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A Novel Group Recommendation Model
With Two-Stage Deep Learning

Zhenhua Huang , Yajun Liu, Choujun Zhan, Chen Lin, Weiwei Cai , Member, IEEE, and Yunwen Chen

Abstract—Group recommendation has recently drawn a lot
of attention to the recommender system community. Currently,
several deep learning-based approaches are leveraged to learn
preferences of groups for items and predict next items in
which groups may be interested. Yet, their recommendation
performance is still unsatisfactory due to sparse group–item
interactions. To address this challenge, this study presents a
novel model, called group recommendation model with two-stage
deep learning (GRMTDL), which encompasses two sequential
stages: 1) group representation learning (GRL) and 2) group
preference learning (GPL). In GRL, we first construct an undi-
rected tripartite graph over group–user–item interactions, and
then employ it to accurately learn group semantic features
through a spatial-based variational graph autoencoder network.
While in GPL, we first introduce a dual PL-network that con-
tains two structure-sharing subnetworks: 1) group PL-network
employed for GPL and 2) user PL-network utilized for user
preference learning. Then, we design a novel layered transfer
learning (LTL) method to learn group preferences by alternately
optimizing these two subnetworks. In particular, it can effectively
absorb knowledge of user preferences into the process of GPL.
Furthermore, extensive experiments on four real-world datasets
demonstrate that the proposed GRMTDL model outperforms the
state-of-the-art baselines for group recommendation.

Index Terms—Deep learning, graph autoencoder, group
recommendation, knowledge transferring, representation
learning.

I. INTRODUCTION

CURRENTLY, most researchers focus on individual rec-
ommendation. The term “individual” generally refers to

a particular user in the recommender system [1]. The task
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of individual recommendation is to predict a user’s possi-
ble interested items based on her historical preferences and
recommend top-k items to her [2]. In recent years, the wide
application of social networks and online communities, such
as Meetup, Facebook, and YouTube, has made it convenient
for people to organize and participate in group activities [3].
Providing accurate recommendations for group activities is an
important task for modern recommender systems. We refer
to this task as a “group recommendation” problem that is
challenging and has drawn a lot of attention in industry and
academia [4].

According to our investigation, the existing studies on group
recommendation include two broad categories: 1) memory-
based and 2) model-based approaches [5]. More specifically,
the former simply aggregates preferences of members (i.e.,
users) without considering interactions among members in
a group [6]–[10]. The latter focuses on modeling groups’
decision-making processes, and produces the most favorable
items for groups [11]–[18].

With great successes in individual recommenda-
tion [19], [20], deep learning begins to attract much interest to
group recommendation and brings more opportunities to raise
recommendation effectiveness. To the best of our knowledge,
they basically use various deep neural network components
to model groups’ decision-making processes [21]–[35].
Specifically, several neural attentive approaches [28]–[35]
have shown the superior performance among existing studies.
Their core idea is to adopt an attention mechanism [36] to
learn to capture the different impacts of different members
in a group, which can improve the final recommendation
effectiveness.

Nevertheless, they still have two drawbacks that greatly
affect the effectiveness of group recommendation. First, for
a group, they only consider the impacts of members in this
group, and ignore the impacts of other groups and external
members. That is, they focus on the internal characteristics of
a group and ignore its external characteristics. This directly
affects the adequacy and semantic accuracy of group feature
representation. Second, although they have presented various
ingenious neural networks for performing group preference
learning (GPL), they cannot effectively capture group pref-
erences for items, which is mainly because unlike user–item
interaction data, group–item interaction data are usually very
sparse. It will lead to insufficient model training, which greatly
affects the accuracy of recommendation.

To address the above drawbacks, in this article, we introduce
a novel model, namely, the group recommendation model with
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two-stage deep learning (GRMTDL). It mainly encompasses
two sequential stages: 1) group representation learning (GRL)
and 2) GPL. In the GRL stage, we first construct an undirected
tripartite graph for group–user–item interactions by using
group and user historical data in a given recommender system.
Then, inspired by [37], we take it as input, and introduce a
spatial-based variational graph autoencoder (SVGAE) network
to learn group semantic features accurately. We use a two-
layer graph convolutional network (GCN) as an encoder and
employ a simple inner-product layer as a decoder [37]–[42].
Meanwhile, the initial features of all groups, users, and items
can be obtained through existing superior group recommen-
dation models. At the end of GRL, we can not only obtain
accurate semantic features of groups, but also adequately
optimize semantic features of users and items. Hence, the
GRL stage has an additional function, namely, that it can raise
recommendation effectiveness of existing individual models.

