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Learning to Predict Drug Target Interaction
From Missing Not at Random Labels

Chen Lin

Abstract— The prediction of Drug-Target Interaction (DTI)
is an important research direction in bioinformatics as
it greatly shortens the development cycle of new drugs.
State-of-the-art computational methods for DTI prediction
adopt a binary classification framework. The supervision is
incomplete, i.e. only a small amount of DTIs are known and
treated as positive instances, while the rest are unknown
and treated as negative. Two severe problems occur in
such a framework: (1) the number of negative samples is
overwhelming and (2) a negative label cannot rule out the
possibility of a positive drug-targetinteraction. In this paper,
we address the problem of learning from incomplete labels
in DTI prediction. The key assumption here is that labels are
missing not at random. For example, negative DTl labels are
more likely to be missing because biomedical researchers
prioritize to study DTIs that are more likely to be positive.
We introduce a novel probabilistic model, factorization with
non-random missing labels (FNML). It models the generative
process forthe DTl labels (i.e. the labels are positive or nega-
tive) and responses (i.e. the labels are observed or missing).
In particular, the probability of observing or missing a label
is associated with the sign of the label. In order to further
reduce prediction variance and improve prediction accuracy
on highly imbalanced DTI datasets, we present FNML-EN,
an ensemble scheme which is designed specifically for
FNML model. We conduct comprehensive experiments on
the latest DTl database, demonstrating the superior and
robust performance of the proposed models.

Index Terms—Missing not at random, drug target
interaction prediction, probabilistic factor models.

|. INTRODUCTION

RUG discovery is a lengthy, expensive and difficult
process. Yet, once success has been achieved, it will
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bring huge benefits to public health-care system. Modern
pharmacology believes that the effect of a drug in the human
body is mediated by specific interactions between the drug
molecule and the biological targets. Hence target identification
is the first step in drug discovery. How to efficiently and
effectively identify a Drug Target Interaction (DTI) has been
extensively researched in both academia and industry.

Historically, DTI is screened by biochemical experi-
mental methods which are extremely costly and time-
consuming. Later, computational DTI prediction methods
such as ligand-based methods [1] and molecule docking
methods [2] emerge to reduce labor cost. However, these
methods are limited to certain biological targets. For example,
ligand-based methods are ineffective when target proteins
have little binding ligands, while molecular docking methods
are inefficient when 3D structures of target proteins are not
available [3]. Nowadays, machine learning-based methods are
gaining popularity. Most of them treat DTI prediction as
a binary classification task, where known DTIs are labeled
as positive and unknown DTIs are labeled as negative [4].
Classifiers that are commonly adopted include SVM [8] and
matrix factorization [14], etc. To improve prediction perfor-
mance, representation learning [13] from auxiliary information
sources is recently utilized to replace manual feature engineer-
ing which doesn’t scale well.

However, two major challenges arise for the classifica-
tion framework. Firstly, there are usually a large number of
unknown DTTs in database. For example, in the data used in
this paper, the proportion of positive samples is less than 1%.
The imbalanced class distribution is harmful because the clas-
sifier tends to optimize for the majority (i.e. negative samples)
in the data space. To alleviate this problem, many research has
attempted to extract a subset of reliable negative samples, e.g.
by random sampling [5]. Secondly, the binary classification
framework builds on an assumption that negative instances
are the opposite of positive instances. This is fundamentally
wrong as a negative label does not rule out the probability that
an DTTI exists. Positive Unlabel Learning (PU Learning) [6]
has been implemented to address this problem.

