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Abstract—Various machine learning models have been pro-
posed as cost-effective means to predict Drug-Target Interactions
(DTI). Most existing researches treat DTI prediction either as
a classification task (i.e. output negative or positive labels to
indicate existence of interaction) or as a regression task (i.e.
output numerical values as the strength of interaction). However,
classifiers are more prone to higher bias and regression models
tend to overfit the training data to generate large variance. In
this paper, we explore to balance the bias and variance by a
multi-task learning framework. We propose an architecture to
both predict accurate values of strength of interaction and decide
correct boundary between positive and negative interactions.
Furthermore, the two tasks are performed on a shared feature
representation, which is learnt using a co-attention mecha-
nism. Comprehensive experiments demonstrate that the proposed
method significantly outperforms state-of-the-art methods.

Index Terms—Drug Target Interaction Prediction, Multi-task
Learning, Co-attention, Deep Neural Network

I. INTRODUCTION

Drug-Target Interaction (DTI) prediction is one of the

most important step in drug discovery and drug repurposing.

Identifying the biological origin of a disease, and the potential

targets for intervention, enables efficient and effective drug

development. Naturally, DTI has been extensively researched

in the bioinformatics community [1]. Particularly, considerable

research attention has recently been devoted to computational

DTI systems [2]–[6] to replace traditional biochemical exper-

imental systems.

The majority of computational DTI systems are based on

machine learning methods [5], [6]. Machine learning methods

have the advantages of being time-saving, labor-efficient, and

scalable. With the increasing amount of public available data,

machine learning based DTI methods have been even more

promising.

The input of DTI learners usually include a chemical

compound sequence for a drug and an amino acid sequence for

a protein. Feature representations are extracted and processed

to generate numerical or categorical predictions. Existing

DTI learners usually handle one task only, i.e. either output

numerical values as strength of the interaction [4], [5], or

output binary values as positive or negative interaction [6],
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[7]. From the perspective of machine learning, the former type

of DTI learners implements a numerical regression task, the

latter implements a classification task.

The problem of most existing DTI learners is the bias-

variance trade-off. On one hand, numerical regression models

are capable of tuning to individual values. However, we will

possibly encounter large variance due to over-fitting of the

numerical values. On the other hand, classifiers can capture

class segmentations, at the expense of missing fine-grained

numerical analysis in the process of discretization. Thus,

high bias is expected on unseen test data. The bias-variance

trade-off is more severe since evaluation metrics of the DTI

predictors are sometimes conflicting. For example, commonly

adopted evaluation metrics include Mean Square Error (MSE)

and Area Under the Receiver Operating Characteristic curve

(AUROC). However, a classifier is likely to perform well

on classification metrics, such as AUROC [4], but poorly on

regression metrics, such as MSE [5].

In this work, we explore to balance the bias and variance

by a multi-task learning framework. We propose a DTI system

that can both predict accurate values of strength for all

pairs of drug-target interactions and decide correct boundary

between positive and negative interactions. We experimentally

show that, by combining the two tasks, the DTI prediction

performance can be boosted in terms of a set of common

evaluation metrics, such as MSE and AUC.

The proposed DTI framework performs both tasks on a

shared feature representations space. Previously the feature

representations are hand-crafted, e.g. several kinds of hand-

crafted features are combined in [4], including occurrence

statistics of drugs and targets, PageRank scores on homo-

geneous networks and so on. This approach is obviously

expertise-driven. Nowadays, feature representation in numer-

ous domains has benefitted from the recent advances of deep

neural networks [5], which learn and optimize task-specific

feature representation during training time. In the literature of

DTI prediction, CNN [5] , GNN [6] and GCN [8] are adopted

for feature representation learning. However, it is difficult

for CNN and RNN to capture long-distance dependencies in

chemical compound sequences and amino acid sequences.

In this paper, we utilize a co-attention mechanism. The long-

distance dependencies are encoded by putting more emphasis

(i.e. attention) on relevant tokens in the whole sequence.

Authorized licensed use limited to: Xiamen University. Downloaded on December 12,2024 at 08:57:58 UTC from IEEE Xplore.  Restrictions apply. 



