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Abstract

Plant resistance (R) proteins play a significant role in the detection of pathogen inva-

sion. Accurately predicting plant R proteins is a key task in phytopathology. Most

plant R protein predictors are dependent on traditional feature extraction methods.

Recently, deep representation learningmethodshavebeen successfully applied in solv-

ingprotein classificationproblems.Motivatedby this,weproposeanewcomputational

approach, called prPred-DRLF, which uses deep representation learning feature mod-

els to encode the amino acids as numerical vectors. The results show that the fused fea-

tures of bidirectional long short-termmemory (BiLSTM) embedding and unified repre-

sentation (UniRep) embedding have a better performance thanother features for plant

R protein identification using a light gradient boosting machine (LGBM) classifier. The

model was evaluated using an independent test achieving an accuracy of 0.956, F1-

score of 0.933, and area under the receiver operating characteristic (ROC) curve (AUC)

of 0.997.Meanwhile, comparedwith the state-of-the-art prPred andHMMERmethod,

prPred-DRLF shows an overall improvement in accuracy, F1-score, AUC, and recall.

prPred-DRLF is a higher-performance plant R protein prediction tool based on two

kinds of deep representation learning technologies and offers a user-friendly interface

for inspecting possible plant R proteins.We hope that prPred-DRLFwill become a use-

ful tool for biological research. A user-friendly webserver for prPred-DRLF is freely

accessible at http://lab.malab.cn/soft/prPred-DRLF. The Python script can be down-

loaded from https://github.com/Wangys-prog/prPred-DRLF.
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1 INTRODUCTION

During evolution, plants have developed a sophisticated defense

immune system to recognize pathogens, and resistance (R) proteins

Abbreviations: AUC, area under the ROC curve; BERT, bidirectional encoder representations

from transformers; BiLSTM, bidirectional long short-termmemory; ET, extra tree; LGBM, light

gradient boostingmachine; LRRs, leucine-rich repeats; LSTM, long-short-termmemory;

mLSTM,multiplicative long-/short-term-memory; MRMD,max-relevance-max-distance; NBS,

nucleotide-binding site; R proteins, resistance proteins; RF, random forest; RLKs, receptor-like

kinases; RLPs, receptor-like proteins; RNNs, recurrent neural networks; SVM, support vector

machine; ROC, receiver operating characteristic; TAPE, tasks assessing protein embedding;

UMAP, uniformmanifold approximation and projection; UniRep, unified representation

play an important role in the plant defense process. Plant R pro-

teins are divided into two categories. One is PRRs, cell surface

pattern-recognition receptors, which contain various ligand-binding

ectodomains. PRRs include two classes: receptor-like kinases (RLKs)

and receptor-like proteins (RLPs) [1]. The other class is the NBS-

LRR, which comprises a central nucleotide-binding site (NBS), a vari-

able amino-terminal domain, and leucine-rich repeats (LRRs). The NBS

is part of a nucleotide binding (NB)-ARC domain. It functions as a

molecular switch and participates in ATP hydrolytic processes and

pathogen recognition. The N-terminal domain often possesses either
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a toll/interleukin-1 receptor-like (TIR) domain or a coiled coil (CC)

domain. The C-terminal LRR domain is highly involved in pathogen

recognition specificity and protein–protein interactions [2, 3].

Six predictors have been developed for plant R protein detec-

tion, including NLR-parser [4], RGAugury [5], Restrepo-Montoya’s

pipeline [6], NBSPred [7], DRPPP [8], and prPred [9]. Protein sequence

conversion is the most important step for building predictors. To

accurately infer the structural properties of a protein based on its

amino acid sequence, many feature extraction methods have been

proposed, including amino acid composition, pseudo acid composi-

tion, composition/transition/distribution, autocorrelation, and profile-

based descriptors. Among the existing predictors for plant R protein

prediction, NBSPred, DRPPP, and prPred are all based on traditional

feature extraction methods to generate various numerical representa-

tion schemes to represent input sequences. Although these methods

play an important role in understanding protein function, there remain

many unknown protein properties.