The methodology presented in this paper is different from
all existing works. Instead of labeling the unknown DTIs as
negative, we argue that it is more natural to consider the
unknown DTIs as missing labels, i.e. DTIs that are neither
identified in vivo to be positive nor experimentally validated
to be negative (non-interacting drug-target pairs). Furthermore,
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we assume that labels are not missing at random. This is an
intuitive and reasonable assumption, because researchers will
use their domain expertise to filter DTIs with a high possibility
to be positive and prioritize validations for these DTIs in
vivo. For example, researchers find the efficacy target of a
drug based on principles of biochemistry, biophysics, genetics
and chemical biology. If ample evidences exist to support
positive interactions with the target, then the possibility of
a positive DTI is high, and the researchers are likely to
conduct in vivo experiments. On the contrary, drug target
interactions that are less likely to be positive are more likely
to be ignored by researchers and their labels are likely to be
missing. In summary, our contributions are as follows:

o Our first contribution in this work is a novel Factorization
with Non-random Missing Labels model (FNML). To the
best of our knowledge, this is the first time missing
not at random theory is applied in DTI identification.
We allow the input of FNML model to be flexible and/or
integrated from heterogeneous sources. FNML mimics
the probabilistic procedures to generate labels (i.e. DTI
exists or not exists) and responses (i.e. labels given or
missing). In this way, the information in the data base
has been fully incorporated in a model to output accurate
prediction.

e Our second contribution is FNML-EN, an ensemble
learning strategy which is specifically designed for
FNML. FNML-EN is efficient as it leverages the power
of over-sampling in the iterative boosting framework [7].
The instances are reweighed so that the model can adapt
to difficult instances, where the reweighing is given by
both predictions of label and response the current FNML
model generates.

« We conduct comprehensive experiments on the lat-
est DTI database. Experimental results show that the
FNML model outperforms state-of-the-art DTI prediction
methods in terms of Area Under Receiver Operating
Characteristic curve (AUROC) and Area Under Precision
Recall curve (AUPR), which are the most commonly
adopted metrics to evaluate DTI prediction perfor-
mance. FNML-EN further improves prediction accuracy.
We also show that our models provide robust performance
enhancements, despite of the input features.

Il. RELATED WORK

Machine learning based methods for DTI prediction starts
from building the classifier on chemical structure of the drug
and DNA sequence of the protein, e.g. a support vector
machine framework [8] based on a bipartite local model. The
structural information can be better embedded by regularizing
the classification loss function, e.g. a manifold regulariza-
tion semi-supervised learning method [9]. Some researchers
attempt to depend the method on network topology to capture
complex relationship between drugs and targets. These meth-
ods can either learn representations from individual subnet-
works of drug-drug relationship, protein-protein relationship
and drug-target interaction [10], or by combining similar-
ity metrics [11], or by label propagation on heterogeneous
networks [12].

As people’s knowledge on drugs and diseases continues to
deepen, other information can be incorporated in the process
of predicting drug targets, such as drugs and side effects,
drugs and diseases, targets and diseases. Among the efforts on
making use of rich data sources, meta-path topological features
of a semantic network across the chemical and biological
space is used in [13]. Multiple Similarities Collaborative
Matrix Factorization (MSCMF) [14] regularizes the matrix
factorization by weighted similarity matrices over drugs and
targets. The similarity matrices is calculated by a weighted
averaging scheme. DTINet [5] combines drugs, diseases, side
effects and other information to learn low-dimensional feature
representations of drug and targets and then applies inductive
matrix completion. HNM [15] integrates information through
drug, target and disease to construct a three-layer heteroge-
neous network. After that, the strength of each drug-target
pair is calculated by an iterative algorithm. DeepWalk [16]
learns drug and target representations within a linked Tripartite
network.

One component of our work (i.e labels are generated by fea-
ture vectors learnt and fused from heterogeneous information
networks) is inspired by DTINet [5]. However, there are three
key differences between our work and DTINet. (1) DTINet is
based on deterministic matrix factorization, our work is based
on probabilistic factor models. For example, the hidden feature
space mapping matrix, labels, and responses are all random
variables. This setting enables the FNML model to regulate
the parameters (i.e. hidden feature space mapping matrix)
by introducing appropriate priors. Therefore, performance on
sparse dataset is improved. (2) DTINet is based on randomly
missing responses, i.e. it samples uniformly a set of unknown
DTIs as negative sample, while FNML is based on missing
not at random theories. Statistical theory in [17] shows that
applying a model based on missing at random assumptions can
lead to biased parameter estimation on data sets with missing
not at random entries. (3) DTINet adopts only a subset of
unknown DTIs to preserve a balanced number of positive and
negative samples, while our model uses all information in the
data set.