529

Compared with CNN or RNN, the attention component re-

quires significantly less time to train. Furthermore, we let the

drug sequence attend to the target sequence, while the target

sequence attend to the drug sequence simultaneously (i.e. co-

attention).

In summary, the contributions of this work are two-fold. (1)

We introduce a new DTI framework to combine numerical,

interaction strength prediction and binary, interaction classifi-

cation. (2) We present to apply co-attention for representing

drug/target sequences. We conduct extensive experiments to

validate that the proposed framework outperforms state-of-the-

art methods.

The rest of the paper is organized as follows. We briefly

overview related work in Section II. The DTI framework

is presented in Section III. We evaluate the framework and

analyze the experimental results in Section IV. Finally, we

conclude this work in Section V.

II. RELATED WORK

We briefly review two lines of closely related studies.

A. DTI Prediction

DTI is fundamental to drug discovery and design. As

biochemical experimental methods for DTI identification are

extremely costly and time-consuming, computational DTI

prediction methods have received a growing popularity in

literature. Traditional computational methods to predict DTIs

mainly include ligand-based methods [9] and molecule dock-

ing methods [10]. Ligand-based methods are ineffective when

target proteins have little binding ligands , while molecular

docking methods are computationally costly and fail to offer

accurate predictions when 3D structures of target proteins are

not available [11]. To overcome these problems, many machine

learning-based methods have been proposed for inferring DTI.

There are two major types of DTI learners.

The first type treats DTI prediction as a binary classification

task, where known DTIs are labeled as positive and unknown

DTIs are labeled as negative [12] or unlabeled (i.e. PU

Learning) [13]. A recent work [7] considers unknown DTIs as

missing labels. Traditional regression models such as random

forrest (RF) [2], [14] and support vector machine (SVM) [15]

are adopted. The second type attempts to predict drug-binding

affinity, which is a numerical value. Regression models include

gradient boosting method [4], and most recently, deep neural

networks that apply a regression loss [16], [17].

B. Representation Learning

Machine learning based methods, including regression and

classification methods, operate on feature representations of

drugs and targets. Prior representations are heavily depended

on domain expertise, e.g. molecule docking and descrip-

tors [10], [17]. Thanks to the great success of deep learning,

there are some network descriptors applied for drug and target

representations. Most of them focus on extracting topological

similarity from drug-target pairs. For example, DBN [18] con-

structs a stack of Restricted Boltzmann Machine (RBM [29]),

DeepWalk [19] calculates similarities within a linked tripartite

network. Convolutional Neural Network (CNN) [20] is a

network structure that works well with grid data. CNN has

been successfully applied in many computer vision tasks. As

DTI prediction also involves grid-like data such as a molecular

graph, CNN has been adopted in a variety of deep CTI

predictors, such as CNN scoring function [21], DeepDTA [5],

OnionNet [22] and so on. Furthermore, DeepCPI [6] utilizes

Graph Neural Network (GNN) [23].
It is challenging for CNN and GNN to capture long-

distance dependencies in sequences, due to their poor scaling

properties. Self-attention mechanism, which relates different

positions of a single sequence in order to compute a rep-

resentation of the same sequence, addresses this challenge.

Self-attention has generated promising performance in many

natural language processing models, such as transformer [24].

An improvement of self-attention is to apply attention jointly

on two sequences, which becomes the co-attention mecha-

nism [25]. Co-attention models can be coarse-grained or fine-

grained [26]. Coarse-grained models compute attention on

each input, using an embedding of the other input as a query.

In this work, we adopt the co-attention mechanism to preserve

topology information in drug and protein sequences.

III. METHOD

In this section, we introduce a novel model, Multi-DTI, for

drug-target interaction prediction under a multi-task learning

framework. Multi-DTI operates in a supervised manner, i.e.

the model is fed with Simplified Molecular-Input Line-Entry

System(SMILES) representations of the chemical compound

sequences from drugs and amino acid from proteins, as well as

the supervision signals. In our multi-task setting, supervision

signals include the strength of interaction (i.e. numerical

values) and the interaction labels (i.e. binary variables). We

first describe how to construct the supervision signals for the

convenience of Multi-DTI. Then, we describe in detail the

network architecture and each of its component.
In the remaining of the paper, we use lower-case letters for

indices, upper-case letters for scalars and functions, lower-case

bold-face letters for vectors, and upper-case bold-face letters

for matrices.
Suppose there are M drugs, denoted as D = [D1, · · · ,DM ]