Researchers have developed deep representation learningmethods

for protein feature engineering construction. Cui et al. [10] introduced

themainapproaches that areused toencodeorembedaminoacids into

numerical vectors. They grouped the methods into several categories,

including non-contextual embedding models [11, 12], long short-term

memory (LSTM)-basedmodels and transformer-basedmodels [13, 14].

Recurrent neural networks (RNNs) are a type of deep learning tech-

nology that have been successfully applied in different areas; in recent

years, RNNs have been widely applied in natural language process-

ing (NLP), human action recognition, and biological sequence analy-

sis [15–17]. As a particular subclass of RNNs, LSTM was proposed

by Hochreiter and Schmidhuber [18] and it is a popular method for

mapping amino acid sequences to vectors. It has been widely applied

in bioinformatic prediction and has achieved state-of-the-art results

in protein remote homology detection [19]. Bidirectional long short-

term memory (BiLSTM) means that the input sequence should be

passed through the pretrained language model in both the forward

and reverse directions, and BiLSTM has also been used in protein

disorder [20] and protein contact map prediction [21]. Multiplicative

long-/short-term memory (mLSTM) RNNs are another successful rep-

resentation model and have obtained state-of-the-art performance on

many tasks [22]. UniRep is a deep representation learningmethod that

adopts a 1900-hidden unit mLSTM to pretrain amino acid character-

istics on UniRef50 and has been found to increase the efficiency in

protein engineering problems [23–25]. Tasks assessing protein embed-

ding (TAPE) are semi-supervised learning on protein sequences based

on the BERT model that was proposed by Rao et al. [26]. Their results

demonstrated that the representative models performed well for pro-

tein learning.

In this paper, we evaluated three deep representation learning

methods to represent multiple characteristics of sequences for

predicting plant R proteins. The experimental results demonstrated

that the fused feature vector of BiLSTM and UniRep has excellent

performance compared to other feature combinations. Three feature

selection techniques, including random forest (RF), LGBM, and max-

relevance-max-distance (MRMD), were applied to select an optimal

feature subset from the fused BiLSTM + UniRep feature, and then the

Statement of significance

Plants R proteins play an important role in plant defense

immune system, hence, developing an accurate computa-

tional tool for identifying plant R proteins is crucial for bio-

logical researches. However, most of the existing predictors

for plant R protein prediction are all based on traditional fea-

ture extraction methods. It is necessary to develop higher-

performance plant R predictionmethods by extracting deep-

seated sequence features. Here, we present prPred-DRLF,

a computational tool based on two kinds of deep represen-

tation learning technologies that has already demonstrated

success in classification of plant R proteins.

feature subset was used as input to four classifiers, including support

vector machine (SVM), LGBM, RF, and extra tree (ET). After cross-

validation and independent testing, LGBM shows better superiority

and competitiveness relative to the other classifiers. The predictor is

named prPred-DRLF, and its flowchart is illustrated in Figure 1.

2 METHODS

2.1 The basic procedure of prPred-DRLF

The dataset employed in this study is based onWang et al. [9] and can

be downloaded from https://github.com/Wangys-prog/prPred-DRLF/

tree/master/dataset. After removing the redundant sequences using

CD-HIT [27] with a 30% identity cutoff, the dataset contained 456 pro-

tein sequences and included 152 positive samples and 304 negative

samples. The number of training samples was 364, and the number of

independent test samples was 92. We use 1 to represent the positive

samples and 0 to identify the negative samples. The protein sequences

are embedded into numerical vectors by three protein representa-

tion learningmodels, including BiLSTM, UniRep, and TAPE-BERT using

eFeature (http://lab.malab.cn/soft/eFeature/index.html). The obtained

multidimensional feature vectors include 3605D for BiLSTM, 1900D

for UniRep, and 768D for TAPE-BERT. The performance of each repre-

sentation learning model and their combinations are evaluated in four

machine learningmodels. The embedding procedure of BiLSTM, TAPE-

BERT, and UniRep is illustrated in Figure 2.

