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Abstract
Multi-modal recommender systems (MRSs) have emerged as criti-
cal multi-modal technologies on online platforms, but do we truly
leverage multi-modal content properly? Through an empirical study
of four diverse, real-world datasets spanning various recommenda-
tion scenarios, we observe that MRSs exhibit a stronger tendency
to recommend items with high similarity to users’ past interactions
in terms of multi-modal content than conventional RSs. While this
tendency improves the recommendation accuracy, it introduces
a previously unexplored bias that significantly impacts user ex-
perience. We define this bias as User-side Content Bias: users
who prefer items similar to their historical choices receive higher
quality recommendations than those seeking diverse options. We
show that User-side Content Bias is unrelated to the activ-
ity of users, indicating a fundamental limitation in current MRSs.
We propose ISOLATOR: utIlizing uSer-side cOntent simiLarity
via a model-AgnosTic framewORk to leverage multi-modal con-
tent more properly. ISOLATOR estimates the impact of User-side
Content Similarity and proposes two intervention strategies
to meet the needs for more accurate and unbiased recommenda-
tions. Extensive evaluations on several widely-used datasets demon-
strate that ISOLATOR consistently improves various state-of-the-
art MRSs and effectively addresses the User-side Content Bias.
We provide our code at anonymous link.

CCS Concepts
• Information systems → Multimedia and multimodal re-
trieval; Recommender systems.

Keywords
Multi-modal Recommender System, User-side Content Bias, Causal
Inference

1 Introduction
Multi-modal Recommender Systems (MRSs) have garnered con-
siderable interest in recent years [14, 20, 38, 46]. It is well re-
garded [37, 43, 47] that multi-modal content enhances the overall
∗The authors contribute equally.
†Corresponding author.

understanding of item and improves user preference prediction
compared with recommender systems using only user feedback
or single-modal content. Therefore, as critical multi-modal tech-
nologies, MRSs are widely employed on online platforms, such as
E-commerce [12, 18, 19, 35] and video sharing [1, 2, 29, 41] plat-
forms.

Current MRSs primarily focus on leveraging advanced tech-
niques to integrate multi-modal and behavioral features, with the
goal of enhancing recommendation accuracy [14, 26, 31, 36]. How-
ever, there is a critical question that remains insufficiently addressed
—Do we truly leverage multi-modal content properly?

To answer this question, we conduct a cross-domain empirical
study on four real-world, widely-used datasets fromE-commerce [22]
and short-form video [23] platforms. We find that existing MRSs
incorporate multi-modal content with positive and negative im-
pacts. (1) On the one hand, compared with conventional RSs, MRSs
recommend items more similar to users’ past interactions regarding
multi-modal content. We observe that the overall recommendation
performance (i.e., recall rate) positively correlates with the multi-
modal content similarity between items in the recommendation
list and the user’s historical interactions (Sec. 3.3). (2) On the other
hand, including multi-modal content threatens the fairness of rec-
ommendations from the user’s perspective. We create user groups,
i.e., Content-Consistent Users (who prefer items similar to their
past interactions) and Content-Diverse Users (who prefer items
distinct from their past interactions). We observe that MRSs am-
plify the performance gap between Content-Consistent Users
and Content-Diverse Users, referred to as User-side Content
Bias (Sec. 3.4). This phenomenon brings a new fairness issue, i.e.,
User-side Content Bias is independent of the revealed unfair-
ness on inactive users [13]. With the same number of interactions,
Content-Consistent Users still receive higher quality recom-
mendations than Content-Diverse Users (Sec. 3.5).

Given the widespread presence of MRSs of different model archi-
tectures, it is crucial to develop a generally applicable framework to
balance the positive and negative impacts of multi-modal content,
considering the specific goals and context of the RSs. For exam-
ple, when prioritizing equal experience for all users, User-side
Content Similarity should be discarded completely to avoid
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User-side Content Bias. On the contrary, when recommen-
dation accuracy is pivotal in user satisfaction and engagement,
User-side Content Similarity should be selectively utilized to
grasp the item relations and improve overall accuracy.

To properly leverage multi-modal content, we construct a causal
graph [25] to analyze how the User-side Content Similarity in-
fluences the recommendations, and propose ISOLATOR: utIlizing
uSer-side cOntent SimiLarity via a Model-AgnosTic FramewORk.
In the training stage, ISOLATOR estimates the impact of User-side
Content Similarity on recommendation accuracy and employs
a do-calculus [25] for each user-item pair. In the inference stage,
ISOLATOR proposes two strategies tailored for different recom-
mendation scenarios: a Debiasing intervention strategy designed
to eliminate the impact for all users to mitigate the User-side
Content Bias; and a User-specific intervention strategy, which
leverages the impact by applying personalized interventions for
different users to enhance accuracy.

Our main contributions can be summarized as follows:
(1) We find that multi-modal content leads the MRSs to recommend

items more similar to users’ past interactions, resulting in ampli-
fying User-side Content Bias. To our knowledge, this is the
first work to investigate User-side Content Bias in MRSs.

(2) We propose ISOLATOR to usemulti-modal content properly. This
model-agnostic framework encompasses two strategies, one for
debiasing and the other for performance enhancement, to meet
different recommendation requirements. To our knowledge, this
is the first work to mitigate User-side Content Bias in
MRSs.

(3) Extensive experiments on several real-world datasets and widely-
used MRSs verify that ISOLATOR not only improves the recom-
mendation performance but also effectively mitigates the bias.

2 Related Work1

Multi-modalRecommender Systems.Multi-Modal Recommender
Systems (MRSs) predict user preferences by fusing multi-modal and
behavioral features, primarily categorized into two frameworks:
(1) Matrix Factorization (MF)-based methods [3, 8], which inte-
grate multi-modal item characteristics into MF training. (2) Graph
Collaborative Filtering (GCF)-based methods, which can be fur-
ther categorized into two subtypes. The first subtype integrates
multi-modal features into the user-item graph [31, 36, 37], while
the second leverages multi-modal content to construct item-item
similarity graphs for embedding refinement [17, 26, 38, 46].
Bias in Multi-modal Recommender Systems. Biases have been
widely studied in recommender systems, particularly those aris-
ing from feedback data and conventional recommendation algo-
rithm [4, 11, 16, 21, 39]. However, biases introduced by multi-
modal content are more critical in MRSs, which can be cate-
gorized into inter-modality bias and item-side bias. Inter-modality
bias arises from challenges in integrating diverse modalities, such
as MRSs overly rely on dominant modalities [20], leading to subop-
timal recommendations. Item-side bias, on the other hand, occurs
when multi-modal content causes unfair phenomena to items, such

1Due to limited space, the detailed related work is provided in Section A of the supple-
mentary materials.

Table 1: Statistics of the datasets. |D|, |U|, and |I | represent
the number of interactions, users, and items. 𝑆𝑣 and 𝑆𝑡 repre-
sents the average visual and textual similarity.

Datasets |D| |U| |I| 𝑆𝑣 𝑆𝑡 Sparsity
Baby 160,792 19,445 7,050 0.2239 0.2626 99.88%
Sports 296,337 35,598 18,357 0.2183 0.2084 99.95%
Clothing 278,677 39,387 23,033 0.2239 0.3880 99.97%
Microlens 705,174 98,129 17,228 0.5078 0.3822 99.96%

as over-recommendation of items with specific content [28] or
increasing item-side popularity bias [21].
Remarks. ISOLATOR systematically explores the impact of multi-
modal content and discovers a new type of bias, i.e., User-side
Content Bias. Different from current debiasing efforts in rec-
ommender systems, ISOLATOR considers the bias from multi-
modal content in user-side due to varying user preferences for
multi-modal content. To our knowledge, ISOLATOR is the first
work that explores the impact of multi-modal content on the user
side andmitigates the User-side Content Bias in MRSs.