In the GPL stage, we first introduce a dual PL-network
that comprises two structure-sharing three-layer subnetworks.
One is a group PL-network that takes a feature pair in the
form of (group, item) as an input and is employed for GPL.
The other is a user PL-network that uses a feature pair in
the form of (user, item) as an input and is leveraged for
user preference learning. Generally, the user–item interaction
data are much denser than the group–item interaction data.
Based on this fact, we further design a novel layered trans-
fer learning (LTL) method to learn group preferences, which
alternately optimizes two subnetworks and transfers parame-
ter gradients (i.e., metaknowledge) of the user PL-network to
the group PL-network with a certain probability. According to
the previous works [43], [44], we know that compared with a
lower layer of neural networks, an upper layer is generally
more abstract and contains more information about prefer-
ences. Therefore, the transferring probability of an upper layer
is set to be greater than that of a lower layer in the LTL
method. In this way, we can effectively absorb knowledge of
user preferences into the process of GPL.

In summary, the main contributions of this article are as
follows.

1) The accuracy of group feature representation remark-
ably affects the final recommendation effectiveness. We
make the first attempt to construct an undirected tri-
partite graph from group–user–item interactions and to
accurately learn group semantic features via an SVGAE
neural network. In addition, it simultaneously refines
user and item semantic features, which can heighten the
recommendation performance of individual models.

2) To learn accurate group preferences on sparse
group–item interaction data, we first introduce a dual
PL-network that contains two structure-sharing subnet-
works, i.e., group and user PL-networks. Then, we
propose a novel LTL method to alternately optimize
two subnetworks and to transfer knowledge of user
preferences into the process of GPL.

3) We propose GRMTDL and comprehensively inves-
tigate its effectiveness through extensive experi-
ments over four real-world datasets. Our experimental
results show that it significantly outperforms existing

state-of-the-art models in terms of various evaluation
metrics.

Section II introduces the related works to this article.
Section III provides the details of the proposed GRMTDL
model. The experimental results are presented in Section IV.
Finally, Section V concludes this article and outlines
future work.

II. RELATED WORKS

Existing works on group recommendation involve two
categories: 1) memory-based and 2) model-based approaches.

A. Memory-Based Approaches

Memory-based approaches simply aggregate preferences
of members without considering interactions among mem-
bers in a group. They can be further divided into two
subcategories. The first one contains preference aggregation-
based approaches that get a group’s profile by combining all
member preferences and recommend potential items to this
group [6]–[8].

While the second one comprises score aggregation-based
approaches that get the most favorable items for each member
and then combine all obtained items to make the final rec-
ommendations through the strategies, such as average (AVG),
least misery (LM), and maximum satisfaction (MS). AVG cal-
culates the AVG score of an item across group members as the
final recommendation score of this item [7]. LM obtains the
lowest score of an item among all group members’ scores as
the final recommendation score of this item [5]. MS is similar
to AVG. The difference is that the scores of selected items in
MS need to be greater than a specified threshold [9], [10].

B. Model-Based Approaches

Unlike memory-based approaches, model-based ones focus
on modeling groups’ decision-making processes and then pro-
vide potential items for groups. Usually, their effectiveness is
better than that of memory-based approaches [5]. Specifically,
they comprise traditional and deep learning-based approaches.
Traditional approaches perform groups’ decision-making
processes by using information fusion [11]–[15], game the-
ory [16], probabilistic models [17], [18], etc.

Deep learning-based approaches generally employ vari-
ous deep neural network components for modeling groups’
decision-making processes [21]–[27]. Recently, several neu-
ral attentive approaches [28]–[35] have been introduced to
further improve recommendation performance. Among them,
the works [28] and [29] are the first two to employ an
attention mechanism. Attention-based group recommenda-
tion (AGR) [28] is introduced to capture the influence
of each group member via learning its importance weight
and to perform group recommendation based on learned
members’ weights. While attentive group recommendation
(AGREE) [29] is proposed to adopt an attention mechanism to
optimize group feature representation and to learn interactions
between groups and items with a neural collaborative filtering
framework [39].
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Fig. 1. Overall framework used in the GRL stage.

Based on the study of [29], Cao et al. [30] incorpo-
rated a social attribute “followee” into group recommen-
dation, and presented social-enhanced AGREE (SoAGREE)
that employs an attention network to aggregate each group
member’s followees. Huang et al. [31] proposed a novel
model multiattention-based group recommendation model
(MAGRM), which fully considers groups’ sociality and
preference interactions between groups and their members.
Yin et al. [32] introduced a framework social influence-
based group recommender (SIGR) that utilizes bipartite graph
embedding and attention mechanism as building blocks.
Specifically, every group member is associated with a vir-
tual social influence, and then members’ social information is
employed to evaluate their social influences. Wang et al. [33]
introduced a socially driven multiinteraction attentive group
representation approach for learning static and dynamic group
preference coherently. Zan et al. [34] presented an effec-
tive model user difference attention (UDA) that explicitly
simulates the comparisons between group members through
relational attention. Specifically, several user relational ker-
nels (URKs) are given to simulate different types of relations
during group decision making. In addition, Chen et al. [35]
introduced a model attentive multitask learning-based group
itinerary recommendation (AMT-IRE) that employs the atten-
tion mechanism to learn the inner relations between group
members dynamically and obtain consensus group preferences.

Nevertheless, as discussed in Section I, the above-mentioned
attention-based approaches still have two major drawbacks
that may lead to poor recommendation performance, and
addressing these two drawbacks partially motivates this study.