2.2 The architecture of BiLSTM

LSTM is made up of a forget gate, input gate, and output gate, and

its details are shown in Figure 2A. The forget gate determines which

information should be retained. The sigmoid function is the activation

function of the three gates, and it receives two inputs: the information

of x(t), where the input is at the current time step, and the h(t-1), where

it is generated from the previous step. The signal state of the LSTM
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BiLSTM embedding (3605D)

UniRep embedding (1900D)

Protein sequences
…

…

…

Feature fusion(3605D+1900D)

LGBM 
classifier…

LGBM feature selection 

Prediction results 
(R protein; non-R 

protein)

F IGURE 1 Overview of the prPred-DRLF procedure. The BiLSTM andUniRep embeddingmodels encode protein sequences into 3605
dimension (D) and 1900 dimension (D) feature vectors, respectively. The fused BiLSTM+UniRep feature dimension is 5505. BiLSTM, bidirectional
long short-termmemory; UniRep, unified representation

F IGURE 2 Illustration of the LSTM (A), BiLSTMmodel (B), BERTmodel (C), andmLSTMmodel (D). σ denotes the sigmoid function, tanh is the
hyperbolic tangent function,⊗ represents elementwisemultiplication, x indicates thematrix of the input subsequence and tmeans the LSTM cell
architecture at the tth time step. h is the output hidden state. The internal cell state is maintained and updated by the coordination of the input
gate and forget gate. BiLSTM extends a second layer based on the unidirectional LSTM, where bidirectional connections flow through the
sequence before passing on to the next layer. BiLSTM, bidirectional long short-termmemory; LSTM, long short-termmemory; mLSTM,
multiplicative long-/short-termmemory

memory cell can be updated from c(t-1) to c(t) through the output of

the input gate and forget gate [28, 29]. To acquire comprehensive

bidirectional sequence information, BiLSTM proposed by Bepler and

Berger [30] is adopted in this study. BiLSTM is a two-layer bidirectional

model that comprises two reversed unidirectional LSTMs [19, 31], and

its structure is shown in Figure 2B.

2.3 The architecture of TAPE-BERT

Recently, Rao et al. [26] introduced TAPE to systematically evaluate

semi-supervised protein learning. The TAPE implements five bio-

logically relevant supervised tasks to assess the relative merits of

five sequence representation models, which include an LSTM [32],
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a transformer, a dilated residual network (ResNet), BiLSTM, and

UniRep. They found that transformer-based adoption performed well

for sequence modeling. The BERT network model is the bidirectional

encoder representation from transformers and it contains a multilayer

transformer encoder structure [14] and has been successfully applied

to identify DNA enhancers [33] and bitter peptides [34]. Details of the

BERT architecture are shown in Figure 2C.

2.4 The architecture of UniRep

UniRep is another type of deep sequence representation learning

method that was proposed by Alley et al. [23]. It uses a unidirectional

mLSTM [35] with 1900 hidden units to represent protein sequences,

and the learned representations based on the UniRep model are

semantically rich. mLSTM is a hybrid architecture that combines LSTM

and a multiplicative recurrent neural network (mRNN) and it adds the

m(t) that is the mRNN’s intermediate state to the gating units of LSTM

(Figure 2D). The LSTM in mLSTM is responsible for controlling infor-

mation flow using multiplicative gates, and mRNN is designed to allow

flexible input-dependent transitions.

2.5 Feature selection

The feature vector generated fromdeep representation learningmeth-

ods is the high-dimensional feature space, and it is necessary to extract

the optimal feature subset using feature selection approaches. In this

study, we compared three feature selection methods: RF, LGBM, and

MRMD3.0 [36, 37] (http://lab.malab.cn/soft/MRMD3.0/index.html).

The first algorithm is an ensemble learning method consisting of mul-

tiple decision trees, the second algorithm performs gradient boosting

on decision trees, and the third algorithm consists of various feature

selection methods, such as MIC and mRMR, and ranks features based

on PageRank, LeaderRank, Hits, or TrustRank algorithm. Fivefold

cross-validation on the dataset is used to examine the effectiveness of

eachmodel.