, and N targets, denoted as T = [T1, · · · ,TN ]. The super-

vision signals are represented as Y ∈ RM×N . As mentioned

in section I, previously there are two approaches to construct

Y. For a classification task, Yi,j ∈ {0, 1}, where Yi,j = 1
represents a positive interaction, otherwise, Yi,j = 0. For a

regression task, Yi,j ∈ (0,+∞), i.e. Yi,j = Ri,j , where Ri,j

represents the normalized binding affinity between a drug and

a target. It is worthy to point out that, drug and target pairs

without known interactions are usually discarded.
In our settings, we combine the classification and regression

tasks. Hence, we can construct the supervision signals as

follows.

Yij =

{
0, if Rij = unknown

Rij

max(R) , else
(1)
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Fig. 1. Network architecture of model Multi-DTI

We can see that, the binding affinity values R are reserved

in Y , because they indicate the strength of interaction of a

drug on a target. We retain the normalized strength, i.e. each

Rij is divided by the maximal value in R for computational

convenience. Meanwhile, we mark a zero if the affinity is

unknown, to incorporate more information.

As shown in figure 1, the embeddings di, tj flow through

an embedding layer, a feature representation component and

a prediction layer. The goal of Multi-DTI is to generate Ŷij ,

given the model parameters Θ, i.e. Ŷij = F (di, tj |Θ), to

approximate Yij .

A. Embedding Layer

We first use integer/label encoding to represent categorical

information in inputs. Similar with [5], for drugs we scan

approximately 2M SMILES sequences that are collected from

Pubchem and compile 64 labels, e.g. letters “C”, “N”, “=”,

etc.. We represent each label by a unique integer, e.g. “C”:1,

“=”:22, “N”:3 etc. For example, the label encoding for the

SMILES sequence “CN=C=O” is given below.

[C N = C = O] = [1 3 22 1 22 5]

Then, we use an embedding function Ξ to transform the

categorical sequence above to a dense E-dimensional float

vector, i.e. Ξ : V ← RE , where V denotes the integer/label set

for all labels. The embedding function is learned during the

training phase. After a look up operation to obtain separate

integer/label embeddings, all integer/label embeddings in a

drug sequence are concatenated in rows. For the convenience

of proceeding operations in CNN, we construct a matrix

for each drug i. Hereafter, without ambiguity, we will omit

subscript index i and j, and use Dinput ∈ RD×E to denote

the input of CNN, where D is the maximal length of a drug

sequence.

For protein sequences, we scan 550K protein sequences

from UniProt and extract 25 labels. Similarly, protein se-

quences are first encoded using integer/label encodings, and

concatenated in rows to construct a matrix representation

Tinput ∈ RT×E as the input of CNN.

Both target and protein sequences have varying lengths.

Hence, in order to create an effective representation form,

we decided to choose a length limit, i.e. D for drugs and T
for targets. The sequences that are longer than the maximum

length are truncated, whereas shorter sequences are padded

with zeros.

B. Feature Representation Component

In this component, we first apply CNN networks for

Dinput and Tinput to encode sequential information. For

each CNN block, we use three consecutive 2D-convolutional

layers, followed by a max-pooling layer. The filters of each

2D-convolutional layer is doubled.The result is DCNN and

TCNN .

Next, we apply co-attention mechanism on DCNN and

TCNN respectively, and output DATT and TATT . The un-

derlying assumption is that, some drugs influence more on

certain targets, and the pattern can be captured by the attention

weights.

Fig. 2. Illustration of parallel coarse-grained co-attention.

Specifically, given a drug vector dCNN and a target vector

tCNN , the co-attention layer generates the drug output vector

dATT by multiplying each element in the input drug vector

with its attention weight to input target vector:

dATT = dCNN

⊙
Γ(tCNN ), (2)

where Γ calculates the attention, i.e. the importance of tCNN

for dCNN . To derive the attention weights, a single layer feed

forward network is adopted.

Γ(tCNN ) = A(WΓ × tCNN + bΓ), (3)
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where WΓ and bΓ are the weight matrix and the bias vector

respectively for the feed forward network. A is the softmax

function to normalize the attention weights over elements in

each vector.