We also want to distinguish our work with another line of
research. Usually only positive DTIs are deposited in known
databases. Due to the lack of negative samples, PU learning
has been employed in DTI identification, e.g. to facilitate
negative sample extraction [6]. PU learning does not explicitly
associate the status of an instance (i.e. being labeled or
unlabeled) with the value of its label. We want to men-
tion here that, although we experiment with datasets where
only positive DTIs are deposited, FNML can be extended
without difficulty to databases where positive and negative
DTIs are available. Thus our model is applicable in more
scenarios.

[1l. METHOD

We start with the problem definitions and notations in
Sec. ITII-A. We briefly explain that the inference of parameters
will be distorted if DTI labels are not missing at random.
We then describe the proposed model FNML in Sec. III-B.
Finally we present the inference algorithm in Sec. III-C.
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A. Preliminaries

DTI identification is often modeled as a binary classification
task. Formally, we are given P € RV*M a set of DTI labels,
where p; ; = 0 indicates a negative interaction between drug
i and target j (i.e. the interaction does not exist), p;; = 1
indicates a positive DTI (i.e. the interaction exists), the feature
vectors on drug side X € RV*K where x; represents drug
i’s weight on drug feature k, the feature vectors on target side
Y € RM*L where y;,; represents target j’s weight on target
feature /. The problem is to predict for a new drug-target pair
< i', j' >, the possibility of a positive DTI p(py j» = 1).

Similar to DTINet [5], we use a compact feature expression
learnt from drug and protein networks. To extract features
X, Y, we first create networks that involve drugs (for X) and
proteins (for Y). We compute similarity score between each
pair of nodes in the networks. Then, the Diffusion Component
Analysis (DCA) [18] is applied to learn a low-dimensional
vector representation of each node of the drug network and
protein network. Note here that X, Y can be extracted from
a single network or an aggregation of several networks. The
details of feature extraction are described in Sec. IV.

In addition to the features X, Y and labels P, we make one
essential modification to the problem definition. We assume
that the inputs also contain responses R € RN*M, where
R;; = 0 indicates an unknown DTI, R;; = 1 indicates
a verified DTI (positive or negative). For positive responses
R; j =1, the labels P; ; are observed. For negative responses
R; j =0, the labels are hidden and unknown.

Without loss of generality, we can assume that a DTI
prediction model aims to learn a set of parameters ® given the
observed labels P°% and all responses R, which are associated
with some hidden variables Z. Let the objective function L
to be the likelihood then L(®|P°,R) = p(P°, R|©),
which is integrated out over missing labels P™* and hidden
variables Z.

P Ri0) = | /Zp(P,R,Z|®>

mis

_ / /Z P(RIP, Z)p(P, Z|0)

If the labels are missing at random then p(R|P,Z) =
p(R|Z). Thus L(®|P°*,R) o p(P°’|®) = L(©|P°»),
which suggests that inferring parameters given responses miss-
ing at random is equivalent as inferring parameters given only
observed labels. However, when responses R are not missing
at random, then R, P are not statistically independent, then
L(®| P, R) gk L(®|P°). Therefore, the parameters learnt
from only observed DTT labels will be biased. This motivates
us to propose the following model.

B. FNML Model

We use a factor model, depicted in Fig. 1. The features X, Y
are in different dimensions. To associate the drug features with
the target features, we introduce a hidden matrix Z € RX*L,
where Z; ; is a projection that maps the drug feature k to the
target feature /. We assume that Z is sampled from a Gaussian

Fig. 1. Graphical representation of the FNML model.

distribution,
Vk, 1, Zky ~ N(0,0%), ()

where o2 is the variance. We use zero mean to favor sparse
feature mapping, i.e. a drug feature k is associated with a few
target features.