III. DETAILS OF THE PROPOSED GRMTDL MODEL

GRMTDL encompasses two sequential stages: 1) GRL and
2) GPL. In this section, we first formulate the group recom-
mendation problem to be solved. We then present the two key
ingredients of GRMTDL.

A. Problem Statement

Suppose that the sets of groups, users, and items are G,
U, and V, respectively, in a given recommender system, and
for each g ∈ G, g ⊆ U. We use Dg and Du to denote

group–item interactions and user–item interactions, respec-
tively. Let D = Dg ∪ Du. Then, given a target group g, the
group recommendation task is defined as recommending a list
of items that g may be interested in, which is formally defined
as [29] follows.

Input: The sets of groups, users, and items G, U, and
V; group–item interactions and user–item interac-
tions D.

Output: The personalized ranking function f that map an
item to a real value for each group fg(g, v) → R.

In this article, we realize a personalized ranking func-
tion fg by training the proposed model GRMTDL, and each
training instance corresponds to a group. Unlike user–item
interaction data, group–item interaction data are usually very
sparse. Hence, in this work, based on the idea of knowledge
transferring, we consider using an additional individual (i.e.,
user) recommendation task to improve effectiveness of group
recommendation. Similarly, to perform this task, user–item
interactions Du are used to train a personalized ranking func-
tion fu : fu(u, v)→ R, and each training instance corresponds
to a user. Note that fu is also realized in our GRMTDL model.

B. GRL: Group Representation Learning

The GRL stage learns group semantic features accurately
via an SVGAE network. User and item semantic features can
be simultaneously optimized in GRL, which is an additional
gain. Fig. 1 shows the framework used in this stage.

In GRL, we first generate an undirected tripartite graph H =
(N,E) for group–user–item interactions based on D. Here, the
node set N = G ∪ U ∪ V, and the edge set E = {(g, u)|g ∈ G
and u ∈ U and u is a member of g} ∪ {(g, v)|g ∈ G and v
∈ V and g has interacted with v} ∪ {(u, v)|u ∈ U and v ∈ V
and u has interacted with v}. In our study, H is used to depict
the correlation among groups, users, and items. Then, inspired
by [37], we employ an SVGAE network to learn group seman-
tic features accurately as well as to optimize user and item
semantic features from H. As shown in Fig. 1, the encoder in
SVGAE has two branches, and either of them contains a two-
layer SGCN. For simplicity, the upper and lower branches are
denoted as ϒu and ϒl, respectively. Meanwhile, to improve the
training efficiency, their first layers share weight parameters.
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Fig. 2. Process performed by the branch ϒu.

On the other hand, the decoder uses a simple inner product
layer [37].

When training the SVGAE network, we sample a minibatch
of nodes from H at a time, denoted as B = {z1, z2, . . . , zb}.
Here, b is the size of minibatch. By leveraging existing mod-
els, we can usually get more accurate user and item semantic
features than those of groups [28]–[35]. So, to learn group
semantic features adequately, the number ng of groups in B

needs to be greater than the sum of the number of users and
items. In this study, we set ng = �60% · b�, and the selection
of its optimal value will be one of our future work. After node
sampling, we can get an adjacency matrix A ∈ R

b×b of B and
a d0-dimensional initial feature z̃ of each node z ∈ B.

Both branches ϒu and ϒl of the encoder take each node z ∈
B as an input sample. They are leveraged for constructing a
dm-dimensional mean vector µ and a dt-dimensional standard
deviation vector σ , respectively. In this way, the encoder can
eventually generate a ds-dimensional latent vector z for node z.
Since these two branches perform the same process, we use
ϒu as an example to show this process, which is shown in
Fig. 2.

For each node z ∈ B, we obtain all its direct neighbors
Nz = {y1, y2, . . . , ym}, where m is the cardinality of Nz.
Then, for each yi ∈ Nz, we further get all its direct neigh-
bors Nyi = {xyi

1 , xyi
2 , . . . , xyi

nyi
}, where nyi is the cardinality of

Nyi . Based on [45], in the first SGCN layer SGCN(1)1 , we gen-
erate a da-dimensional aggregation vector ayi for each yi by
employing the following aggregation function (1 ≤ t ≤ nyi):

ayi = F
(

Nyi

) =
∑

x
yi
t ∈Nyi

⎛

⎝

ReLU
(

W(1)
1 x̃yi

t + b(1)1

)

J
(

xyi
t , yi

)

⎞

⎠. (1)

x̃yi
t is the initial feature of xyi

t and the rectified linear unit
(ReLU) [42] is an activation function. W(1)

1 ∈ R
da×d0 and

b(1)1 ∈ R
da are the two trained parameters. While J(xyi

t , yi)

is a graph Laplacian norm [45]

J
(

xyi
t , yi

) = (

d
(

xyi
t
) · d(yi)

