.0620 0.0624 : 0.0643
0.06 {0.0584 0.0584 0.06 1 0.06 1 0.06 1
o
®
©0.05 0.05 0.05 0.0a50 | 005
0.0414 0.0410
0.04 1 0.04 1 0.044 4 0355 0.04
0.03 { 0.03 { 0.03 { 0.03 {
0.02 : : : : 0.02 : : : : 0.02 - : : : 0.02
Vanilla Bidirectional(MMM) One-way directional(FETTLE) Dynamic directional(CROSS)

Fig. 7. Performance in different modality alignment direction approach on TikTok dataset

(CLA) aligns users and items, as well as the different modalities of items, at the cluster level using the £¢4

described in Section 6.

(1) ILDA stands out as a particularly effective component of CROSS. When applied to the backbone system
FREEDOM in isolation, the ILDA strategy (“+ILDA”) achieves a notable enhancement: it improves R@10 and
N@10 on the Baby dataset by 3.67% and 5.81%, respectively, as shown in Figures 6(a) and 6(b), and on Sports dataset
by 4.03% and 5.19%, in Figures 6(c) and 6(d). These gains are especially significant given that FREEDOM itself is
already a sophisticated MRS, and making further performance boosts on FREEDOM is inherently challenging. The
results confirm the importance of orienting item-level alignment based on user feedback. Moreover, a comparison
with “+CLA” and “+CNA” reveals that “+ILDA” yields higher average improvements, underscoring the superior
efficacy of ILDA over CLA or CNA when used alone:

(2) Both CNA and CLA contribute to improving RS performance. Compared with FREEDOM, “+CNA” achieves
notable enhancements: R@10 and N@10 on Baby dataset, improve by 3.51% and 4.59%, respectively, in Figures 6(a)
and 6(b), and on Sports dataset by 0.70% and 2.34% in Figures 6(c) and 6(d). Similarly, “+CLA” delivers improvements,
with R@10 and N@10 on Baby dataset increasing by 0.32% and 2.45% in Figures 6(a) and 6(b), and on Sports
dataset by 1.11% and 2.60% in Figures 6(c) and 6(d).

When combined with ILDA, both strategies significantly enhance RS performance. Specifically, “+ILDA&CNA&CLA”
achieves substantial improvements: R@10 and N@10 on Baby dataset increase by 5.11% and 7.65%, respectively,
in Figures 6(a) and 6(b), and on Sports dataset by 5.29% and 7.01% in Figures 6(c) and 6(d). These results indicate
that CNA and CLA effectively mitigate the impact of noisy or inaccurate feedback in ILDA, refining the alignment
process and achieving a denoising effect.

(3) DT can address the directional inconsistency problem in ILDA. As shown in Figure 6, applying “+DT” alone
has little to no effect on RS performance. In fact, on the Baby dataset, R@10 even decreases slightly by -0.16%, as
illustrated in Figure 6(a). However, when combined with “+ILDA,” DT significantly improves RS performance.
We present the performance of "+ILDA&CNA&CLA" without DT and with DT("+ILDA&DT&CNA&CLA") on the
Baby and Sports datasets, as shown in Figure 6. The inclusion of DT yields notable improvements in R@10 and
N@10: specifically, increases of 4.26% and 1.99% on the Baby dataset, and 0.92% and 0.24% on the Sports dataset.
These results demonstrate that DT further enhances multi-modal alignment at item-level, neighbor-level, and
cluster-level, effectively resolving alignment inconsistencies and improving overall RS performance.

7.4 Alignment Direction

To address RQ3, we conducted experiments on the TikTok dataset, which represents a more complex and realistic
scenario, to compare three alignment strategies: Bidirectional, One-way directional, and Dynamic directional in
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the context of Multi-modal Recommendation Systems (MRSs). Specifically, we selected two representative models
each from Collaborative Filtering (CF) and MRS: LightGCN (a classic CF model) and NCL (the best-performing
CF model on TikTok) for CF, and VBPR (a classic MRS model) and SLMRec (the best-performing MRS model on
TikTok) for MRS. The results are shown in Figure 7, leading to the following observations:

(1) Dynamic directional alignment achieves the best overall performance. Across the four backbones, hybrid-
directional alignment increases the average R@10 from 0.0573 to 0.0631, an improvement of 12.07%, outperforming
the One-way directional alignment (7.87%) and bidirectional alignment (1.87%). This indicates that hybrid-
directional alignment is particularly suitable for MRSs.