We then assume that the binary label P; ; is generated from
the following process:

1
l+exp(—XZY); ;"
The binary response is sampled from a Bernoulli distribution.
The parameters of the Bernoulli distribution are related to the
value of each P; j. Therefore we define ), € R%, p {0, 1},
vYp,Bpo>0,6p1>0,8p0+ Bp1 =1, we have:

Vpe{0,1}, B, ~ Beta(y), 3)
Ri j ~ Bern(Bp,;,1), “)

where 7 € R? is the hyper-parameter for the Beta distribution.

Vi, j,p(Pj=1X,Y,Z) = 2

Vi, j,

C. Inference

The objective is to maximize the likelihood L(®|P°”, R).
For computational convenience, we divide the likelihood into
two terms. The first term is on partial observations, i.e.
Rij = 0 and P;; unknown. The second term is on full
observations, i.e. R; ; =1 and known P; ;. Consequently we
have two disjoint sets of training instances, s; = {(i, j) €
RNXM|R,-,J- =1}, and 52 = {(G, j) € RNXM|R,-,J- =0}.

L= D" logp(RijIX,Y,0°, 1)

+ > logp(Rij. PijIX, Y, 0% n) (5)
R,',j:l

Direct optimization for both terms in Equ. 5 is
intractable, as they involve integration over continu-
ous hidden variables. For example, p(R|X, Y,az,n) =
Jp.2.5 P(RIP, B, m)p(PIX, Y, Z) p(Z|a?) p(f|n). We employ
variational inference [19] to infer the parameters. That is,
we use the mean field assumption to factorize the posterior
distribution:

q(Z, B, PIR, X, Y, %, n) = q(P10)q(Z|u, v)q(Blp), (6)
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As shown in Algorithm 1, in each iteration of the infer-
ence we alternatively optimize the variational parameters for
q(Z|p,v),q(Blp), q(P|0) and the parameters for the lower
bound o (¢). In each iteration, we first obtain the optimal
6, 1, v, p and then we update ¢. The iteration is repeated until
convergence is achieved. The derivation details are provided
in the appendix (see supplementary materials).

Algorithm 1: Inference for FNML
input : PR, X, Y
output: u, v, p, 0, ¢

1 initialization;

2 repeat

3 | for Zy; € Z do
z(i,j)es (61',]'_%)Xi’k*yj,l+z(i,j)ex %X"J\'*Yj.l,
4 Uk, <— . 2*(2,;,-i(é‘x,_/)Xiz,kaﬁle) ;
1 .
) Okt < VS M XE )’
6 | end
7 | for S do
8 £0,0 <= 10,05
9 Po,1 < 2 jyes, (1 = 0ij) + 10,15
10 P10 < Istl + 7105
11 P11 < Z(i,j)esz 0ij + 15
12 | end
13 | for (i, j) € s do
14 I = exp(y(p11) — wpro+pi1) + XinY[);
15 Iy = exp(y(po,1) — w(po,0 + po,1));
16 Hi,j <~ lllTllz;
17 | end
18 | for (i, j) € 51 + 52 do
19 Gij <—‘X,‘/1YJ»T‘;
20 | end

21 until convergence;

D. Model Ensemble

As previously shown, FNML model has the advantage of
de-biasing the labels by utilizing the non-randomly missing
of responses. However, due to the severe sparsity of available
responses in DTI database, the prediction of FNML can still
be of high variance and over-fit the training set. To tackle
this problem, we propose FNML-EN, an ensemble algorithm
which is specifically designed for FNML model.