2.6 Evaluation metrics

To evaluate the performance of the models, four evaluation measures

are used, including precision, recall, accuracy (ACC), and F1-score.

Their equations are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

F1 − score =
2 × Precision × Recall
Precision + Recall

(4)

where TP, FP, TN, and FN represent the numbers of true positives (pre-

dicted R proteins are R proteins), false positives (predicted R proteins

are non-R proteins), true negatives (predicted non-R proteins are non-

R proteins), and false negatives (predicted non-R proteins are R pro-

teins).

Additionally, we used the area under the ROC curve (AUC) to diag-

nose the performance of the different models. The ROC curve refers

to the receiver operating characteristic (ROC) curve that plots the true

positive rates versus the false positive rates for all thresholds.

3 RESULTS

3.1 Initial performances of the different
classifiers

The results presented in Table S1 illustrate howwell the different clas-

sifierswereatdistinguishingplantRandnon-Rproteinswitheachcom-

bination of features without feature selection. As Table S1 shows, the

fivefold cross-validation accuracy, F1-score and AUC in the training

set ranged from 0.926 to 0.959, 0.881 to 0.933, and 0.942 to 0.984,

respectively. Tobetter understand theperformanceof these classifiers,

we set three thresholds according to the value of accuracy, F1-score

and AUC: 0.950 for accuracy, 0.920 for F1-score, and 0.980 for AUC.

The results show that 16 groups’ accuracy values were greater than or

equal to 0.950, 14 groups’ F1-score values were greater than or equal

to 0.920, and three groups’ AUC values were greater than or equal to

0.980. It is clear that the accuracy values of the classifiers that used

the fused features of BiLSTM and UniRep were all greater than 0.950

(Table S1).Moreover, among the four classifiers, the LGBMandET clas-

sifiers offered their advantages over different feature combinations

for plant R protein prediction based on the accuracy and F1-score val-

ues, amongwhich the LGBMclassifier performed better than the other

three classifiers based on the AUC value.

3.2 Comparison with feature selection
technologies based on RF, LGBM, and MRMD3.0

To determine the best feature vector subset, features were ranked by

feature importance values generated by the RF, LGBM, andMRMD3.0

methods. Then, we used five measures to evaluate the performance

of the two feature subsets selected using RF, LGBM, and MRMD3.0

(Tables S2–S4). We found that the LGBM method could improve the

performance of themodelmore effectively than RF andMRMD3.0 and

it achieved the highest accuracy (Table 1). For the LGBM classifier, the

average accuracy was improved 0.63% for BiLSTM, 0.32% for TAPE-

BERT, 0.63% for UniRep, 1.16% for BiLSTM + TAPE-BERT, 1.46% for

BiLSTM + UniRep, 1.16% for TAPE-BERT + UniRep, and 1.79% for

TAPE-BERT + BiLSTM + UniRep (Table 1 and Figure 3). The F1-score

was improved 0.86% for BiLSTM, 0.22% for TAPE-BERT, 0.86% for

UniRep, 1.84% for BiLSTM+ TAPE-BERT, 2.47% for BiLSTM+UniRep,

1.85% for TAPE-BERT + UniRep, and 2.82% for TAPE-BERT + BiL-

STM+UniRep after LGBM feature selection (Tables S1–S2). The value
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TABLE 1 Fivefold cross-validation comparison among different feature combinations and different feature selection classifiers on the training
dataset

Classifier Feature ACC ACC (LGBM) ACC (RF) ACC (MRMD3.0)

SVM BiLSTM 0.945 ± 0.02ab 0.939 ± 0.02a 0.942 ± 0.02ab 0.948 ± 0.03ab

SVM TAPE-BERT 0.948 ± 0.03ab 0.951 ± 0.02ab 0.95 ± 0.02ab 0.948 ± 0.02ab

SVM UniRep 0.948 ± 0.03ab 0.953 ± 0.03ab 0.953 ± 0.02ab 0.945 ± 0.03ab

SVM BiLSTM+ TAPE-BERT 0.948 ± 0.03ab 0.95 ± 0.03ab 0.95 ± 0.03ab 0.948 ± 0.03ab

SVM BiLSTM+UniRep 0.951 ± 0.03ab 0.948 ± 0.03ab 0.953 ± 0.02ab 0.956 ± 0.04ab

SVM TAPE-BERT+UniRep 0.951 ± 0.02ab 0.961 ± 0.02ab 0.945 ± 0.02ab 0.956 ± 0.02ab

SVM TAPE-BERT+BiLSTM+UniRep 0.951 ± 0.02ab 0.956 ± 0.03ab 0.964 ± 0.02b 0.953 ± 0.03ab