A similar structure of co-attention is also implemented on

each target vectors tCNN extracted by CNN. The co-attention

mechanism is illustrated in Figure 2.

C. Prediction Layer

The feature representation component transforms the se-

quences of drugs and targets to low-dimensional vectors in

latent feature space. In the prediction layer, we measure the

similarity between two feature vectors, i.e. dATT i and tATT j

by computing the cosine similarity. Intuitively, if a drug feature

vector is close to a target feature vector, their binding affinity

should be large. Therefore, the output Ŷij is defined as:

Ŷij = cosine(dATT i, tCNNj) =
dATT

T
i tATT j

||dATT i|| · ||tATT j ||
(4)

To combine the regression and classification tasks, we adopt

the Normalized Cross Entropy(NCE) loss [28]. Given Yij the

true label and Ŷij the predicted result,

NCE =
∑
∀(i,j)

[
Yij log Ŷij + (1− Yij) log(1− Ŷij)

]
. (5)

Note that Equation 5 resembles in form of the conventional

Binary Cross Entropy, in which Yij ∈ {0, 1}. Therefore, the

NCE loss will encourage a classifier to assign positive labels

on instances that are actually more confident, i.e. drug-target

pairs that are closely binded.

The loss function is further integrated with Mean Square

Error(MSE).

MSE =
1

M ×N

N∑
i=1

M∑
j=1

(Yij − Ŷij)
2 (6)

Where M,N represents the number of proteins and drugs.

Finally, the loss in Multi-DTI is defined as follows:

Loss = δ ×MSE + (1− δ)×NCE (7)

where δ controls proportion of the two kinds of loss.

Discussion. Given a shared feature space for drug and target

representations, how to proceed to output the prediction is still

an open question. It is worthy to point out that, most previous

researches [5], [6], [8] implement a multi-layer perception on

a concatenation of drug and target representations. Instead, in

this paper, our proposed Multi-DTI directly computes cosine

similarity between drug and target representation vectors. On

one hand, it is convenient for multi-task learning. On the other

hand, it requires less model parameters, and thus speeds up

training.

IV. EXPERIMENT

In this section, we study the following research questions.

RQ1: How does the proposed Multi-DTI model perform,

compared with state-of-the-art methods? RQ2: How do the

parameters impact the performance of Multi-DTI? 1

A. Experimental Setup

We use the Kinase Inhibitor BioActivity (KIBA) dataset2

to validate our model. The dataset consists of drug-target

bioactivity strength, which is an integration of Kd, Ki and

IC50 scores. The basic summary of the used datasets is shown

in Table I. We used 5-fold cross-validation and report average

results in the cross-validation.

TABLE I
STATISTICS OF THE KIBA DATASET

#Drugs #Targets # Pairs

KIBA 2, 008 185 92, 706

In the experiment, unless otherwise stated, we fix a length

limit of maximal 100 characters for SMILES and 1000 for

protein sequences. According to [5], the maximum length

covers at least 80% of the proteins and 95%of the compounds.

The embedding size E = 128. We use a batch size of 256
samples. The optimizer is Adam, convergence is declared for

200 Epochs with learning rate 1e− 5.

B. Comparative Study

We compare our proposed method against the baseline

algorithms listed as follows.

(1) PUDTI [13]: an SVM-based optimization model that

is trained on negative samples extracted based on positive-

unlabeled learning. Each DTI input can be described based on

PaDEL-Descriptors of drugs and domains, PAACs and PSSM

of target proteins. PUDTI model optimizes the Hinge loss

function.

(2) DTINet [27]: a regression model that predicts drug-target

interactions from a constructed heterogeneous network, which

integrates diverse drug-related information. The feature is

extracted by Random Walk with Restart(RWR). With default

drug feature P and target feature Q, the feature space mapping

Z is learned by MSE loss function minZ(Ŷ − PZQ)2.

(3)DeepCPI [6]: an end-to-end deep neural network. The

drug representation is learnt via a graph neural network (GNN)

module. The protein representation is learnt via a CNN mod-

ule. A neural attention mechanism is adopted to predict DTI

based on concatenation of drug and protein representations.