FNML-EN is inspired by the well-known boosting
algorithm [7], and the SMOTE [20] oversampling technique
which has been successfully applied in many imbalanced clas-
sification problems. Recall that in boosting, training instances
are iteratively re-weighted on the basis of classification error.
In FNML-EN, an iterative reweighing framework is also
adopted. In the #—th round, we run FNML on the current
training set to obtain the prediction of labels (ie. p;; =
p(P;,; = 11X,Y, Z)) and prediction of responses (i.e. r; j =
p(Ri; = 1|P;;, B,n)). We then sort each training instance
(i.e. drug-target pair (i, j)) in descending order of p;; to
get its rank (denoted as rank; ;). Finally, we sample with

TABLE |
STATISTICS OF THE DATASETS
Data #Drugs | #Targets| #Positive| #Negative | #Unknown
Full 708 1,512 1,923 0 1,068,573
Sample| 708 1,512 1,923 1,923 1,066,650

replacement positive instances based on the s; ;, which is
defined as:

rank; j

In(“5EL )
< . ramkii. (7
Zi,j In( ri,j’ )

As in SMOTE [20], we will add the synthetic data point
to the original set to form a new training set for the ¢ + 1
round. In the experiment, the number of sampled instances
is equivalent to the number of positive labeled instances in
the ground truth. For example, if there are n positive DTI
pairs in the original dataset, then in each round we will have
2 x n positive DTI pairs in the training set. The iteration is
terminated after / rounds, and the final prediction is made by
averaging the results of all FNML models.

Now let’s take a closer look into the sampling weight Equ. 7.
The possibility of a positive training instance being sampled
is increased if it is classified wrongly (i.e. smaller p; ; and
henceforth with larger rank; ;). We use the predicted response
to further adapt to FNML at each round. We will validate the
effect of r; ; in our sampling strategy in Sec. IV.

s(i, j) =

IV. EXPERIMENT
A. Experimental Setup

Datasets. We use the same datasets as in [5]: i.e. the
drug-target interaction labels are obtained from the latest
version of DrugBank (version 3.0) [21]. This data set is
referred to as the full data set. Only 0.18% of the drug-target
interactions are labeled as positive, none is labeled as negative.
As in [5], we also construct a sample dataset, where all the
positive interactions are reserved and an equal number of
unknown interactions are sampled to be negative. Statistics
of the two data sets are shown in Table I.

We use a variety of networks to extract features X, Y.
The default feature vectors X are extracted from drug struc-
ture similarity network (denoted as ds), where the similarity
score between two drugs is calculated using the Tanimoto
coefficient [22] according to their chemical structures; The
default feature vectors Y are extracted from protein sequence
similarity network (denoted as ps), which is constructed by
computing the Smith-Waterman score [23] of their primary
sequences. In order to evaluate model performance with
different features, we also use three extra drug networks:
drug-drug interaction network (dd) [21], the drug-disease net-
work (di) [24], the drug-side-effect network (de) [25] and
two protein networks: the protein-disease association network
(pd) [24], the protein-protein interaction network (pp) [26].

Evaluation. Throughout the experiment section, the major
evaluation metric is Area Under Precision Recall curve
(AUPR), which is commonly adopted in studies in the field of
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bioinformatics. An auxiliary evaluation metric is Area Under
ROC curve (AUROC).

B. Results and Analysis

FNML Performance. We first evaluate the accuracy
of DTI prediction of the proposed FNML model. The
hyper-parameter settings are as follows. The number of
dimensions for drug features are K = 300, for target fea-
tures L = 300, hyper-parameters are o2 = 1,79 = 1,
m = 1. In this experiment, we use the default features
X,Y. The code and data used in FNML are available at:
https://github.com/XMUDM/FNML.

We compare our FNML model with 5 state-of-the-art
methods: (1) DeepWalk [16]: a similarity-based drug-target
prediction method that enhances similarity computation by
deep learning method within a linked tripartite network.
(2) HNM [15]: a network model in which strength between
a disease-drug pair is calculated through an iterative algo-
rithm on the heterogeneous graph that also incorporates
drug-target information. (3) NetLapRLS [9]: a manifold reg-
ularization semi-supervised learning method. (4) PUDTI [6]:
an SVM-based optimization model that is trained on nega-
tive samples extracted based on positive-unlabeled learning.
(5) DTINet [5]: a regression model that learns feature space
mapping Z by the loss function ming Zi,j (Pi,j — (XZY),-,]-)Z.
We do not change the default settings for all the above
comparative methods.