LGBM BiLSTM 0.953 ± 0.02ab 0.959 ± 0.02ab 0.948 ± 0.03ab 0.956 ± 0.03ab

LGBM TAPE-BERT 0.945 ± 0.05ab 0.948 ± 0.03ab 0.939 ± 0.03a 0.937 ± 0.02a

LGBM UniRep 0.956 ± 0.02ab 0.962 ± 0.02ab 0.948 ± 0.02ab 0.951 ± 0.02ab

LGBM BiLSTM+ TAPE-BERT 0.950 ± 0.02ab 0.961 ± 0.03ab 0.948 ± 0.03ab 0.950 ± 0.03ab

LGBM BiLSTM+UniRep 0.956 ± 0.02ab 0.97 ± 0.01b 0.948 ± 0.02ab 0.961 ± 0.02b

LGBM TAPE-BERT+UniRep 0.951 ± 0.01ab 0.962 ± 0.02ab 0.95 ± 0.02ab 0.959 ± 0.02ab

LGBM TAPE-BERT+BiLSTM+UniRep 0.950 ± 0.03ab 0.967 ± 0.02ab 0.953 ± 0.02ab 0.964 ± 0.02b

RF BiLSTM 0.942 ± 0.02ab 0.948 ± 0.02ab 0.942 ± 0.03ab 0.956 ± 0.02ab

RF TAPE-BERT 0.926 ± 0.03a 0.942 ± 0.03ab 0.939 ± 0.04ab 0.942 ± 0.03ab

RF UniRep 0.948 ± 0.02ab 0.945 ± 0.02ab 0.948 ± 0.02ab 0.951 ± 0.02ab

RF BiLSTM+ TAPE-BERT 0.948 ± 0.03ab 0.956 ± 0.02ab 0.948 ± 0.02ab 0.956 ± 0.03ab

RF BiLSTM+UniRep 0.951 ± 0.02ab 0.951 ± 0.02ab 0.953 ± 0.02ab 0.956 ± 0.02ab

RF TAPE-BERT+UniRep 0.948 ± 0.02ab 0.951 ± 0.02ab 0.953 ± 0.02ab 0.959 ± 0.02ab

RF TAPE-BERT+BiLSTM+UniRep 0.948 ± 0.02ab 0.956 ± 0.02ab 0.956 ± 0.03ab 0.956 ± 0.02b

ET BiLSTM 0.953 ± 0.02ab 0.959 ± 0.02ab 0.951 ± 0.01ab 0.959 ± 0.02ab

ET TAPE-BERT 0.945 ± 0.02ab 0.956 ± 0.03ab 0.948 ± 0.02ab 0.950 ± 0.02ab

ET UniRep 0.956 ± 0.02ab 0.959 ± 0.02ab 0.959 ± 0.02ab 0.959 ± 0.02ab

ET BiLSTM+ TAPE-BERT 0.956 ± 0.02ab 0.956 ± 0.02ab 0.956 ± 0.02ab 0.956 ± 0.02ab

ET BiLSTM+UniRep 0.956 ± 0.03ab 0.962 ± 0.02ab 0.962 ± 0.02ab 0.962 ± 0.02b

ET TAPE-BERT+UniRep 0.956 ± 0.03ab 0.959 ± 0.02ab 0.959 ± 0.02ab 0.962 ± 0.02b

ET TAPE-BERT+BiLSTM+UniRep 0.959 ± 0.02ab 0.959 ± 0.02ab 0.959 ± 0.02ab 0.964 ± 0.02b