3 Empirical Study
3.1 Preliminaries
Let U = {𝑢1, 𝑢2, ..., 𝑢 |U | } and I = {𝑖1, 𝑖2, ..., 𝑖 | I | } denote the set of
users and items, respectively. |U| and |I | is the number of users
and items. For each user 𝑢, let I𝑢 ⊆ I be the set of items that 𝑢
has interacted with in the training set, and let |I𝑢 | denote its size.
Each item 𝑖 has multi-modal content features 𝒆𝑚

𝑖
∈ R𝑑𝑚 , where 𝑑

is the dimension of the features,𝑚 ∈ M is the modality2, andM
is the set of modalities. To facilitate similarity computations, these
content feature vectors are typically 𝐿2-normalized, i.e., | |𝒆 | |2 = 1.

The goal of multi-modal recommender systems (MRSs) is to
generate a ranked list of potential recommendations that each user
𝑢 may prefer by predicting the user-item preference score 𝑟𝑢,𝑖 using
both behavior and multi-modal content. Formally,

Î𝑢 = Top@𝑘𝑖∈{I\I𝑢 }𝑟𝑢,𝑖 , (1)

where Î𝑢 denotes the recommendation list for user𝑢, and the length
of recommendation list |Î𝑢 | = 𝑘 .

3.2 Empirical Study Protocol
3.2.1 Datasets. We conduct experiments on four widely-used pub-
lic datasets following [14, 17, 26, 38, 42, 46], including three Ama-
zon collections (namely Baby, Sports, and Clothing) [22] and the
Microlens [23] dataset. These datasets were chosen due to sev-
eral advantageous characteristics: (1) First, they undergo a public
unified preprocessing pipeline that standardizes both the dataset
structure and the modal content3; (2) Second, they originate from
E-commerce platforms and short-form video platforms, which are
two representative multi-modal recommendation scenarios; (3) Third,
they offer diverse characteristics in terms of size, sparsity, and multi-
modal properties. These advantages enable more robust and fair
comparisons. The datasets are filtered using a 5-core criterion to

2We use textual and visual modalities in this work, but it can also be extended to other
modalities.
3https://github.com/enoche/MMRec/tree/master/data
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Figure 1: Relationship Between 𝑅𝑒𝑐𝑎𝑙𝑙@20 and the average
content similarity of recommendation lists to users’ past
interactions 𝜌 in different modalities.
ensure sufficient feedback for each user and item and are split into
training, validation, and test sets in an 8:1:1 ratio. We compute the
average pairwise cosine similarity across all items in each modality,
denoted as 𝑆𝑣 for images and 𝑆𝑡 for text. Table 1 lists the statistics
of the four datasets.

3.2.2 Evaluation metrics. We employ 𝑅𝑒𝑐𝑎𝑙𝑙@20 to measure the
recommendation accuracy [8, 17, 26, 31, 36]. 𝑅𝑒𝑐𝑎𝑙𝑙@20 computes
the ratio of relevant items for a user in the testing set appearing in
the top twenty recommendations made by the baseline. Higher val-
ues of 𝑅𝑒𝑐𝑎𝑙𝑙@20 indicate more accurate recommendation results.

3.2.3 Baselines. Multi-modal recommender systems (MRSs) typi-
cally integrate multi-modal content into conventional RSs based on
two primary backbone architectures: matrix factorization (MF) and
graph collaborative filtering (GCF). We use two conventional RSs
MFBPR [27] and LightGCN [9], and fiveMRSs VBPR [8], GRCN [36],
MGCN [26], SLMRec [31] and GUME [17] as backbone since they
are widely used4. It should be noted that MFBPR and VBPR are MF
architectures, while the remaining are GCF architectures. To ensure
optimal performance, we use publicly available code5 [45] with
default parameter settings. We train the models using the training
set, save the best model based on 𝑅𝑒𝑐𝑎𝑙𝑙@20 on the validation set,
and use the models to deliver recommendations on the testing set.

3.3 Positive Impact of Content Similarity
User-side Content Similarity. Essentially, multi-modal recom-
mender systems (MRSs) match items with a user by taking into
account the multi-modal content similarity between the candidate
item and the items that the user previously interacted with, which
we refer to as User-side Content Similarity.
4Due to limited space, the detailed baseline introductions are provided in Section B.1
of the supplementary materials.
5https://github.com/enoche/MMRec

Thus, to investigate the impact of multi-modal content, we mon-
itor the relation between User-side Content Similarity and
recommendation performance on different baselines. We use the
average content similarity of the recommendation list to users’ past
interactions (referred to as Average Content Similarity 𝜌) to
reflect the overall recommendations of the model.

𝜌 =

∑
𝑢∈U

( ∑
𝑚∈M

( ∑
𝑖∈I𝑢

∑
𝑗 ∈Î𝑢

(
sim(𝒆𝑚

𝑖
, 𝒆𝑚

𝑗
)
) ))

|U | × |M| × |I𝑢 | × | Î𝑢 |
,

(2)

where sim(·) is the pairwise cosine similarity, 𝒆𝑚 is the raw features
of modality𝑚. 𝜌 is averaged over all users, all modalities, and all
items in the recommendation list for a user. A higher 𝜌 signifies that
the recommended items are closer to the user’s past interactions
regarding multi-modal content, meaning that the baseline is more
reliant on multi-modal content similarity.

In Fig. 1, the blue markers represent multi-modal recommender
systems (MRSs) while the gray markers represent conventional
recommender systems. We have the following observations:
• Comparing methods based on the same backbone architecture,
MRSs tend to recommend items with higher content similarity
than conventional RSs. For example, the blue markers (MRSs) are
typically positioned higher than the gray markers (conventional
RSs) of the same shape in Fig. 1, showing that MRSs focus on
utilizing content similarity more. This observation is consistent
across all tested baselines and datasets, and the similarity can be
measured based on either single or multiple modalities.

• MRSs consistently exhibit higher recommendation accuracy than
conventional RSs using the same backbone architecture. The
blue markers (MRSs) are generally positioned to the right of the
gray markers (conventional RSs) of the same shape in Fig. 1,
showing that MRSs outperform conventional RSs regarding the
𝑅𝑒𝑐𝑎𝑙𝑙@20 across all datasets.

• Higher values of Average Content Similarity generally lead
to improved recommendation accuracy. In the Baby, Sports, and
Clothes datasets, there is a positive correlation between accuracy
(𝑅𝑒𝑐𝑎𝑙𝑙@20) and Average Content Similarity (𝜌). In the Mi-
crolens dataset, the largest 𝜌 is observed on the best-performing
baselines (i.e., MGCN and GUME) and the smallest 𝜌 on the
worst-performing baseline (i.e., MFBPR).

• Multi-modal content can more stably reflect content similarity
than single-modal content. Some datasets show greater simi-
larities in textual contents, while in other datasets, the image
contents are more similar. Specifically, textual similarity (triangu-
lar markers in Fig. 1) is relatively high in e-commerce scenarios
but lower in short-form video scenarios. Therefore, using single-
modal content similarity is inaccurate for certain datasets, and
we should use multi-modal content similarity as a domain-robust
assessment.

3.4 Negative Impact of Content Similarity
We have shown that the overall recommendation performance is
improved by recommending items that have a higher multi-modal
content similarity with the user’s past interactions. However, users
show significantly different preference patterns. Some users prefer
items with highly similar content, such as those who favor con-
sistent vintage styles in clothing, accessories, and home goods. In
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Figure 2: User-sideContent Bias between Content-Consistent
Users and Content-Diverse Users.
contrast, some users prefer exploring items with diverse content,
such as those who enjoy transcending different styles and com-
bining various items that may seem unrelated at first glance. In
this subsection, we investigate the negative impact of User-side
Content Similarity, i.e., whether it will cause biased perfor-
mance on different users.
User Grouping.We divide users according to their preference pat-
terns. Firstly, we compute the average pairwise content similarity
of interacted items for each user (denoted as 𝑐𝑢 ):

𝑐𝑢 =

∑
𝑚∈M

∑
𝑖∈I𝑢

∑
𝑗 ∈I𝑢 ,𝑖≠𝑗

(
sim(𝒆𝑚

𝑖
, 𝒆𝑚

𝑗
)
)

|M | × |I𝑢 | × ( |I𝑢 | − 1) , (3)

where sim(·) is the pairwise cosine similarity.
Secondly, based on 𝑐𝑢 , we identify two user groups:

• Content-Consistent Users: the top𝑁% users with the greatest
𝑐𝑢 . Their past interactions show greater consistency in content,
indicating a more focused user interest.