)1/2
(2)

where d(yi) is the degree of node yi. On this basis, we take ayi

and ỹi (the initial feature of yi) as an input, and employ a fully
connected layer FC1 to produce a de-dimensional derivation
vector yd

i for yi

yd
i = Sigmoid

(

Q(1)
1 (ayi

⊕

ỹi)+p(1)1

)

. (3)

Here, “
⊕

” is a concatenation operation, and Q(1)
1 ∈

R
de×(da+d0) and p(1)1 ∈ R

de are the two trained parameters.
SGCN(1)1 finally outputs m derivation vectors for Nz, i.e.,

yd
1, yd

2, . . . , yd
m. The second SGCN layer SGCN(1)2 uses F on

these m derivation vectors to get a da-dimensional aggregation
vector az for z. Then, it is combined with z̃ to produce a mean
vector µ through a fully connected layer FC2

az = F(Nz) =
∑

yi∈Nz

⎛

⎝

ReLU
(

W(1)
2 yd

i + b(1)2

)

J(yi, z)

⎞

⎠ (4)

µ = Sigmoid
(

Q(1)
2

(

az

⊕

z̃
)

+ p(1)2

)

. (5)

W(1)
2 ∈ R

da×d0 , b(1)2 ∈ R
da , Q(1)

2 ∈ R
de×(da+d0), and p(1)2 ∈

R
de are the four trained parameters, and L(yi, z) is calculated

via (2).
Similarly, we generate a standard deviation vector σ for

z via the branch ϒl containing SGCN(2)1 and SGCN(2)2 .
Specifically, we replace σ by logσ to ensure that the stan-
dard deviation is nonnegative. Because SGCN(1)1 and SGCN(2)1
share parameters, ϒl totally has eight parameters in SGCN(2)2 ,
denoted as: W(2)

1 ∈ R
da×d0 , b(2)1 ∈ R

da , Q(2)
1 ∈ R

de×(da+d0),
p(2)1 ∈ R

de , W(2)
2 ∈ R

da×d0 , b(2)2 ∈ R
da , Q(2)

2 ∈ R
de×(da+d0),

and p(2)2 ∈ R
de . Based on µ and σ , a Gaussian distribution of

latent vector z can be obtained

φ(z) = N
(

z|µ, diag
(

σ 2
))

(6)

where diag(·) is a diagonal matrix.
Thus, the encoder eventually outputs a Gaussian distribution

of latent vectors for minibatch B

φ(Z) = φ([z1, z2, . . . , zb]) =
b
∏

i=1

N
(

zi|µi, diag
(

σ 2
i

))

.

(7)

zi is the latent vector of node zi ∈ B, and µi and σ 2
i are its

mean and standard deviation vectors, respectively. The decoder
performs an inner product between latent vectors and generates
the following conditional probability distribution:

{

p
(

A
∣

∣Z
) =∏b

i=1
∏b

j=1 p
(

Aij| zi, zj
)

p
(

Aij = 1| zi, zj
) = f

(

zi·zT
j

) (8)

where Aij are the elements of the adjacency matrix A and
f (·) is a logistic sigmoid function.

Then, similar to the work [37], the loss function L used for
training SVGAE is defined as

L(B;Rall) = −
(

λEφ(Z)
[

logp
(

A
∣

∣Z
)]

−(1− λ)KL[φ(Z)‖ψ(Z)]). (9)
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Fig. 3. Overall framework used in the GPL stage.

ψ(Z) = ∏b
i=1 N(zi) = ∏b

i=1 N(zi|0, I) is a Gaussian
prior, and KL[φ(·)‖ψ(·)] is the Kullback–Leibler divergence
between φ(·) and ψ(·). λ ∈[0, 1] is a hyperparameter. Rall is
the set of all the parameters in SVGAE. That is, Rall = {W(1)

1 ,
b(1)1 , Q(1)

1 , p(1)1 , W(1)
2 , b(1)2 , Q(1)

2 , p(1)2 , W(2)
1 , b(2)1 , Q(2)

1 , p(2)1 ,
W(2)

2 , b(2)2 , Q(2)
2 , p(2)2 }.

We leverage a minibatch stochastic gradient descent (SGD)
method [46] to minimize L. Each parameter is randomly
initialized with the Glorot strategy [47]

�← Tudf

(

−
√

6

d0
,

√

6

d0

)

, for each � ∈ Rall. (10)

Here, Tudf( ) is a uniform distribution function and d0 is the
dimensionality of node initial features. At the same time, an
RMSprop optimizer [48] is used to update each parameter

⎧

⎨

⎩

[r]t = 0.9[r]t−1 + 0.1
(

∂L
∂[�]t

)2

[�]t = [�]t−1 −
(

α√
[r]t+γ

)

∂L
∂[�]t

for each � ∈ Rall. (11)

Here, t is the current iteration index, r is a gradient cumu-
lative variable, α is an initial learning rate, and γ = 10−8 is
a constant to ensure a nonzero denominator.