(2) Bidirectional alignment exhibits the weakest performance. Its average R@10 improvement across the four
backbones is only 1.87%. Notably, on NCL and SLMRec, R@10 even decreases by 2.85% and 6.27%, respectively,
suggesting that bidirectional alignment is largely unsuitable for MRSs.

(3) One-way directional alignment performs moderately well in most scenarios. compared with the vanilla back-
bones, it improves R@10 by 6.16% in LightGCN, 6.46% in NCL, and 3.35% in SLMRec. However, it underperforms
in VBPR, achieving 1.13% less improvement than Bidirectional alignment. A plausible explanation is that VBPR’s
weaker representational capacity leads to lower-quality user embeddings, making it harder to estimate accurate
modality scores and thus undermining the benefits of one-way directional alignment. Additionally, VBPR is more
susceptible to noisy user feedback.

In summary, hybrid-directional alignment, which combines the ideas of both Bidirectional and One-way
directional strategies, offers greater robustness and adaptability across various backbones, making it a more
reliable choice for complex multi-modal recommendation scenarios.

7.5 Nosiy Content and Noisy User Feedback

To address RQ4, we examine the performance of the leading MRS backbone FREEDOM, FETTLE, and CROSS,
under scenarios with missing modalities and noisy user feedback.

Modality Missing. To evaluate the performance of MRSs under scenarios with noisy/missing multi-modal
content, we randomly remove a portion of the multi-modal data in the Amazon Baby dataset and assess the
recommendation performance. Specifically, for each item’s image and textual descriptions, we replace the original
features with Gaussian noise at rates of 20%, 40%, 60%, and 80%. As discussed in [36], the Gaussian noise simulates
missing modalities. Note that an item may lose both its image and text modalities simultaneously or only one
modality at a time. With this'setup, we construct a series of training sets featuring varying degrees of missing
content and then train our recommendation system on these datasets to evaluate their robustness.

The approach(FETTLE'’s ILA and Ours ILDA) leverages user preferences to determine the direction of modality
alignment. To evaluate its effectiveness, we conduct experiments on the Baby dataset. We compare the performance
of the backbone model, FREEDOM, with its variant enhanced by FETTLE’s ILA strategy and our proposed ILDA
strategy. The evaluation metric used is R@10. As shown in Figure 8(a), two key observations can be made: (1)Both
ILA and ILDA enhance FREEDOM under various missing ratios. FREEDOM achieves an average R@10 of only
0.0559 across different missing rates, whereas ILA and ILDA reach 0.0570 and 0.0576, respectively. This highlights
that one-way directional alignment can effectively mitigate the impact of missing modalities. When a modality
is replaced with noise, it naturally has a lower preference score. It is aligned toward the remaining “strong"
modality, thus reducing the negative influence of corrupted content on the overall MRS. (2)ILDA is more flexible
and effective compared with ILA. ILA employs a relatively rigid “low-score aligns to high-score” policy, leading
to potential long-term disadvantages or even “laziness” for modalities with slightly lower scores. In contrast,
ILDAincorporates a dynamic score compensation mechanism, alleviating this limitation and boosting the average
R@10 from 0.0570 to 0.0576. This improvement demonstrates stronger robustness and adaptability in handling
missing-modal scenarios.
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Fig. 8. Performance in scenarios with noisy/missing multi-modal content and noisy user feedback on Baby dataset

Noisy User Feedback. To evaluate performance under noisy user feedback, we artificially inserted 5%, 10%,
15%, and 20% of user-item interactions that did not actually occur into the training set of the Amazon Baby
dataset, simulating user misclicks. We then compared the baseline model FREEDOM, FETTLE, and CROSS on
different noise levels in terms of average R@10.