The accuracy values in the third column indicate the initial performances of different classifiers. The accuracy values in the fourth column indicate the per-

formances of different classifiers after LGBM feature selection. The accuracy values in the fifth column indicate the performances of different classifiers

after RF feature selection. The accuracy values in the sixth column indicate the performances of different classifiers after MRMD3.0 feature selection. The

bold fonts represent the highest value of accuracy. Superscript a and b represent the significance level at 0.05. The same letters in the same column repre-

sent in apparent differences. The different letters represent significant differences. ACC, accuracy; BiLSTM, bidirectional long short-termmemory; ET, extra

tree; LGBM, light gradient boosting machine; MRMD, max-relevance-max-distance; RF, random forest; SVM, support vector machine; TAPE, tasks assessing

protein embedding; UniRep, unified representation.

of the average accuracy had less or no improvements after RF and

MRMD3.0 feature selection (Figure 3). Moreover, these phenomena

were also observed for other classifiers (Table 1). Although no signif-

icant increase was achieved in accuracy after feature selection, LGBM

feature selection technology performedbetter than the othermethods

and reduced the computing resource consumption (Figure 3). Hence,

the LGBMfeature selectionmethodwas utilized to build the prediction

model.

The model using the LGBM classifier and LGBM feature selec-

tion based on the BiLSTM + UniRep feature vector achieved the

highest accuracy and F1-score values, which were 0.970 and 0.953,

respectively (Tables 1 and S2). The model estimated by fivefold cross-

validation had an ROC = 0.988. For further comparison of the perfor-

mance with and without the LGBM feature selection method, we use

the uniform manifold approximation and projection (UMAP) method

[38] to visualize the distribution profiles of positive and negative sam-

ples based on the BiLSTM + UniRep feature type. We found that the

two-dimensional UMAP space separated the non-R andR proteins into

distinct clusters, and feature vector dimensionality was reduced by the

LGBMmethod (Figure 4). According to the cross-validation results, the

model using the BiLSTM + UniRep feature based on the LGBM fea-

ture selectionmethod and the LGBM classifier shows excellent perfor-

mance compared to the other models. Then, we further evaluated the

performance of themodel in the independent test dataset.
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F IGURE 3 Comparison of LGBM (A), RF (B), andMRMD3.0 (C) feature selection technology based on the LGBM classifier. The y-axis
represents the improvement or decrease in accuracy after feature selection. The LGBM feature selection technology performed better than the
other methods. LGBM, light gradient boostingmachine;MRMD,max-relevance-max-distance; RF, random forest

F IGURE 4 Feature visualization by UMAP for dimension reduction. (A) BiLSTM+UniRepwithout feature selection on the training dataset; (B)
BiLSTM+UniRep after LGBM feature selection on the training dataset; (C) BiLSTM+UniRepwithout feature selection on the independent test
dataset; and (D) BiLSTM+UniRep after LGBM feature selection on the independent test dataset. BiLSTM, bidirectional long short-termmemory;
LGBM, light gradient boostingmachine; UMAP, uniformmanifold approximation and projection; UniRep, unified representation

3.3 Comparison with the predictors based on
different deep representation feature types in the
independent test dataset

We established different predictors based on different feature com-

binations for the identification of plant R proteins to explore whether

the best predictor selected based on the cross-validation results still

has the best effect on plant R protein classification in independent

tests. Table 2 lists the average accuracy, precision, recall, F1-score, and

AUC scores reported by the predictors in the independent test after

feature selection using LGBM. From the results, we found that the

scores achieved by the fusion feature of BiLSTM+UniRepwere higher

than those of the other features. For example, BiLSTM + UniRep sig-

nificantly outperformed TAPE-BERT in terms of all scores, improving

by 8.51%, 10.39%, 16.62%, 14.20%, and 5.28% in accuracy, precision,

recall, F1-score, and AUC, respectively, and it exceeded the individual
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TABLE 2 Performance of models with different feature combinations based on the LGBM classifier on the independent test dataset