The loss function is BCE.

(4) DeepDTA [5]: another deep neural structure with two

separate CNN blocks to learn the features from SMILES

1The code and data used in Multi-DTI are available at:
https://github.com/XMUDM/Multi-DTI

2https://pubs.acs.org/doi/suppl/10.1021/ci400709d
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TABLE II
COMPARISON RESULT

Method Drugs Targets Prediction Loss MSE BCE AUROC AUPR

PUDTI Descriptor Descriptor Concate Hinge loss 0.201 0.553 0.804 0.278

DTINet RWR RWR Matrix completion MSE 0.292 0.794 0.695 0.368

DeepCPI GNN CNN Concate+Attention BCE 0.197 0.693 0.476 0.250

DeepDTA CNN CNN Concate+FFN MSE 0.002 0.046 0.814 0.436

CNN-basic CNN CNN Cosine BCE 0.002 0.043 0.853 0.402

CNN-Multi CNN CNN Cosine Multi-task 0.002 0.041 0.848 0.419

Multi-DTI CNN+Attention CNN+Attention Cosine Multi-task 0.002 0.034 0.888 0.424

strings and sequences, respectively. For prediction, a fully-

connected feed-forward layer is conducted on concatenation

of drug and protein representations. The loss function is MSE.

We also compare Multi-DTI with a variant to testify the

impact of co-attention and multi-task learning.

(5) CNN-basic: As a variant of Multi-DTI, we conduct basic

CNN modules on protein and drug sequences, and compute

cosine similarity. The loss function is BCE.

(6) CNN-Multi: Another variant is to employ multi-task loss

(i.e. Equation 7) on CNN representations.

We evaluate the models in terms of MSE, BCE, AUROC

and AUPR.

From Table II, we have the following observations. (1)

Multi-DTI achieves best performance in terms of MSE,

BCE and AUROC. It also achieves a comparable AUPR

performance. (2) It is clear that state-of-the-art competitors

can handle one task only. For example, DeepCPI adopts a

classification loss, and thus, it performs best in terms of

BCE, AUROC and AUPR metrics. But it performs poorly

in terms of MSE. On the contrary, CNN-Multi and Multi-

DTI which adopt multi-task loss, perform well in terms of

all evaluation metrics. (3) Attention mechanism boosts the

prediction performance. We can see that BCE of Multi-DTI

is decreased by 17%, compared with CNN-Multi. (4) Multi-

DTI obtains the second highest AUPR, while the best AUPR

is obtained by DeepDTA. The possible reason is the trade-off

between AUPR and AUROC. In the next section we will study

in detail the relationship between δ, AUPR and AUROC.

C. Effect of parameters

We proceed to seek answers for RQ2 and study the effect

of parameters.

We first study the impact of proportion parameter δ, which

controls the proportion of MSE in our loss function. We set

δ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and report

the AUROC and AUPR performance in Figure. 3.

We can see that as δ increases, the AUROC performance

generally decreases. When δ = 1.0, the Multi-DTI model

performs regression task only, and thus, the AUROC result

reaches the lowest point. The tendency of AUPR is not

monotonic. When δ = 0.6, the highest AUPR is obtained.

(a) AUROC

(b) AUPR

Fig. 3. Performance with different values of δ

We next study the impact of batch size. Batch size is an

importance parameter in training the model. We set different

batch sizes from 64 to 4096, and plot the AUROC and AUPR

performance at each epoch.

As shown in Figure 4, a larger batch size leads to lower

convergence. The most appropriate batch size if 256, with

which the model converges fast to the highest AUROC and

AUPR performance.
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(a) AUROC

(b) AUPR

Fig. 4. Convergence of Multi-DTI with different batch size

V. CONCLUSION

We propose Multi-DTI: a novel DTI prediction model based

on multi-task learning to address the challenge of bias-variance

trade-off. The model learns protein and drug feature repre-

sentations by adding co-attention mechanism on conventional

CNN blocks. Based on the shared feature representations,

the model attempts to optimize both the regression and the

classification loss. We experimentally demonstrate that Multi-

DTI outperforms state-of-the-art computational DTI identifi-

cation methods. Our future directions include enhancing the

DTI prediction performance by multi-view, multi-modality and

multi-task learning.
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