The results are shown in Figure 8(b), we draw two key conclusions:(1)FETTLE and CROSS exhibit stronger
robustness against noisy interactions. Compared with FREEDOM, both FETTLE and CROSS better handle misclick
noise, boosting the average R@10 to 0.0628 and 0.0640, respectively. It shows cluster-level alignment (CLA)
can effectively assist the influence cause by the noisy user feedback. (2)Neighbor-based modality alignment
effectively filters out noise. Compared with FETTLE, CROSS achieves 1.85% improvement in R@10. It shows that
neighbor-level alignment strategies leverage stable feedback from similar items, reducing the impact of isolated
misclicks and producing more accurate, robust user and item representations.

7.6 Visualization

To determine whether CROSS effectively alleviates the spatial misalignment among ID, image, and text embeddings
in a multi-modal recommendation system(RQ5), we compare FREEDOM (baseline) and FREEDOM + CROSS on
Baby dataset. We extract the ID, image, and text embeddings and apply T-SNE for dimensionality reduction.
As illustrated in Figure 9(a), without CROSS, the embedding space exhibits clear segregation: ID and image
embeddings occupy largely disjoint regions, and text embeddings also remain far from the other two. Once CROSS
is integrated, we observe a pronounced overlap among all three modalities in the 2D space. Quantitatively, CROSS
decreases the average Euclidean distance among modality embeddings by approximately 56.97%, compared with
the baseline. These findings underscore CROSS’s efficacy in harmonizing embeddings from distinct modalities,
ensuring a more unified representation of the same item.

We further investigate whether improved multi-modal alignment yields tangible benefits for recommendation.
Again, we conduct experiments on the Baby dataset with both FREEDOM and FREEDOM + CROSS, this time
focusing on 500 user-item pairs with actual interaction records. In the T-SNE visualization shown in Figure 9(b),
user embeddings (shown in blue) and item embeddings (red for text, green for images) are largely scattered in
separate regions without CROSS. This distribution indicates a limited capacity to align users and their interacted
items in a shared embedding space. In contrast, with CROSS enabled, all three embedding types exhibit extensive
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Fig. 9. (a) Visualization of Items ID, image, and text embeddings on Baby dataset. (b) Visualization of image and text
embeddings of interacted users and items on Baby dataset.

overlap. A quantitative analysis reveals that the average cosine similarities between user embeddings and their
interacted item’s image embeddings and text embeddings increases by around 14.69% and 12.18% when CROSS is
applied. Consequently, CROSS not only rectifies inter-modality mismatches at the item level but also enhances
the model’s ability to capture authentic user preferences, thereby improving overall recommendation accuracy
and robustness.

7.7 Popularity Bias Mitigation

To validate that Multi-Grained Collaborative Alignment in CROSS can alleviate the popularity bias issue in
recommendation systems (RQ6), we conducted experiments on Amazon Baby dataset, which exhibits a significant
Matthew effect. As shown in Figure 10(a), following prior works [12, 29], we categorized items based on the
number of interactions with users. The top 20% of items with the highest number of interactions were classified
as head items (Head), while the remaining 80% were classified as tail items (Tail). We observed a power-law
distribution in this dataset, with head items accounting for the majority of interactions (61.81%) and tail items
only accounting for 38.19%. This long-tail phenomenon [12] is a key factor contributing to popularity bias.

To intuitively demonstrate the performance improvement of Multi-Grained Collaborative Alignment for tail
items with different popularity levels, we further divided the tail items into four groups (Tail 1, Tail 2, Tail 3, and
Tail 4) based on the number of interactions with users, from low to high. We then evaluated the recommendation
performance for each group of items, using two experimental settings: (1) the original backbone (FREEDOM) and
(2) the backbone with Multi-Grained Collaborative Alignment (+CNA&CLA). The experimental results, shown in
Figure 10(b), lead to the following observations:

(1) Multi-Grained Collaborative Alignment improves all popularity levels. For Tail 1, Tail 2, Tail 3, Tail 4, and
Head, the recommendation performance improved by at least 3.48%, with a maximum improvement of 36.14%.
This indicates that Multi-Grained Collaborative Alignment provides positive gains for all item groups, enhancing
the overall performance of the recommendation system.