It is not difficult to see that the computational complexity in
the GRL stage contains two main parts: 1) O(Kin) for generat-
ing an undirected tripartite graph H and 2) O([K2

in/Knd]+Knd)

for training the SVGAE network. Here, Knd is the sum of
the number of groups, users, and items, and Kin is the total
number of group–user–item interactions. Hence, we have the
complexity of O([Kin

2/Knd]+ Knd + Kin) = O([K2
in/Knd]) in

GRL.

C. GPL: Group Preference Learning

In the GPL stage, we introduce a dual PL-network for learn-
ing group preferences via a novel LTL method. Fig. 3 shows
the framework utilized in this stage. Specifically, group–item
interaction data are usually much sparser than user–item
interaction data, and hence, we use the LTL method to absorb
knowledge of user preferences into the process of GPL. In this
way, GRMTDL can learn group preferences more accurately
than current models.

As shown in Fig. 3, the dual PL-network encompasses
two structure-sharing three-layer subnetworks: 1) group PL-
network and 2) user PL-network, which are utilized to learn
group and user preferences, respectively. Either subnetwork
is composed of one convolutional layer (Conv) and two fully
connected layers (FC1 and FC2). Meanwhile, FC2 has only
one neuron leveraged to output a preference probability.

When training this network, we first sample a minibatch
Gb of groups from G at a time. On this basis, we produce a
training sample set Sg for group PL-network.

1: Sg ← ∅;
2: for each g ∈ Gb do

Randomly choose one positive item v+ from V;
3: Sg ← Sg ∪ {(g, v+)};
4: Randomly choose r negative items from V, denoted as Vn;
5: for each v∈Vn do Sg ← Sg ∪ {(g, v)}
Note that g and v are the semantic features of g and v,

respectively. In line 4, r is a negative sampling ratio, and by
following the previous works, it is set to 4 here. Meanwhile,
we get a user set based on Gb : Ub = {u|for each g ∈ Gb, u ∈
U and u is a member of g}. Similarly, we generate a training
sample set Su for user PL-network via Ub. Because these two
subnetworks share the same structure, we next use the group
PL-network as an example to show the process of forward
propagation. For each training sample (g, v) ∈ Sg, Conv is
defined as

C = ReLU
(

Wg
1

⊗
(

g
⊕

v
)

+ bg
1

)

(12)

where “
⊗

” is a convolution operation, and Wg
1 ∈ R

nc×ch×cw

and bg
1 ∈ R

nc are the two trained parameters. Based on this,
C ∈ R

([2d0−chcw/lc]+1)×nc . Here, nc is the number of convolu-
tion kernels, ch and cw are the height and width of kernels,
respectively, and lc is the step size. Then, FC1 and FC2 are
defined as

F1 = Sigmoid
(

Wg
2

↔
C+bg

2

)

(13)

yg = Sigmoid
(

wg
3F1 + bg

3

)

. (14)

In (13) and (14),
↔
C ∈ R

([2d0−chcw/lc]+1)nc is the flat vector
of C. Wg

2 ∈ R
n1

f ×([2d0−chcw/lc]+1)nc , bg
2 ∈ R

n1
f , wg

3 ∈ R
n2

f ×n1
f ,

and bg
3 ∈ R

n2
f are the four trained parameters. Here, n1

f and
n2

f are the number of neurons in FC1 and FC2, respectively.
We set n2

f = 1 (i.e., yg is a scalar).
Then, the loss function Lg is defined as

Lg(Sg;Rg
all

) = −
∑

s∈Sg

⎛

⎜

⎜

⎝

logyg
︸ ︷︷ ︸

s=(g,v+)

+ log
(

1− yg
)

︸ ︷︷ ︸

s=(g,v−)

⎞

⎟

⎟

⎠

. (15)

R
g
all is the set of all the parameters in the group PL-network,

i.e., Rg
all = {Wg

1, bg
1, Wg

2, bg
2, wg

3, bg
3}. Similarly, we can define

a loss function for user PL-network: Lu(Su;Ru
all). Here, Ru

all ={Wu
1, bu

1, Wu
2, bu

2, wu
3, bu

3}.
Similar to SVGAE, we utilize a minibatch SGD method

to minimize Lg and Lu. Meanwhile, all the parameters are
randomly initialized with the Glorot strategy and updated with
an RMSprop optimizer.
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To absorb knowledge of user preferences into the process of
GPL, we design an LTL method to train the dual PL-network.
It optimizes two subnetworks alternately, and transfers param-
eter gradients (i.e., metaknowledge) of the user PL-network
to group PL-network with a certain probability. The specific
process is described below. For the tth iteration, we first take
Sg as input to group PL-network and update each parameter
�

g
l ∈ R

g
all. Here, l (1 ≤ l ≤ 3) is the layer number of network,

and each layer has two trained parameters. That is, �
g
l rep-

resents Wg
l or bg

l , for l = 1∼2; and �
g
3 represents wg

3 or bg
3.