• Content-Diverse Users: the bottom 𝑁% users with the lowest
𝑐𝑢 . Their past interactions show greater diversity in content,
indicating a more varied user interest.

We use 𝑁 = 20 in this paper, but we consistently observe a similar
situation as 𝑁 varies across different coverage ranges, extending
from 5% to 25%.
User-side Content Bias. Following [6, 16], we propose a metric
to quantify the biased treatment for different user groups: User-side
Content Bias (denoted as𝑈𝐶𝐵𝑖𝑎𝑠) is defined as the gap between
recommendation performance on Content-Consistent Users
and Content-Diverse Users, which is calculated as

𝑈𝐶𝐵𝑖𝑎𝑠 = 𝐸 (𝑈𝐶 ) − 𝐸 (𝑈𝐷 ), (4)

where 𝐸 (·) is denoted as the evaluation metrics. We use 𝑅𝑒𝑐𝑎𝑙𝑙@20
for 𝐸 (·) in this paper. 𝑈𝐶 and 𝑈𝐷 are the Content-Consistent
Users and Content-Diverse Users groups, respectively.

We can observe from Fig. 2 that
• Regardless of the type of recommendation models, whether
they are shallow or deep, multi-modal or non-multi-modal,
and irrespective of the context or distribution of the datasets,
there exists a positive performance gap, indicating that
Content-Consistent Users receive higher quality recom-
mendations than Content-Diverse Users.
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Figure 3: User-sideContent Bias between Content-Consistent
Users and Content-Diverse Users with the same number of
interactions.

• When comparing methods within the same backbone architec-
ture, the blue bars (represent MRSs) are typically higher than the
green bars (represent conventional RSs), indicating that multi-
modal content amplifies the performance gap.
User-side Content Bias brings a serious unfairness issue.

It makes users see more items similar to their past interactions.
For Content-Consistent Users, this means better matches and a
great experience. But for Content-Diverse Users, it limits diver-
sity, worsens the filter bubble [30], and results in poor recommen-
dations. This unfairness can drive Content-Diverse Users away,
harming the overall performance and reputation of the recommen-
dation systems. Furthermore, since Content-Diverse Users has
the same size as Content-Consistent Users in our study, the
User-side Content Bias affects a significant amount of users.

Algorithm 1: ISOLATOR
Input: Dataset D; Hyper-parameter 𝛼 , 𝛽 , 𝛾 , 𝜄; Inference

intervention strategy: D-ISOLATOR or U-ISOLATOR;
Output: Recommendation list;
// Training Stage.

1 Calculate User-side Content Similarity 𝑠𝑢,𝑖 by Equ. 9;
2 Estimate the probability of the interaction by Equ. 7;
3 Update parameters Θ by optimizing Equ. 5;
// Inference Stage.

4 if D-ISOLATOR then
5 Estimate the probability of the interaction by Equ. 10;
6 Generate recommendation lists by Equ. 1;
7 else
8 Estimate the impact of User-side Content Similarity that

users require 𝑠𝑢,𝑖 by Equ. 11;
9 Estimate the probability of the interaction by Equ. 13;

10 Generate recommendation lists by Equ. 1;

3.5 Uniqueness of User-side Content Bias
Our next question is whether User-side Content Bias is a new
type of bias. Since User-side Content Bias is evaluated from the
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(a) Conventional MRSs. (b) The proposed causal
graph.

(c) Cutting off the con-
founder between 𝑆 and 𝐼 .

Figure 4: Causal graphs to describe the recommendation pro-
cess. U: user, I: item, M: content, R: interaction probability, S:
User-side Content Similarity.

user’s perspective, we need to distinguish it from the 𝜖-fairness, i.e.,
inactive users receive unfair treatment [13].

To show that User-side Content Bias is unrelated to 𝜖-
fairness [13], we first compute the median number of interactions
per user in each dataset (denoted as 𝑎) to avoid skewing the analysis.
Then, we randomly sample the same number of users who have
interacted with exactly 𝑎 items from both Content-Consistent
Users and Content-Diverse Users groups. We report the results
within these subgroups.

From Fig. 3, we can observe that User-side Content Bias con-
sistently exists regardless of the dataset used or the method applied.
Moreover, MRSs consistently exhibit a larger User-side Content
Bias. The results support that User-side Content Bias is inde-
pendent of the number of users’ past interactions.

4 Methodology
To effectively leverage the multi-modal content in MRSs, we first
analyze the impact of User-side Content Similarity on multi-
modal recommender systems (MRSs) from a causal view. Then,
we propose ISOLATOR: utIlizing uSer-side cOntent simiLarity
via a model-AgnosTic framewORk to achieve more accurate and
unbiased recommendations. ISOLATOR estimates and disentangles
the impact of User-side Content Similarity in the training
stage and employs two innovative intervention strategies in the
inference stage to address its side effects. These strategies focus on
debiasing and performance enhancement, respectively, to cater to
various recommendation requirements. The learning program of
ISOLATOR is summarized in Algorithm 1.

4.1 Causal View of MRSs
4.1.1 Causal View of Conventional MRSs. As shown in Fig. 4(a),
conventional multi-modal recommender systems (MRSs) typically
use four variables: user (𝑈 ), exposed item (𝐼 , including exposure
and features attributes), multi-modal content (𝑀), and interaction
label (𝑅). 𝑅 = 1 represents that the user had interacted with the
item. The edges represent the causal relations between variables.

• Edges 𝑀 → 𝐼 and 𝑀 → 𝑈 signify that multi-modal content
forms the feature of items and users.

• Edge {𝑈 , 𝐼 } → 𝑅 denotes thatmatching between user preferences
𝑈 and item attributes 𝐼 dictates user-item interaction 𝑅.

Based on above insights, conventional MRSs model the proba-
bility function 𝑃 (𝑅 |𝑈 , 𝐼 )6 by the parameterized function 𝑓Θ (𝑢, 𝑖),
which means given a user-item pair𝑈 = 𝑢, 𝐼 = 𝑖 , how likely the user
𝑢 will interact with the item 𝑖 . Specifically, they optimize the model
parameters Θ of RSs on dataset D via the widely-used Bayesian
Personalized Ranking [27] (BPR) loss during the training stage:

L𝐵𝑃𝑅=
∑︁

⟨𝑢,𝑖,𝑗⟩∈D
𝑙𝑛𝜎

(
𝑃Θ (𝑟 = 1 |𝑢, 𝑖 ) − 𝑃Θ (𝑟 = 1 |𝑢, 𝑗 )

)
+ 𝜆Θ | |Θ | |2, (5)

where 𝑖 denotes the positive sample for user 𝑢, 𝑗 denotes the
negative sample for user 𝑢, 𝜎 (·) is the sigmoid function, the | | · | |2
is the L2-regularization, and 𝜆Θ is the regularization coefficient.

4.1.2 Causal View of ISOLATOR. Unlike conventional MRSs, our
method incorporates a new latent variable User-side Content
Similarity (𝑆) in Fig. 4(b), which includes new causal relations
between variables.
• Edge𝑀 → 𝑆 denotes that multi-modal content can calculate the
User-side Content Similarity.

• Edge {𝑈 , 𝐼, 𝑆} → 𝑅 denotes that an interaction label 𝑅 is influ-
enced by the the user𝑈 , the item 𝐼 , and the User-side Content
Similarity 𝑆 . We introduce a cause node 𝑆 to capture users’
preferences for User-side Content Similarity, which is be-
cause many users interact with items solely based on User-side
Content Similarity. Thus, the occurrence of interaction is a
synergistic result of𝑈 , 𝐼 , and 𝑆 .