(2) Multi-Grained Collaborative Alignment significantly improves performance for tail items. For head items,
R@10 improved by 3.81%. For tail items, R@10 improved on average by 22.36%, indicating that Multi-Grained
Collaborative Alignment effectively alleviates the influence of popularity bias in the recommendation system and
enhances the recommendation ability for tail items.

(3) Multi-Grained Collaborative Alignment has the most significant improvement for cold-start items. Among the
four popularity levels, Tail 1 consists of items with the fewest interactions with users, and their recommendation
performance reflects the system’s ability to recommend cold-start items. Due to the lack of user interactions, these

ACM Trans. Recomm. Syst.



20 « Y.Lietal

'
i FREEDOM FREEDOM
Head | 0.120
- 1 0.020{ WEE +CNA&CLA 123,039 M +CNA&CLA [0
Tail ' .03%
1 0.0187
H 13.81%
0.40 10018 0.1008
i 0.0971] 0.100
'
H 0.0152)
| 0.015
I
~ 0.30 ! 126.80% 0.080 __
g 1= 0013 136.14% 0.0123 13:48% 3
z el 0.0113 0.01155 2
r_; :S 0.0097 0.060 ;
.060 3
g. 0.20 :g) 0.010 . ®
o H 0.0083 o«
: 0.007
Head Items Tail Items | 0.040
0.10 4 Popularity Ratio:61.81% Popularity Ratio:38.19% I
. 1 0.005
I
H 0.020
20% 80% 1000
0.00 !
I
0 y iy y iy y iy y 1 0.000 0.000
0 1000 2000 30:JtO . 4(:(00 5000 6000 7000 il 1 Tail 2 il 3 il 4 Head
em Ran Popularity
(a) The popularity ratio of items in Baby dataset (b) Performance of head items and tail items

Fig. 10. (a) Distribution of item popularity and its ratio in the Baby dataset, (b) Comparison of R@10 (Tail and Head)
performance for FREEDOM and +CNA&CLA(Multi-Grained Collaborative Alignment) across popularity levels

items often struggle to be recommended. However, we found that Multi-Grained Collaborative Alignment had the
most significant improvement for Tail 1 items, with R@10 increasing from 0.0083 to 0.0113, a 36.14% improvement.
This highlights the effectiveness of the strategy: Firstly, Item Neighbor-Level Alignment establishes connections
between niche items and other items in their neighborhood. Secondly, Item Cluster-Level Alignment, based on Sinkhorn
optimal transport theory, normalizes the cluster distribution, preventing the recommendation system from overly
focusing on clusters containing popular items. Finally, user clustering alignment helps the recommendation system
learn the user’s abstract interest distribution (e.g., "baby furniture’ rather than specific products). If the cold-start
item aligns with the user’s abstract interests, it could be recommended.

7.8 Impact of Hyper-parameters

To examine the impact of hyperparameters (RQ7), we implement FREEDOM+CROSS on the Baby dataset with
various hyperparameter configurations. We focus on three key sets of hyperparameters: the loss weights, ¢ and j
and y, which balance the alignment losses, and the temperatures, A f and A, which control the attention given to
challenging alignment samples. Finally, we also conducted hyperparameter experiments on the K parameter used
in the Top-K method for finding the most similar neighbors in the Collaborative-Neighbour Alignment section.
Specifically, we explore different values for the loss weights ¢, f and y from the set {1e—5, 1e—4, 1e—3, le—2, le—1},
as well as for the temperatures, varying Ay within {0.05,0.1,0.15,0.2,0.25} and A, within {0.1,0.2,0.3,0.4,0.5}
and K within {1, 3, 5,10, 15}. The R@10 results are presented in Figure 11. We make the following observations.

(1) CROSS exhibits robustness to loss weights. It is shown in Figure11. For values of @ ranging from 1e — 5 to
le — 1, the performance of CROSS in R@10 varies from 0.0639 to 0.0686. For the values of § from 1e — 5 to le — 2,
the performance of CROSS in R@10 varies from 0.0657 to 0.0686. For the values of y from 1e — 5 to le — 2, the
performance of CROSS in R@10 varies from 0.0663 to 0.0686. Given that the performance of FREEDOM is 0.0626
in R@10, CROSS consistently improves the performance of the backbone model, FREEDOM, across different
settings of f, a, and y. There are only two exceptions occurring in extreme configurations, such as f = 1le — 1
and y = le — 1, where CROSS’s performance is impacted. Since y controls item neighbor-level alignment and f
controls cluster-level alignment, high values of § and y reduce the influence of item-level dynamic directional

ACM Trans. Recomm. Syst.