Next, we take Su as input to user PL-network and calculate a
gradient ∂Lu/∂[�u

l ]t for each parameter �u
l ∈ Ru

all.
On this basis, we further update each parameter �

g
l ∈ R

g
all

with a transferring probability p(l)

{
[

�
g
l

]

t =
[

�
g
l

]

t − ρ
(

α√
[rg]t+γ

)

∂Lu

∂
[

�u
l

]

t

p(l) = 0.8/
√

23−l
(16)

where ρ is a gradient transfer rate, r, α, and γ have the same
meaning as in (11). For example, Wg

1 is updated (employ-
ing ∂Lu/∂Wu

1) with a probability of 0.4, while wg
3 is updated

(using ∂Lu/∂wu
3) with a probability of 0.8. Note that in (15),

the transferring probability of an upper layer is set to be greater
than that of a lower layer. It is mainly because that compared
to a lower layer, an upper layer is generally more abstract and
contains more information about preferences [43], [44]. How
to determine the optimal probability in each layer will be a
future work. Finally, each parameter �u

l ∈ Ru
all is updated

through an RMSprop optimizer.
The whole training process ends when the group

PL-network converges. Note that if the user PL-network con-
verges first, then only group PL-network continues to be
trained until it also converges. While making predictions, given
a group g and an item v, we directly input their semantic fea-
tures (i.e., g and v) into the group PL-network, and its output
(i.e., yg) is the predicted value of group preference.

Assume that there are Kg groups, Ku users, and Kv items in a
recommender system. On AVG, each group has rated Ag items,
and each user has rated Au items (Ag � Kv, Au � Kv). Then,
we require O(KgAg) and O(KuAu) for training group and user
PL-networks, respectively. Hence, we have the complexity of
O(KgAg +KuAu) = O(Kin) in the GPL stage. Kin is the total
number of group–user–item interactions.

IV. EXPERIMENTS

A. Experimental Settings

1) Datasets: The first two datasets are mainly
based on previous works [29], [30]: 1) Mafengwo and
2) CAMRa2011. Mafengwo is collected from a tourism
website (http://www.mafengwo.cn) in which users can record
their traveled venues, and create or join a group travel. It is
a popular event-based dataset where an event encompasses a
user group, and is occurred at a traveled venue. CAMRa2011
(http://2011.camrachallenge.com/2011) is a real-world dataset
encompassing the movie rating records of individual users
and households (i.e., groups). It is also a popular event-based
dataset where an event contains a user household, and is

TABLE I
STATISTICS OF THE FOUR DATASETS

occurred at a movie-watching venue. For simplicity, we
denote these two datasets as MFW and CAM, respectively.
Similar to previous works, in these two datasets, we treat an
event as a group, where the users in the event are the group
members, and the venue of the event is the item chosen by
them. Our task is to recommend an appropriate venue for the
group event.

The last two datasets are extracted from MovieLens-1M
(http://grouplens.org/datasets/movielens/ ) through the method
in previous works [18], [28], [30]. MovieLens-1M is a popu-
lar database in the recommendation community, encompassing
the information about users, movies, and ratings that users
give to movies. Similar to previous works, we mainly focus
on two types of groups in experimental evaluation: 1) simi-
lar and 2) random. Their corresponding datasets are denoted
as ML-Simi and ML-Rand, respectively. For ML-Simi, users
have high within-group similarities and low between-group
similarities. While for ML-Rand, users are grouped randomly.
Specifically, they can effectively represent two types of real-
world groups: one is that a group consists of users having
similar preferences, e.g., family. The other is that a group is
composed of users gathering together temporarily, e.g., pas-
sengers on the same airplane. For each dataset, we randomly
choose 3000 groups. Following previous works [28], [30], for
a group, if each member gives four stars or above to a movie,
we assume that the movie is adopted by this group.

The statistics of the four datasets are shown in Table I.
2) Evaluation Protocols: In experiments, each dataset

is randomly divided into training (80%) and test (20%)
sets. We conduct experimental evaluation on Pytorch plat-
form [50], [51] and utilize an RMSprop optimizer [48] to
update every parameter. We perform hyperparameter tuning
to find the optimal value for each hyperparameter via ran-
dom search [52]. Table II shows the hyperparameter settings
of GRMTDL in experiments.

As for evaluation metrics, we adopt two well-known metrics
HR@k (Hit Ratio) [25] and NDCG@k (normalized discounted
cumulative gain) [53], which are widely used for top-k recom-
mendation evaluation. In experiments, we consider four values
of k, i.e., 1, 5, 10, and 15. For both of the two metrics, a larger
metric value indicates a better effectiveness.