• Edge 𝑆 → 𝐼 denotes that User-side Content Similarity
influences the exposure of the items. For example, we show
that MRSs recommend items with greater User-side Content
Similarity to users’ past interactions in Sec. 3.3.
According to the causal theory, since User-side Content

Similarity 𝑆 affects both item 𝐼 and observed interactions𝑅, it acts
as a confounder [25], leading to spurious associations if not properly
controlled [25]. There are two causal paths: 𝑆 → 𝑅, and 𝑆 → 𝐼 → 𝑅.
The first path clearly shows such similarity directly impacts the
interaction probabilities. The second path shows such similarity
indirectly impacts the interaction probabilities by impacting the
exposure likelihood of items, making the recommendations more
similar to the user’s past interactions. However, this effect can am-
plify the User-side Content Bias. As discussed in Sec. 3.4, not
all users are interested in items similar to their past preferences. This
effect caters better to the preferences of users who seek similar items
(Content-Consistent Users) but neglects the needs of users who
seek diverse items (Content-Diverse Users). Consequently, it
exacerbates the performance gap between Content-Consistent
Users and Content-Diverse Users in MRSs, resulting in unfair
recommendations. In conclusion, the path 𝑆 → 𝐼 has adverse effects
and should be removed from MRSs.

To properly leverage multi-modal content and achieve unbiased
and high-quality recommendations, it is critical to accurately esti-
mate the causal effect of similarity (User-side Content Similarity)
while controlling for potential confounding effect. Inspired by [33,
44], ISOLATOR leverages do-calculus [25] to estimate the causal
effect of User-side Content Similarity directly from observa-
tional data. Do-calculus leverage the causal graph to adjust for

6For simplicity, we will not explicitly emphasize the paths 𝑀 → 𝐼 , 𝑀 → 𝑈 and
𝑀 → 𝑆 in our subsequent formulas.
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confounding variables and simulate interventions by fixing cer-
tain variables (e.g., setting User-side Content Similarity)
while allowing others to vary naturally, estimating the causal effect.
ISOLATOR employs the do-calculus to cut off the path 𝑆 → 𝐼 during
training stage, while intervening the path 𝑆 → 𝑅 during inference
stage.

4.2 Training Stage
ISOLATOR performs a do-calculus [25] to eliminate the confounding
effect of User-side Content Similarity 𝑆 on item attributes 𝐼 .
This can be understood as cutting off the edge 𝑆 → 𝐼 in the causal
graph, thereby blocking the influence of 𝑆 on 𝐼 as shown in Fig. 4(c).
We formulate the predictive model as

𝑃 (𝑅 |𝑑𝑜 (𝑈 , 𝐼 ) ) (1)
= 𝑃 (𝑅 |𝑈 ,𝑑𝑜 (𝐼 ) )
(2)
=

∑︁
𝑠

𝑃 (𝑅 |𝑈 ,𝑑𝑜 (𝐼 ), 𝑠 )𝑃 (𝑠 |𝑈 ,𝑑𝑜 (𝐼 ) )

(3)
=

∑︁
𝑠

𝑃 (𝑅 |𝑈 , 𝐼, 𝑠 )𝑃 (𝑠 ),

(6)

where Equ. 6 (1) is because there is no path between 𝑈 and 𝑅 in
our causal graph that requires intervention.; Equ. 6 (2) is because
of Bayes’ theorem; Equ. 6 (3) is because that 𝑑𝑜 (𝐼 ) cuts off 𝑆 → 𝐼 ,
so𝑈 and 𝐼 are independent with 𝑆 .

Based on the formula above, we first estimate 𝑃 (𝑅 |𝑈 , 𝐼, 𝑆). We
focus on disentangling the user-item matching and User-side
Content Similarity in the training stage, which simplifies the
application across MRSs and avoids re-evaluate the entire model in
the inference stage. We ensure that the model outputs are monoton-
ically increasing without restricting them to [0, 1], which reduces
unnecessary computational costs while avoiding impact item rank-
ings. We design it as:

𝑃Θ (𝑅 |𝑈 = 𝑢, 𝐼 = 𝑖, 𝑆 = 𝑠𝑢,𝑖 ) = 𝐸𝐿𝑈 ′ (𝑓Θ (𝑢, 𝑖 ) ) × (
𝜎 (𝑠𝑢,𝑖 )

)𝛾
, (7)

where 𝑓Θ (𝑢, 𝑖) represents any MRSs. Following [44], we use a vari-
ant of the Exponential Linear Unit [5] activation function 𝐸𝐿𝑈 ′ (·)
to ensure the matching score is positive. The bigger 𝑓Θ (𝑢, 𝑖) is, the
bigger 𝐸𝐿𝑈 ′ (𝑓Θ (𝑢, 𝑖)) is:

𝐸𝐿𝑈 ′ (𝑥 ) =
{
𝑒𝑥 , if 𝑥 ≤ 0
𝑥 + 1, else

(8)

Hyper-parameter 𝛾 > 0 is used to adjust the User-side Content
Similarity 𝑠𝑢,𝑖 , a larger value increases its impact. The User-side
Content Similarity 𝑠𝑢,𝑖 is calculated by

𝑠𝑢,𝑖 =

∑
𝑚∈M

∑
𝑗 ∈Î𝑢

(
sim(𝒆𝑚

𝑖
, 𝒆𝑚

𝑗
)
)

|M | × | Î𝑢 |
, (9)

where 𝒆 is multi-modal content features that remain unchanged
during training. Therefore, 𝑠𝑢,𝑖 can be precomputed and stored
before training to reduce computational cost. 𝜎 (·) is the sigmoid
activation function to ensure such content similarity is positive.
The bigger 𝜎 (𝑠) is, the bigger

(
𝜎 (𝑠)

)𝛾 is.
Since the 𝑠𝑢,𝑖 is an unique constant for each user-item pair, we

can estimate 𝑃 (𝑅 |𝑑𝑜 (𝑈 = 𝑢, 𝐼 = 𝑖)) by 𝑃Θ (𝑅 |𝑈 = 𝑢, 𝐼 = 𝑖, 𝑆 = 𝑠𝑢,𝑖 ).
ISOLATOR also employs the Bayesian Personalized Ranking [27]
loss in Equ. 5 to train the model.

4.3 Inference Stage
After disentangling the impact of User-side Content Similarity
in the training stage, we eliminate such impact by doing the in-
tervention 𝑃

(
𝑅 |𝑑𝑜 (𝑈 , 𝐼 ), 𝑑𝑜 (𝑆)

)
in the inference stage. We set the

value of User-side Content Similarity 𝑆 while allowing others
to vary naturally [25]. We propose two strategies to meet different
recommendation scenarios.

4.3.1 Debiasing intervention strategy. When we strive to reduce
bias as much as possible while maintaining performance, we
can adopt a Debiasing intervention strategy (short forD-ISOLATOR).
This strategy applies the same intervention to all users to completely
eliminate the impact of User-side Content Similarity. The
formula of the Debiasing intervention strategy can be expressed as:

𝑃
(
𝑅 |𝑑𝑜 (𝑈 , 𝐼 ), 𝑑𝑜 (𝑆 )

)
= 𝐸𝐿𝑈 ′ (𝑓Θ (𝑢, 𝑖 ) ) . (10)

Since we disentangle user-item matching and User-side Content
Similarity in the training stage, we can efficiently remove such
impact without re-training the entire model.

4.3.2 User-specific intervention strategy. The D-ISOLATOR elimi-
nates the impact of User-side Content Similarity and applies
the same intervention to all users. However, as discussed in Sec. 3.4,
users have significantly different preferences for multi-modal con-
tent. Thus, when we pursue the goal of enhancing performance
without significantly increasing bias, we can adopt an User-
specific intervention strategy (short forU-ISOLATOR) to personalize
content similarity for each user.