CROSS: Feedback-Oriented Multi-Modal Dynamic Alignment in Recommendation Systems « 21

z
0.0680 0.0675 0.0675 /
\.\.
2 0.0660 S 0.0650 S 0.0650
©] ® ®
o & 0.0625 @ 00625 —cmmflmm e
0.0640 —— CROSS CROSS —— CROSS
——- FREEDOM 0.0600 -—- FREEDOM 0.0600 ~—- FREEDOM
0.1 001  0.001 0.0001 1e-05 0.1 0.01  0.001 0.0001 1e-05 0.1 001  0.001 0.0001 1e-05
a B Y
» - . L2
0.0680 \ 00680 T~ 0.0680 /\/ S~
; .
.
\ /
S 0.0660 ——— S 0.0660 S 0.0660
©] © ®©
o o o
0.0640 —e— CROSS 0.0640 —e— CROSS 0.0640 —— CROSS
——-- FREEDOM ——- FREEDOM —=- FREEDOM
0.05 0.1 0.15 0.2 0.25 0.1 0.2 03 0.4 05 1 3 5 10 15
As Ac K

Fig. 11. Performance of CROSS under different hyper-parameters

alignment. This observation further highlights the importance of adaptive alignment at the item level. The optimal
performance is achieved with « = 1e — 3, f = 1le — 4, and y = 1le — 3.

(2) CROSS is robust to temperature coefficients. As demonstrated in Figure 11, CROSS shows insensitivity to
the temperature coefficients A¢ and A.. For values of A¢ ranging from 0.05 to 0.25, the performance of CROSS
in R@10 varies from 0.0662 to 0.0686. For the values of A, from 0.1 to 0.5, the performance of CROSS in R@10
varies from 0.0676 to 0.0686. Among all the tested temperature coefficient selections, CROSS brings at least a 5.75%
higher recommendation performance compared with FREEDOM in R@10. The best performance is achieved
with moderate values of Ay = 0.05 and A, = 0.1.

(3) CROSS is robust to Top-K parameter K. As illustrated in Figure 11, under all tested values of K, the performance
of CROSS changes from 0.0664 to 0.0686 in R@10, demonstrating a significant performance advantage over
FREEDOM, with at least a 6.07% improvement. This observation also confirms the rationality and robustness of
our Collaborative-Neighbour Alignment approach.

8 Conclusion

Aligning multi-modal content and ID embeddings is a pivotal challenge in multi-modal recommendation systems.
Traditional solutions predominantly rely on bidirectional alignment paradigms. In contrast, our prior work,
FETTLE, proposed a unidirectional item-level alignment, mitigating the adverse effects of low-quality modalities.
This paper introduces CROSS (feedbaCk-oRiented multi-mOdal alignment in recommendation SyStem), a versatile
plug-and-play framework that extends FETTLE and combines three components.

First, we propose Dynamic Item-Level Alignment, a variance-based compensation mechanism that dynami-
cally calibrates the contribution of each modality, preventing dominant modalities from overshadowing weaker
ones during early training stages. Second, we refine the item-level representations via Multi-Modal Alignment
to resolve potentially conflicting directional signals among modalities and ensure consistent user-preference
modeling. Third, we develop Multi-grained Collaborative Alignment, a medium-granularity alignment
approach leveraging robust neighbor-level alignment, which incorporates items with similar user feedback
profiles. This method balances the trade-off between noisy user interactions and over-smoothing across items.

This paper presents a comprehensive extension to FETTLE, achieving an additional performance gain of
3.82%-5.24% on four real datasets. There are several questions left unanswered. (1) The multi-modal alignment is
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conducted on items, which is natural. How is the alignment problem interpreted from the user’s perspective? (2)
The multi-modal embeddings are extracted from pre-trained models, usually uni-modal and small-sized models.
Can they be integrated with SOTA multi-modal language models? We will explore these directions in our future
work.
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