3) Compared Baselines: To verify effectiveness of
GRMTDL, we compare it with the following state-of-the-art
baselines.

a) Memory-based approaches: It includes DFM-AVG,
DFM-LM, and DFM-MS. For a group, all these three
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TABLE II
HYPERPARAMETER SETTINGS OF GRMTDL IN EXPERIMENTS

TABLE III
TOP-k RECOMMENDATION PERFORMANCE OF GRMTDL AND ITS PEERS ON MFW (BEST RESULTS ARE BOLD FACED)

TABLE IV
TOP-k RECOMMENDATION PERFORMANCE OF GRMTDL AND ITS PEERS ON CAM (BEST RESULTS ARE BOLD FACED)

baselines first utilize the model deep factorization machines
(DFMs) [39] to get a recommendation score for its each
member, and then use the AVG [7], LM [5], and MS [9]
strategies to yield a final recommendation score for the
group, respectively. In particular, DFM is a prevalent indi-
vidual recommendation model based on a deep neural
network.

b) Model-based approaches: It includes consen-
sus model (COM) [18], DPMF-CNN [24], AGR [28],
AGREE [29], and SoAGREE [30]. Among them, COM is a
mainstream probabilistic model, while the other four models

are all based on deep learning. The last three models also use
the attention mechanism.

B. Performance Comparison With Baselines

We compare the effectiveness of the proposed model with
its peers. Tables III–VI show HR@k and NDCG@k values for
four real-world datasets. From these four tables, we can have
the following observations.

1) The experimental results clearly show that the proposed
model GRMTDL has superior recommendation accu-
racy than all the nine baselines. The main reasons
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TABLE V
TOP-k RECOMMENDATION PERFORMANCE OF GRMTDL AND ITS PEERS ON ML-SIMI (BEST RESULTS ARE BOLD FACED)

TABLE VI
TOP-k RECOMMENDATION PERFORMANCE OF GRMTDL AND ITS PEERS ON ML-RAND (BEST RESULTS ARE BOLD FACED)

are three-folds. First, GRMTDL can model not only
the impacts of internal members on a group but also
the impacts of other groups and external members on
it by using the group–user–item interaction graph in
GRL. Second, for a group, GRMTDL integrates the
semantic features of other groups and external members
to learn its feature representation through the SVGAE
neural network in GRL. Third, GRMTDL employs an
LTL method in GPL to absorb knowledge of user
preferences into the process of GPL.

2) Among the baselines, three memory-based models
DFM- AVG, DFM-LM, and DFM-MS perform worst
on all four datasets. It is mainly because that they sim-
ply aggregate preferences of group members and ignore
the group decision-making process. This observation is
consistent with [28] and [29].

3) Compared to other five baselines, three attention-
based models (AGR, AGREE, and SoAGREE) have
superior accuracy. The main reason is that they uti-
lize the attention mechanism to capture the different
impacts of different members in a group, which can
improve the accuracy of group feature representation
to a certain extent. Yet unlike GRMTDL, for each
group, they only consider the impacts of its internal
members on it. In addition, we can find that for
the last three datasets, AGREE and SoAGREE have
the same accuracy. The main reason is that the last
three datasets do not have social information about
followee, and therefore, SoAGREE degenerates into
AGREE.

TABLE VII
EFFECTS OF L ON MFW AND CAM (BEST RESULTS ARE BOLD FACED)

C. Performance Study for Group Representation Learning

Since the encoder plays a pivotal role in the SVGAE
network, we study its impact on the final recommendation
effectiveness. We first investigate the influence of the number
L of layers in the encoder. L is set between 1 and 4. We use
“SVGAE-L” to represent the model in which the encoder of
SVGAE has L layers. It is easy to see that SVGAE-2 is exactly
the GRMTDL model. Tables VII and VIII show HR@k val-
ues for four datasets. We see a similar accuracy trend for
NDCG@k values and omit them here due to space limitation.

From the above two tables, we can have the following
observations.

1) SVGAE-1 presents the worst recommendation accuracy
over all four datasets. It indicates that SVGAE-1 is
unable to produce group semantic features accurately,
which is mainly because that the encoder with only one
layer cannot effectively capture the impacts of a group’s
external members and other groups on it.
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TABLE VIII
EFFECTS OF L ON ML-SIMI AND ML-RAND

(BEST RESULTS ARE BOLD FACED)

TABLE IX
EFFECTIVENESS OF GROUP SEMANTIC FEATURES

ON MFW (BEST RESULTS ARE BOLD FACED)

2) When adding layers to SVGAE-2, we can observe that
SVGAE-3 and SVGAE-4 lead to overfitting over the
dataset CAM. A possible reason is that the group–
user–item interaction graph on CAM is relatively dense
and a too deep network may introduce noise to GRL.
Meanwhile, experimental results over the other three
datasets indicate that SVGAE-3 and SVGAE-4 are not
much improved compared to SVGAE-2, and SVGAE-2
is sufficient to produce group semantic features accu-
rately. Based on this, we set L to 2 in our experimental
evaluation.

3) By jointly analyzing Tables III–VIII, we can find that
SVGAE-1 consistently outperforms the existing base-
lines over all four datasets. It verifies the effectiveness
of the SVGAE network on group recommendation again.

Next, we evaluate whether new semantic features of groups
generated in the GRL stage are beneficial for existing base-
lines. We mainly consider three attention-based models. For a
model “XXX,” we utilize “XXX+” to denote its correspond-
ing variant that uses new semantic features. Table IX presents
HR@k and NDCG@k values on the dataset MFW. We see a
similar accuracy trend for other three datasets and omit them
here due to space limitation. We can find that for each existing
baseline, its recommendation accuracy is worse than that of its
corresponding variant. It shows that new semantic features can
help existing baselines to improve recommendation accuracy.
This clearly reflects that GRMTDL has superior accuracy than
existing baselines on GPL.