Since each user has a different preference for multi-modal con-
tent, we use the difference between user 𝑢’s average pairwise con-
tent similarity of past interactions 𝑐𝑢 and the User-side Content
Similarity 𝑠𝑢,𝑖 to estimate the impact of User-side Content
Similarity that users require.

𝑠𝑢,𝑖 = 𝑔
(
𝑠𝑢,𝑖 − 𝑐𝑢

)
. (11)

Specifically, we use the average pairwise similarity of past in-
teractions 𝑐𝑢 to reflect the user’s expected User-side Content
Similarity. There are two different scenarios: (1) When 𝑠𝑢,𝑖 −𝑐𝑢 >

0, it indicates that the current item is similar to past interactions.
The smaller the difference, the more closely the current item meets
the user’s expected User-side Content Similarity. (2) When
𝑠𝑢,𝑖 − 𝑐𝑢 < 0, it indicates the current item is different from the past
interactions. The larger the difference, the more the current item de-
viates from the user’s expected User-side Content Similarity.
These two scenarios should be treated separately because a positive
and negative difference, even with the same magnitude, have different
impacts on recommendation accuracy. Therefore, we construct a
generating function 𝑔(·) as follows:

𝑔 (𝑥 ) =
{
𝑒−𝛼𝑥 , if 𝑥 ≥ 0

4
1+𝑒−𝛽𝑥 − 1, else

(12)

where 𝛼 > 0 and 𝛽 > 0 are two hyper-parameters to control the
impact; the larger the 𝛼 , the larger the 𝛽 , the smaller the impact on
the user. When 𝑥 = 0, 𝑔(𝑥) reaches its maximum value, which is
𝑔(0) = 1.

Finally, the formula of the User-specific intervention strategy
can be expressed as:

𝑃
(
𝑅 |𝑑𝑜 (𝑈 , 𝐼 ), 𝑑𝑜 (𝑆 )

)
= 𝐸𝐿𝑈 ′

(
𝑓Θ (𝑢, 𝑖 )

)
×
(
𝜎
(
𝑠𝑢,𝑖

) )𝜄
, (13)

where 𝜄 > 0 is a hyper-parameter to adjust the 𝑠𝑢,𝑖 .
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Table 2: Performance of MRSs with and without ISOLATOR. The best and second results are marked with Bold and Underline. *
indicates that the p-value is less than 0.05.

Datasets Baby Sports Clothing Microlens
Models R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
MFBPR 0.0388 0.0611 0.0213 0.0271 0.0475 0.0714 0.0256 0.0317 0.0245 0.0353 0.0139 0.0166 0.0591 0.0911 0.0310 0.0393

LightGCN 0.0476 0.0751 0.0256 0.0327 0.0556 0.0848 0.0307 0.0382 0.0353 0.0535 0.0193 0.0240 0.0704 0.1066 0.0367 0.0461
VBPR 0.0414 0.0654 0.0219 0.0282 0.0543 0.0837 0.0295 0.0371 0.0296 0.0441 0.0164 0.0201 0.0660 0.0992 0.0344 0.0430

+D-ISOLATOR 0.0424* 0.0682* 0.0226* 0.0292* 0.0556* 0.0847* 0.0302* 0.0377* 0.0305* 0.0468* 0.0170* 0.0208* 0.0674* 0.1024* 0.0352* 0.0440*
+U-ISOLATOR 0.0453* 0.0715* 0.0243* 0.0311* 0.0559* 0.0858* 0.0305* 0.0382* 0.0322* 0.0485* 0.0175* 0.0216* 0.0684* 0.1038* 0.0356* 0.0448*

GRCN 0.0526 0.0827 0.0284 0.0362 0.0582 0.0890 0.0313 0.0393 0.0431 0.0657 0.0228 0.0286 0.0765 0.1160 0.0399 0.0501
+D-ISOLATOR 0.0531* 0.0839* 0.0287* 0.0367* 0.0605* 0.0925* 0.0328* 0.0411* 0.0440* 0.0665* 0.0233* 0.0289* 0.0772* 0.1168* 0.0403* 0.0505*
+U-ISOLATOR 0.0536* 0.0851* 0.0289* 0.0369* 0.0602* 0.0924* 0.0325* 0.0408* 0.0442* 0.0673* 0.0235* 0.0294* 0.0773* 0.1174* 0.0403* 0.0505*

SLMRec 0.0525 0.0799 0.0285 0.0356 0.0671 0.1010 0.0368 0.0456 0.0461 0.0691 0.0251 0.0309 0.0784 0.1189 0.0406 0.0510
+D-ISOLATOR 0.0545* 0.0851* 0.0295* 0.0373* 0.0674* 0.1013* 0.0371* 0.0459* 0.0466* 0.0696* 0.0253* 0.0312* 0.0786* 0.1193* 0.0407* 0.0511*
+U-ISOLATOR 0.0548* 0.0852* 0.0296* 0.0374* 0.0680* 0.1020* 0.0373* 0.0460* 0.0473* 0.0706* 0.0257* 0.0316* 0.0793* 0.1199* 0.0411* 0.0515*

MGCN 0.0619 0.0958 0.0334 0.0421 0.0744 0.1122 0.0409 0.0506 0.0656 0.0955 0.0361 0.0437 0.0752 0.1138 0.0387 0.0486
+D-ISOLATOR 0.0631* 0.0969* 0.0339* 0.0426* 0.0748* 0.1128* 0.0412* 0.0510* 0.0653 0.0959* 0.0359 0.0438* 0.0756* 0.1143* 0.0390* 0.0489*
+U-ISOLATOR 0.0633* 0.0980* 0.0342* 0.0431* 0.0752* 0.1134* 0.0412* 0.0511* 0.0662* 0.0967* 0.0364* 0.0441* 0.0759* 0.1150* 0.0391* 0.0492*

GUME 0.0682 0.1041 0.0368 0.0460 0.0776 0.1168 0.0425 0.0526 0.0688 0.1008 0.0373 0.0454 0.0813 0.1204 0.0426 0.0526
+D-ISOLATOR 0.0690* 0.1062* 0.0368 0.0464* 0.0778* 0.1171* 0.0427* 0.0528* 0.0690* 0.1010* 0.0374* 0.0455* 0.0817* 0.1207* 0.0428* 0.0528*
+U-ISOLATOR 0.0695* 0.1063* 0.0371* 0.0465* 0.0779* 0.1173* 0.0427* 0.0528* 0.0694* 0.1019* 0.0376* 0.0458* 0.0819* 0.1211* 0.0428* 0.0528*

5 Experiments
In this section, we mainly answer the following questions: (1) RQ1:
How does ISOLATOR perform in terms of recommendation accu-
racy? (Sec. 5.1) (2)RQ2:How does ISOLATOR perform inmitigating
the User-side Content Bias? (Sec. 5.2) (3) RQ3: How does ISO-
LATOR perform in single-modal scenarios? (Sec. 5.3) (4) RQ4: How
does each strategy affect the performance of ISOLATOR? (Sec. 5.4)

We use the datasets described in Sec. 3.2. We implement our
method in PyTorch [24]. The embedding dimension 𝑑 is fixed to 64
for all models to ensure a fair comparison. We optimize all mod-
els with the Adam [10] optimizer, where the batch size is fixed
at 2,048. We use the Xavier initializer [7] to initialize the model
parameters. We train the model using the same learning rate as the
backbone model. The optimal hyper-parameters are determined
via grid search on the validation set: the 𝛾 in Equation 7 and the 𝜄
in Equation 13 are tuned amongst {0.001, 0.01, 0.1, 1}, the 𝛼 in Equa-
tion 12 is tuned amongst {2, 4, 6, 8, 10}, the 𝛽 in Equation 12 is tuned
amongst {1, 5, 10, 15, 20}. For convergence consideration, the early
stopping and total epochs are fixed at 25 and 1,000, respectively.
We make our code available online to ease reproducibility7.