Models Accuracy Precision Recall F1-score AUC

BiLSTM 0.923 0.933 0.838 0.882 0.965

TAPE-BERT 0.881 0.876 0.776 0.817 0.947

UniRep 0.923 0.967 0.805 0.875 0.989

BiLSTM+ TAPE-BERT 0.923 0.933 0.838 0.882 0.992

BiLSTM+UniRep 0.956 0.967 0.905 0.933 0.997

TAPE-BERT+UniRep 0.945 0.967 0.871 0.915 0.992

TAPE-BERT+BiLSTM+UniRep 0.923 0.943 0.838 0.884 0.989

AUC, area under the receiver operating characteristic (ROC) curve; BiLSTM, bidirectional long short-termmemory; LGBM, light gradient boosting machine;

TAPE, tasks assessing protein embedding; UniRep, unified representation. The bold font represents the best performance of models.

BiLSTM and UniRep feature type, accuracy, precision, recall, F1-score,

and AUC, which were increased by 3.58% (3.58%), 3.64% (0.00%),

8.00% (12.42%), 5.78% (6.63%), and 3.32% (0.81%), respectively.

Thus, from the above results, the predictor for plant R proteins was

chosen, where both the classification and feature selection algo-

rithms were LGBM, and the deep representation feature type was

BiLSTM+UniRep.

3.4 Comparison with the prPred classifier and
HMMER method

We then used an independent test dataset to evaluate the ability of

prPred-DRLF and prPred thatwe previously established. The results in

Figure 5A show that prPred-DRLF performed better than prPred that

extracted feature representations using traditional feature represen-

tation methods. prPred-DRLF increased the ACC by 2.20%, F1-score

by 4.29%, and AUC by 4.91%. Similar to a previous study by Lv et al.

[24], the deep representation learning methods demonstrated excel-

lent performance in protein classification and detection.

Next, we benchmarked the performance of prPred-DRLF against

the alignment method HMMER. The alignment method identi-

fies R proteins based on domains and motifs, such as LRR, CC,

Toll/interleukin-1 receptor (TIR), NBS (NB-ARC), transmembrane

(TM), serine/threonine and tyrosine kinase (STTK), and lysin motif

(LysM) [5]. Becausemost protein sequences from the negative training

set are annotated incompletely using the HMMER method, we only

evaluatedwhether the sequences from the positive training set belong

to potential R proteins based on the domain structures and obtained

the recall values. From the comparative results, it can be concluded

that the method we proposed can perform better than the HMMER

method (Figure 5B).

3.5 Web server implementation

To help users analyze their protein sequences in a user-friendly

manner, we designed a web server for prPred-DRLF. With our web

server, we provide an easy interface that allows the users to input

F IGURE 5 Performance of prPred-DRLF, prPred, and HMMER

their sequences in FASTA format to run the program. The web server

can load models automatically and detect the probability of whether

a protein is a plant R protein. The homepage of the server is shown in

Figure 6.

4 CONCLUSION

In this study, we proposed a new predictor, prPred-DRLF, for plant R

protein detection based on BiLSTM and the UniRep feature learning

method. The experimental results showed that prPred-DRLF yielded

better prediction quality than the existing method prPred, which

extracted protein features by traditional machine learning methods.
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F IGURE 6 Homepage of the prPred-DRLFweb server

Breeding disease-resistant varieties has proven to be the most effec-

tive and economical means to control plant disease and increase crop

yield and quality [38]. Diverse strategies for breeding durable resis-

tance varieties have been adopted, such as pyramiding [40], mixtures

[41], and multilines [42]. Identification of resistance genes or proteins

is a critical step formolecular resistance breeding, and this strategy has

been successfully applied for breeding new wheat varieties containing

resistance genes to resist wheat stem rust [43]. We hope that prPred-

DRLFwill become a useful tool to help plant breeders develop disease-

resistant varieties.

Although deep representation learning feature methods cap-

ture sequence information more effectively and achieve better

performance than traditional feature extraction methods, they usually

require an elevated level of computing resources. In future studies,

we will attempt to incorporate parallel computing into our program to

achieve high computational efficiency.
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