D. Performance Study for Group Preference Learning

Recall from the GPL stage in Section III-B that the LTL
method plays an important role in GPL. Therefore, we first
evaluate its impact on the final recommendation effectiveness.
We mainly consider the following three variants here.

(a)

(b)

(c)

(d)

Fig. 4. Effectiveness of GRMTDL and its three variants in terms of HR@k.
(a) MFW. (b) CAM. (c) ML-Simi. (d) ML-Rand.

1) LTL-AZ represents the model in which the transferring
probability of each layer is set to 0. That is, we only
train the group PL-network.

2) LTL-AO represents the model in which the transferring
probability of each layer is set to 1.

3) LTL-OP represents the model in which the transferring
probability of the lth layer p(l) = 0.8/

√
2l−1. It does

exactly the opposite of LTL, and the transferring prob-
ability of an upper layer is set to be lower than that of
a lower layer.

Fig. 4 shows HR@k values for four datasets. A similar accu-
racy trend can be observed for NDCG@k and we omit them
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Fig. 5. Effectiveness of GPL on MFW.

due to space limitation. From Fig. 4, we can see that GRMTDL
has superior recommendation accuracy than all three variants.
It shows that: 1) the LTL method is effective for GPL and
2) neither the “zero transferring” strategy used in LTL-AZ
nor the “complete transferring” strategy used in LTL-AO is
good solution for GPL. It is worth mentioning that although
the accuracy of GRMTDL is higher than that of LTL-OP, it
does not mean that LTL is globally optimal. How to determine
the optimal probability in each layer will be our future work.

Next, we study whether the GPL stage (i.e., GPL) is
beneficial to existing baselines. Similarly, we consider the
four attention-based models. For a model “XXX,” we adopt
“XXX*” to denote its corresponding variant that employs our
GPL stage to learn group preferences. Fig. 5 demonstrates
HR@k and NDCG@k values on the dataset MFW. We see a
similar accuracy trend for other three datasets and omit them
here due to space limitation.

Similar to Table IX, we can see from Fig. 5 that for every
existing baseline, its recommendation accuracy is worse than
that of its corresponding variant. This indicates that the pro-
cess of GPL in GPL can help existing baselines to improve
the recommendation accuracy. By jointly analyzing Table III
and Fig. 5, we can further find that SoAGREE* has the best
recommendation accuracy among the three variants, yet under-
performs GRMTDL. It clearly reflects that GRMTDL has
superior accuracy than existing baselines on GRL.

E. Performance Study for User and Item Semantic Features

Recall that GRL stage can also optimize user and item
semantic features. Hence, in this section, we employ the
user PL-network to evaluate whether new semantic features
of users and items can improve effectiveness of individual
recommendation. We compare the following four solutions.

1) UPL-O represents the solution that only takes old
semantic features (i.e., initial features) of users and items
as input to user PL-network.

2) UPL-U represents the solution that takes users’ initial
features and items’ new semantic features as input to
user PL-network.

3) UPL-I represents the solution that takes users’ new
semantic features and items’ initial features as input to
user PL-network.

4) UPL-N represents the solution that takes new semantic
features of users and items as input to user PL-network.

(a)

(b)

Fig. 6. Effectiveness of individual recommendation on MFW. (a) HR.
(b) NDCG.

For simplicity, we only report HR@k and NDCG@k values
on the dataset MFW here, shown in Fig. 6. We can see from the
figure that UPL-N and UPL-O present the best and the worst
recommendation accuracy, respectively. This shows that new
semantic features can improve the effectiveness of individual
recommendation. Meanwhile, we find that UPL-I outper-
forms UPL-U for all HR@k and NDCG@k values. A pos-
sible explanation is that compared to users, the interaction
graph from MFW contains more semantic information about
items.

V. CONCLUSION

This article introduces a novel model GRMTDL to improve
the effectiveness of group recommendation, which mainly
includes two sequential stages. In the GRL stage, we first
construct a group–user–item interaction graph that is then
fed to an SVGAE network to learn group semantic features
accurately. In particular, SVGAE is able to simultaneously
optimize user and item semantic features, which is an addi-
tional gain. On this basis, we first present a dual PL-network
in the GPL stage, encompassing two structure-sharing three-
layer subnetworks: 1) group and 2) user PL-networks. Then,
we propose a novel LTL method to optimize two subnetworks
alternately and to transfer knowledge of user preferences
into the process of GPL. The experimental results on four
real-world datasets show the effectiveness of our GRMTDL
model.

In the future, we will continue to improve the recommen-
dation performance of GRMTDL from two aspects. First, we
will focus on determining the optimal value for ng in the GRL
stage. Second, we will consider how to obtain the optimal
transferring probability of each layer in the dual PL-network.
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