5.1 Impacts on Recommendation Accuracy
To explore the impact of ISOLATOR on recommendation accuracy,
we apply ISOLATOR to various multi-modal recommender systems
(MRSs) mentioned in Sec. 3.2.3. We use 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾
(abbreviated as 𝑅 and 𝑁 ) as evaluation metrics following prior
works [8, 17, 26, 31, 36]. Higher values of𝑅𝑒𝑐𝑎𝑙𝑙 and𝑁𝐷𝐶𝐺 indicate
more accurate recommendation results. Here we set 𝐾 = 10 and
𝐾 = 20. We have following observations from Table 2:
• ISOLATOR can be applied to various MRSs and consistently
improve the recommendation accuracy. We observe consistent
improvements across all backbone models in terms of 𝑅𝑒𝑐𝑎𝑙𝑙 and
𝑁𝐷𝐶𝐺 on all datasets. This highlights its ability to effectively

7https://github.com/11Lixinlv20/ISOLATOR.git
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Figure 5: User-side Content Bias in MRSs with and without
ISOLATOR. Lower𝑈𝐶𝐵𝑖𝑎𝑠 for better de-biasing effectiveness.

capture user preferences for multi-modal content by inter-
vening in the impact of User-side Content Similarity.

• U-ISOLATOR improves recommendation performance by leverag-
ing User-side Content Similarity based on individual user
needs, outperforming D-ISOLATOR in most cases with superior
𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑁𝐷𝐶𝐺 . This demonstrates that leverage the im-
pact of User-side Content Similarity properly can boost
recommendation accuracy.

• The performance of MRSs typically surpasses that of conven-
tional RSs using the same backbone architecture. This indicates
that incorporating multi-modal content to comprehend
the similarity between items can enhance accuracy.

5.2 Impacts on User-side Content Bias
We investigate the effects of ISOLATOR on mitigating User-side
Content Bias in this subsection. We use the top and bottom
20% users as Content-Consistent Users and Content-Diverse
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Figure 6: Performance and User-side Content Bias of Infer-
ence Strategies in ISOLATOR on the Baby Dataset: Higher
𝑅𝑒𝑐𝑎𝑙𝑙@20 and Lower𝑈𝐶𝑏𝑖𝑎𝑠 indicate Better Results.

Users following Sec. 3.4. The details are described in Sec. 3.4.We use
the 𝑅𝑒𝑐𝑎𝑙𝑙@20 to calculate the User-side Content Bias𝑈𝐶𝐵𝑖𝑎𝑠 .
A lower𝑈𝐶𝐵𝑖𝑎𝑠 suggests a smaller bias.

As shown in Fig. 5, we have following observations:
• D-ISOLATOR can effectively mitigate User-side Content Bias,
which consistently achieves the lowest𝑈𝐶𝐵𝑖𝑎𝑠 across all mod-
els and datasets, reducing the bias by up to 15.33% compared
with the vanilla models. D-ISOLATOR completely removes the
impact of User-side Content Similarity for all users, high-
lighting that eliminating this impact can effectively reduce
the User-side Content Bias.

• U-ISOLATOR effectively enhances recommendation performance
while controling the User-side Content Bias in most cases.
U-ISOLATOR improves accuracy and reduces the User-side
Content Bias for all GCF-based MRSs. Despite a slight increase
in User-side Content Bias for VBPR on the Baby and Clothing
datasets, it achieves an average accuracy improvement of 7.10%
on them. These highlights that strategically using the impact
of User-side Content Similarity is crucial.

5.3 Impacts of Modality
To explore the effects of different modalities on ISOLATOR, we
compare the results of GUME on the Baby dataset across different
modalities because GUME performed the best among the backbones
we used. We employ the same evaluation metrics in Sec. 5.1 and
Sec. 5.2 to validate the accuracy and debiasing capability, respec-
tively. From Table 3, we can observe that:
• Different modalities do not diminish the effectiveness of ISO-
LATOR. ISOLATOR consistently boosts recommendation per-
formance (higher 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑁𝐷𝐶𝐺) while reducing User-side
Content Bias (lower𝑈𝐶𝐵𝑖𝑎𝑠) in single-modal settings, mirror-
ing the trends seen in multi-modal settings. This highlights its
robust generalization and broad adaptability across vari-
ous modality environments.

• Multi-modal content outperforms single-modal content (higher
𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑁𝐷𝐶𝐺) by leveraging diverse modalities for more
comprehensive information. This is also why we employ multi-
modal content in this work.

• The textual modality provides more accurate recommendations
than visual modality due to higher explicitness and information
density but amplifies User-side Content Bias.

• User-side Content Bias exists across all modalities, even
in single-modality settings, highlighting its pervasive nature
irrespective of the modality used.

Table 3: Performance and User-side Content Bias of GUME
with and without ISOLATOR in each modality on Baby
dataset. The best and second results are marked with Bold
and Underline.

Modality Model 𝑅@10↑ 𝑅@20↑ 𝑁@10↑ 𝑁@20↑ 𝑈𝐶𝐵𝑖𝑎𝑠↓

Visual
Modality

GUME 0.0536 0.0844 0.0291 0.0370 0.0564
+D-ISOLATOR 0.0549 0.0877 0.0301 0.0385 0.0553
+U-ISOLATOR 0.0552 0.0885 0.0302 0.0388 0.0529

Textual
Modality

GUME 0.0675 0.1024 0.0362 0.0451 0.0717
+D-ISOLATOR 0.0684 0.1034 0.0366 0.0456 0.0709
+U-ISOLATOR 0.0684 0.1051 0.0372 0.0466 0.0781

Multi-
modalities

GUME 0.0682 0.1041 0.0368 0.0460 0.0664
+D-ISOLATOR 0.0690 0.1062 0.0368 0.0464 0.0653
+U-ISOLATOR 0.0695 0.1063 0.0371 0.0465 0.0646

5.4 Impacts of Strategies
ISOLATOR employs three strategies: one training strategy TS and
two inference strategies D-ISOLATOR and U-ISOLATOR. To assess
their effectiveness, we create these variants8: (1) Vanilla: no strategy
in training or inference; (2) Vanilla w/ TS: TS in training, no strategy
in inference; (3)D-ISOLATOR: TS in training, Debiasing intervention
strategy in inference; (4) U-ISOLATOR: TS in training, User-specific
intervention strategy in inference; (5) U-ISOLATOR w/o TS: no TS
in training, User-specific intervention strategy in inference. We test
these variants on the Baby dataset using the MRSs from Sec. 3.2.3 as
backbones. We use the same evaluation metrics in Sec. 3.4. Higher
𝑅𝑒𝑐𝑎𝑙𝑙@20 and lower 𝑈𝐶𝐵𝑖𝑎𝑠 indicate better results. From Fig. 6,
we can observe that:
• Combining training and inference strategies are the best.
D-ISOLATOR and U-ISOLATOR achieve higher 𝑅𝑒𝑐𝑎𝑙𝑙@20 and
lower𝑈𝐶𝐵𝑖𝑎𝑠 than other variants across most backbones. Gen-
erally, D-ISOLATOR keeps User-side Content Bias low,
while U-ISOLATOR boosts accuracy, enabling flexible strat-
egy selection for accurate and unbiased recommendations.

• Training strategy boosts accuracy but also raises User-side
Content Bias. All three variants using this strategy (i.e., D-
ISOLATOR, U-ISOLATOR, Vanilla w/ TS) surpass the vanilla in
𝑅𝑒𝑐𝑎𝑙𝑙@20, yet Vanilla w/ TS gets a larger𝑈𝐶𝐵𝑖𝑎𝑠 . This shows
that training strategy can model both the positive and nega-
tive impacts of User-side Content Similarity but requires
inference strategies to balance the trade-offs.