We perform the evaluation on two datasets. The first one
is on the full dataset, i.e. we randomly segment the whole
data set to 10 divisions and conduct 10-fold cross-validation.
The second one is on the sample dataset, i.e. keeping the ratio
of positive and negative samples to 1 : 1, we conduct random
sampling for 10 times and the reported results are averaged
over the 10 sets.

The comparative performance on the full dataset is shown in
Fig. 2. We can see that (1) FNML model significantly boosts
the AUPR performance by 49.32%, compared with the best
of state-of-the-art methods. The best comparative method is
DTINet, which achieves a 30.29% AUPR. Our FNML model
obtains a 45.23% AUPR. As AUPR is well regarded to be a
more robust and accurate evaluation metric than AUROC [5],
this observation demonstrates the potential of our model.
(2) Most of the state-of-the-art methods yield very low AUPR
results on the full dataset. This observation again reveals that
obtaining a high AUPR performance is challenging on the full
dataset. (3) In term of AUROC, the best result is obtained by
NetLapRLS. However, the best comparative result is 91.78%,
while FNML produces a comparable 91.12% AUROC.

The comparative performance on the sample dataset is
shown in Fig. 3. We can see that (1) FNML model achieves
a better AUPR than all state-of-the-art methods. The best
comparative method is DTINet, which achieves 93.20%. Our
FNML model obtains a 94.66% AUPR. (2) Most of the state-
of-the-art methods have a higher AUPR result on the sample
dataset than the full dataset, due to the balanced ratio of
positive and negative samples. (3) FNML model outperforms
all state-of-the-art models in AUROC performance. The best
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Fig. 3. On the sample dataset, FNML outperforms state-of-the-art
methods in terms of both AUPR and AUROC. (a) AUPR. (b) AUROC.

comparative method is again DTINet, which achieves 91.41%.
Our FNML model obtains a 92.93% AUROC. (4) Surprisingly,
DeepWalk has a lowest AUPR performance on the sample set.
A possible reason is that the network representation extracted
by Deepwalk is based on homogeneous network structure, and
thus is not accurate.

FNML Performance with Different Features. We next
study how FNML model performs with different features.
We use various combination of X and Y as inputs. That is,
we extract X from the four networks on the drug side (i.e. dd,
di, de, ds) respectively, extract Y from the three networks on
the protein side (i.e. pp, pd, ps) respectively, and use the 12
combinations as inputs to train the model. The predictions are
tested on the full dataset.

We compare the AUPR and AUROC performance of FNML
and DTINet. As shown in Fig. 4, FNML outperforms DTINet
in most cases. FNML generates better AUPR results for 10
feature combinations out of 12. In term of AUROC, FNML
is better for seven feature combinations. The result shows
that the performance improvement is stable. Change of feature
representations does not affect FNML’s ability to learn a better
feature mapping space.

Number of dimensions. We next study the effects of
number of dimensions K, L. We first fix L = 300 and tune
from K = 100 to K = 500.We can see from Fig. 5a
that the best number of drug features is around 300. Then,
we fix K = 300 and tune from L = 100 to L = 500.
As shown in Fig. 5b, the best number of target features is
300. An appropriate number of drug features is important.
When the number of drug features is too large or too small
i.e. K > 400 or K < 200, we observe a descent fall in both
AUPR and AUROC. However, the model performance is less
sensitive to the number of target features. For L > 300, AUPR
and AUROC remain the same.

Performance of Ensemble Model. We conduct experiment
on full dataset to evaluate our proposed ensemble model.
We use the same hyper-parameters settings and number of
feature dimensions for drugs and proteins.
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For a detailed study, we compare the AUPR and AUROC
performance of FNML and FNML-EN, with different feature
combinations. The results are shown in Fig. 6. We can see
that our ensemble model FNML-EN generates better results
in terms of AUPR and AUROC for all input features. This
result shows that our ensemble model FNML-EN can robustly
enhance FNML.