• Inference strategy can not be solely used. U-ISOLATOR w/o
TS performs worse than others. Since the impact of User-side
Content Similarity is not distinguished without training strat-
egy, the inference strategy might overemphasize it, leading to
poorer performance and increased bias.
Due to space constraints, we conduct parameter experiments

in Section B.2 of the supplementary materials. 𝛾 and 𝜄 con-
trol the impact of User-side Content Similarity in training
and inference stages, we find that over-reliance on this impact
leads to suboptimal recommendations (decreasing 𝑅𝑒𝑐𝑎𝑙𝑙@20)
and introduce unwanted bias (increasing𝑈𝐶𝐵𝑖𝑎𝑠). 𝛼 and 𝛽 reg-
ulate the impact of User-side Content Similarity that users
require in U-ISOLATOR. U-ISOLATOR achieves stable accuracy

8D-ISOLATOR w/o TS equals Vanilla, as Debiasing intervention strategy doesn’t con-
sider the impact of User-side Content Similarity.
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(𝑅𝑒𝑐𝑎𝑙𝑙@20) while enabling adjustments to balance bias (𝑈𝐶𝐵𝑖𝑎𝑠),
with the optimal values identified as 𝛼 = 6 and 𝛽 = 10.

Furthermore, we present a case study in Section B.3 of
the supplementary materials to show how ISOLATOR en-
hances recommendations for both Content-Consistent Users
and Content-Diverse Users. For Content-Consistent Users,
it identifies preferred items among high-similarity candidates, while
for Content-Diverse Users, it recommends less similar yet more
relevant items. These results highlight ISOLATOR’s effectiveness
in improving accuracy, diversity, and meeting user needs.

6 Conclusion
In this paper, we uncover an unexplored User-side Content
Bias in multi-modal recommender systems, and introduce an
effective framework, ISOLATOR, to utilize multi-modal content
more properly. Our empirical studies demonstrate the existence of
User-side Content Bias, and our experiments validate the effec-
tiveness of ISOLATOR. We provide insights into several key per-
spectives: (1) Utilizing User-side Content Similarity increases
the exposure of items similar to the user’s past interactions, thereby
improving the accuracy but amplifying User-side Content Bias.
(2) Completely eliminating the impact of User-side Content
Similarity can reduce User-side Content Bias, and strate-
gically using the impact of User-side Content Similarity can
enhance accuracy. We plan to investigate User-side Content
Bias and debiasing methods in other content-based recommender
systems in the future, such as using multi-modal large language
models for recommender systems.
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Figure 7: Effect of 𝛾 under GUME+D-ISOLATOR on Baby
dataset.

A Related work
A.1 Multi-modal Recommender Systems
Multi-modal recommender systems leverage both multi-modal fea-
tures and behavioral features to provide a comprehensive prediction
of user preferences. They can be divided into two categories based
on the adopted backbone architecture:Matrix Factorization (MF)
architecture [3, 8] and Graph Collaborative Filtering (GCF) ar-
chitecture [17, 26, 31, 34, 36–38]. Previous methods primarily used
MF as the backbone, which decomposes a user-item interaction
matrix into two lower-dimensional matrices. For example, VBPR [8]
incorporates visual features of items as part of their characteristics
and employs an MF structure for model training. However, due
to the difficulty of MF in fully leveraging modal information and
its suboptimal recommendation performance, recent works focus
on Graph Collaborative Filtering (GCF) architecture, which exploit
the graph structure to capture intricate relationships. GCF-based
methods can be primarily categorized into two approaches. (1) The
first approach involves propagating and updating modal features
within a user-item bipartite graph. For example, MMGCN [37] and
GRCN [36] build modality-specific user-item bipartite graphs to
learn user and item features and concatenates them for predic-
tion. SLMRec [31] augments item multi-modal features into two
views, extracts embeddings from each via graph convolution on a
user–item bipartite graph, and aligns them with contrastive learn-
ing to capture latent patterns. (2) The second approach focuses on
leveraging the similarity of modal features to construct a homo-
geneous item-item graph, thereby enhancing the learning process
of the recommender systems. For example, MGCN [26] constructs
an item similarity graph and uses a behavior-aware fuser to weigh
the significance of features from different modalities; GUME [17]
enhances the user-item graph by utilizing cross-modal item simi-
larities and extracts meaningful representations for enhanced rec-
ommendation performance.

A.2 Bias in Multi-modal Recommender Systems
Biases and de-biasing methods have been extensively studied in
conventional RSs, primarily focusing on biases resulting from feed-
back data [4, 11, 16, 21, 39]. However, the biases introduced by
multi-modal contents are of greater concern in MRSs, pri-
marily focusing on the inter-modality bias and item-side bias.

Liu et al. [20] expose the Single-modal bias, wherein single-modal
characteristics inherently skew the generated multi-modal features,
representing an inter-modal bias. Shang et al. [28] reveal Modality
bias, wherein non-uniform modal content distribution in training
data leads to over-recommendation of certain items , constituting
an item-side bias. Yang et al. [40] exposeModal-aware Bias, wherein
self-supervised learning in current multi-modal recommender sys-
tems can generate biased augmentations, causing information loss
and noise. Malitesta etal. [21] discover that the use of multi-modal
content can indeed exacerbate item-side popularity bias.

A.3 Causal Inference in Recommender Systems
Causal inference methods [25] are extensively utilized to reveal the
causal relationships underlying recommendations and reduce the
biases present in recommender systems [15, 20, 32, 33, 44]. Exist-
ing causal debiasing techniques for recommender systems can be
categorized into two primary groups: (1) Confounding Elimination,
which tackles bias by regarding it as a confounding factor and ap-
plying backdoor adjustment to diminish its influence [32, 33, 44].
For example, PDA [44] identifies item popularity as a confounder
between item exposure and observed interactions and addresses
the impact of popularity bias based on the backdoor adjustment;
DecRS [33] introduces an approximation operator for backdoor ad-
justment that can be seamlessly integrated into most recommender
models, and devises an inference strategy to regulate backdoor
adjustment based on user status dynamically; (2) Counterfactual
Inference, which typically employs counterfactual analysis to create
a hypothetical scenario, and derives the Total Indirect Effect (TIE)
by examining the Total Effect (TE) in the real world and the Natural
Direct Effect (NDE) in the counterfactual scenario [20, 28]. For ex-
ample, EliMRec [20] constructs a counterfactual scenario permitting
variation in a single modality while others are held constant, subse-
quently mitigating the impact of single-modal bias by subtracting
counterfactual outcomes from those of the real-world model; Shang
etal. [28] presents a fairness-aware modality debiasing framework
based on counterfactual inference to eliminate modality bias and
enhance item-side fairness. During training, the framework incor-
porates unimodal prediction branches to capture modality bias. In
the inference phase, a fairness-aware counterfactual analysis is
performed to eliminate modality bias adaptively.

A.4 Remarks
ISOLATOR systematically explore the impact of multi-modal con-
tent and discover a new type of bias, i.e., User-side Content Bias.
Different from current debiasing efforts in MRSs, which primarily
focus on the inter-modal bias or item-side bias, ISOLATOR arising
from the bias in user-side due to varying user preferences for
multi-modal content. ISOLATOR uses confounding elimination and
proposes two strategies to better utilize the impact of User-side
Content Similarity to obtain more fair or more accurate recom-
mendations. To our knowledge, ISOLATOR is the first work that
systematically explores the impact of multi-modal content in MRSs
on the user side and mitigates the User-side Content Bias
in MRSs from a causal perspective.



Unveiling the Impact of Multi-modal Content in Multi-modal Recommender Systems Conference’17, July 2017, Washington, DC, USA

2 4 6 8 10

20

15

10

5

1

0.1055 0.1060 0.1053 0.1055 0.1052

0.1059 0.1061 0.1062 0.1055 0.1054

0.1052 0.1058 0.1057 0.1063 0.1056

0.1048 0.1049 0.1046 0.1062 0.1046

0.1042 0.1053 0.1053 0.1044 0.1045

0.080

0.085

0.090

0.095

0.100

0.105

(a) 𝑅𝑒𝑐𝑎𝑙𝑙@20 w.r.t 𝛼 and 𝛽

2 4 6 8 10

20

15

10

5

1

0.0671 0.0669 0.0666 0.0650 0.0659

0.0670 0.0685 0.0673 0.0684 0.0649

0.0679 0.0644 0.0654 0.0651 0.0657

0.0638 0.0644 0.0633 0.0647 0.0691

0.0633 0.0642 0.0639 0.0633 0.0635

0.060

0.062

0.064

0.066

0.068

0.070

(b) 𝑈𝐶𝐵𝑖𝑎𝑠 w.r.t 𝛼 and 𝛽

Figure 8: Effect of 𝛼 and 𝛽 under GUME+U-ISOLATOR on Baby Dataset.
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Figure 9: Effect of 𝜄 under GUME+U-ISOLATOR on Baby
dataset.

B Experiment
B.1 Baseline
Multi-modal recommender systems (MRSs) typically integratemulti-
modal content into conventional RSs based on two primary back-
bone architectures: matrix factorization (MF) and graph collabora-
tive filtering (GCF). We use two conventional RSs as backbone:
• MFBPR [27], which decomposes user-item matrices into lower-
dimensional latent factors to capture preferences and generate
recommendations.

• LightGCN [9], which efficiently captures user preferences by
aggregating neighbor embeddings in a simplified structure, en-
abling scalable and robust recommendations.

We have five multi-modal recommender systems as backbone:
• VBPR [8], which integrates visual embeddings with ID embed-
dings directly to enhance recommendation performance;

• GRCN [36], which employs graph convolutions to merge multi-
modal content with ID embeddings, capturing complex relation-
ships;

• MGCN [26], which uses a behavior-aware fuser to weigh the
significance of features from different modalities adaptively;

• SLMRec [31], which aligns content across various modalities for
the same item, ensuring consistency and coherence;

• GUME [17], which leverages multi-modal item similarities to re-
fine the user-item graph and learns high-quality representations
for improved recommendations.

It should be noted that MFBPR and VBPR are Matrix Factorization
architectures, while the remaining are graph architectures. To ensure
optimal performance, we use publicly available code9 [45] with
default parameter settings.

B.2 Impacts of Hyper-parameters
To investigate the impact of hyper-parameters on ISOLATOR, we
conduct a series of experiments using the GUME as the backbone
on the Baby dataset because GUME performed the best among the
backbones we used. We focus on four key hyper-parameters: 𝛾 in
Equ. 7, 𝛼 and 𝛽 in Equ. 12, and 𝜄 in Equ. 13. For clearer visualizations,
9https://github.com/enoche/MMRec
we adjust one hyper-parameter at a time while keeping the others
constant.

B.2.1 Impact of 𝛾 for Debiasing intervention strategy. The param-
eter 𝛾 controls the impact of User-side Content Similarity
during the training phase. By varying 𝛾 across {0.001, 0.01, 0.1, 1,
2}, we can observe from Fig. 7 that:
• When 𝛾 < 1, increasing 𝛾 leads to an improvement in 𝑅𝑒𝑐𝑎𝑙𝑙@20
while the bias remains relatively stable. This highlights that ap-
propriately increasing the influence of User-side Content
Similarity during training to achieve enhanced recom-
mendation performance while maintaining a balanced
User-side Content Bias level.

• Specifically, moderate settings of 𝛾 (e.g., 𝛾 = 1) yield the optimal
balance, achieving relatively high 𝑅𝑒𝑐𝑎𝑙𝑙@20 while maintaining
a controlled bias.

• When 𝛾 is set too high (e.g., 𝛾 = 2), both 𝑅𝑒𝑐𝑎𝑙𝑙@20 and𝑈𝐶𝐵𝑖𝑎𝑠
are negatively impacted. Specifically, this results in a decrease in
𝑅𝑒𝑐𝑎𝑙𝑙@20 and an increase in𝑈𝐶𝐵𝑖𝑎𝑠 , which highlights that ex-
cessive reliance on User-side Content Similarity during
training can lead to less relevant recommendations and
introduce more bias.

B.2.2 Impact of 𝛼 and 𝛽 for User-specific intervention strategy. The
parameters 𝛼 and 𝛽 control the impact of User-side Content
Similarity that users require. We test 𝛼 within the range of
{2, 4, 6, 8, 10} and 𝛽 within the range of {1, 5, 10, 15, 20}. As shown
in Fig. 8, we observe that:
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Figure 10: A case study of recommendation list on Baby dataset for Content-Consistent Users and Content-Diverse Users,
where red boxes for correct recommendations, black boxes for incorrect recommendations, black text for high content similarity,
and gray text for low content similarity.

• Adjusting 𝛼 and 𝛽 have a minimal impact on 𝑅𝑒𝑐𝑎𝑙𝑙@20, demon-
strating the stability of ISOLATOR.

• Adjusting 𝛼 and 𝛽 affects 𝑈𝐶𝐵𝑖𝑎𝑠 . When 𝛼 remains constant,
𝑈𝐶𝐵𝑖𝑎𝑠 initially grows slowly as 𝛽 grows but subsequently de-
creases after reaching a certain point. Additionally, when 𝛽 is
fixed at 1,𝑈𝐶𝐵𝑖𝑎𝑠 remains relatively stable at a low level despite
variations in 𝛼 .

• 𝛼 and 𝛽 affect the trade-off between recommendation per-
formance (𝑅𝑒𝑐𝑎𝑙𝑙@20) and User-side Content Bias (𝑈𝐶𝐵𝑖𝑎𝑠).
The combination of 𝛼 = 6 and 𝛽 = 10 achieves the highest
𝑅𝑒𝑐𝑎𝑙𝑙@20whilemaintaining a relatively low User-side Content
Bias.

B.2.3 Impact of 𝜄 for User-specific intervention strategy. The param-
eter 𝜄 determines the impact of User-side Content Similarity
during the inference phase. By varying 𝜄 across {0.001, 0.01, 0.1, 1,
2}, we can analyze the resulting trends in Fig. 9
• For 𝜄 ≤ 0.01, increasing 𝜄 results in improved 𝑅𝑒𝑐𝑎𝑙𝑙@20 perfor-
mance and reduced𝑈𝐶𝐵𝑖𝑎𝑠 . This highlights that amoderate ad-
justment of the impact of User-side Content Similarity
during inference can enhance recommendation quality
while minimizing bias. The optimal balance is achieved at
𝜄 = 1, which maintains high 𝑅𝑒𝑐𝑎𝑙𝑙@20with minimal User-side
Content Bias.

• When 𝜄 > 0.01, both metrics deteriorate: 𝑅𝑒𝑐𝑎𝑙𝑙@20 decreases
and 𝑈𝐶𝐵𝑖𝑎𝑠 increases. This suggests that excessive emphasis

on the impact of User-side Content Similarity during in-
ference can lead to suboptimal recommendation outcomes
and introduce unwanted biases.

B.3 Case Study
We introduce a case study to illustrate ISOLATOR’s impact on im-
proving recommendations for both Content-Consistent Users
and Content-Diverse Users. We randomly select one user from
these user groups in the Baby dataset. We generate the recom-
mendation lists using GUME with and without ISOLATOR, then
visualize them.

From Fig. 10, we can observe that:
• For Content-Consistent Users, ISOLATOR can identify the
user-preferred item among numerous high-similarity candidates.
For example, the top four diapers recommended by vanilla are
wrong, while ISOLATOR can retrieve the diaper the user likes.
In comparison, U-ISOLATOR tends to rank the correct item
higher, indicating its ability to leverage the impact of User-side
Content Similarity to achieve better recommendations. Mean-
while, D-ISOLATOR eliminates the impact of similarity, offering
a more diverse range of recommended items.

• For Content-Diverse Users, ISOLATOR can accurately iden-
tify user-preferred candidates with lower content similarity and
produce a more diversified recommendation list. For example,
vanilla recommends highly similar baby stroller toys, while ISO-
LATOR recommends a less similar handheld toy, precisely meet-
ing the needs of Content-Diverse Users.
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