Performance of Sampling Strategy. Here we conduct an
experiment to verify the effectiveness of our sampling strategy
(Equ. 7). We compare the performances of our sampling strat-
egy with the following two sampling strategies: (1) FNML-
RS: randomly sample the same size sample from the positive
sample, and then combine with the original positive sample to
form a new positive sample. (2) FI?H\(/IL-kSR: sample positive
. . .. n(rank; ;
instances according to s1(i, j) = Wran/kzj)

The results are shown in Fig. 7. We can see that: @)
The AUROC values of the three methods are not much
different. (2) Our sampling strategy outperforms FNML-RS
and FNML-SR in terms of AUPR. Our FNML-EN gets a
50.92% AUPR and FNML-SR gets a 49.06% AUPR, which

" mFENML-EN |
05 ENML . 1

(a)

0.5 =
dd+ppdd+pd dd+ps di+pp di+pd di+ps de+ppde+pdde+ps ds+pp ds+pd ds+ps
(b)

Fig. 6. FNML-EN consistently enhances FNML with different feature
inputs. (a) AUPR. (b) AUROC.

0.5 ———
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0.3

FNML-EN FNML-RS FNML-SR FNML-EN FNML-RS FNML-SR

(@) (b)

Fig. 7. Our sampling strategy outperforms other strategies. (a) AUPR.
(b) AUROC.

validate our assumption that response probability 7; ; plays a
key role in the sampling procedure.

Comparable Performance of Ensemble model. Finally,
we compare our ensemble model with other ensemble models.
The comparative methods are as follows. (1) Bagging [27].
We sample the training set with replacement to generate [
new training sets, and use these / new training sets to train /
FNML models. After that, we average the output of / FNML
models to get final result. (2) Bagging With Over Sampling
(BaggingOS). For a fair comparison, we also over-sample
the positive instances in the training sets, and then perform
bagging to output an aggregated prediction. (3) Boosting.
Consider our model as a classifier and use the standard
boosting framework to get the boosting ensemble of FNML
model. We tune the number of weak learners (i.e. the number
of iterations / in FNML-EN) from 2 to 6.

The comparative performance on full dataset is shown in
Fig. 8. We can see that (1) FNML-EN achieves best AUPR and
AUROC results, compared with bagging and boosting method
with different numbers of weak learners /. This indicates
that the proposed ensemble method is robust and superior
than conventional ensemble learning methods. (2) The result
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Fig. 8. Our ensemble model outperforms traditional ensemble models.
(a) AUPR. (b) AUROC.

of Bagging is relatively poor, because the dataset is highly
imbalanced. The positive samples are not fully utilized due to
the sampling procedure. (3) The result of BaggingOS is better
than Bagging, because over-sampling the positive instances
generates accurate predictions to fully utilize information in
the training data. (4) The result of boosting is not good,
indicating that treating positive and negative samples equally
is not applicable to highly imbalanced data. (5) In terms of
AUROC, the performance of an ensemble learner increases as
the number of weak learners / increases. However, the per-
formance of AUPR does not differ much. When I = 4, our
model get highest AUPR (50.92%).

We propose a novel DTI prediction model based on the
assumption that unknown DTI labels are missing not at
random. By associating the status of a DTI being labeled or
unknown to the sign of the DTI label, our proposed FNML
model can learn a better feature mapping from drug feature
space to target feature space. We experimentally demonstrate
that FNML outperforms state-of-the-art computational DTI
identification methods. This work sheds some insights into
fully exploiting the information in unknown DTIs. We further
enhance the DTI prediction performance by an ensemble
scheme. The ensemble scheme leverages the predictions of
labels and responses by FNML in a framework which inte-
grates over-sampling and boosting. We experimentally vali-
date the importance of including predictions of responses in
oversampling. Our future directions include improving the fac-
torization framework and analyzing the missing mechanisms.
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