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Abstract

Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing
mechanism, which play an important role in a variety of biological activities. Viruses can encode circRNA, and viral
circRNAs have been found in multiple single-stranded and double-stranded viruses. However, the characteristics and
functions of viral circRNAs remain unknown. Sequence alignment showed that viral circRNAs are less conserved than
circRNAs in animal, indicating that the viral circRNAs may evolve rapidly. Through the analysis of the sequence
characteristics of viral circRNAs and circRNAs in animal, it was found that viral circRNAs and animals circRNAs are similar
in nucleic acid composition, but have obvious differences in secondary structure and autocorrelation characteristics. Based
on these characteristics of viral circRNAs, machine learning algorithms were employed to construct a prediction model to
identify viral circRNA. Additionally, analysis of the interaction between viral circRNA and miRNAs showed that viral circRNA
is expected to interact with 518 human miRNAs, and preliminary analysis of the role of viral circRNA. And it has been also
found that viral circRNAs may be involved in many KEGG pathways related to nervous system and cancer. We curated an
online server, and the data and code are available: http://server.malab.cn/viral-CircRNA/.
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Introduction
Circular RNAs (circRNAs) were first detected in plant viral
RNA pathogens [1], called viroids [2, 3]. Studies have shown
that circRNA is synthesized from pre-mRNA through a nuclear
reverse splicing mechanism [4, 5]. Some circRNAs contain
scrambled exons, which are produced by abnormal splicing
mechanisms [6]. Most circRNAs come from exons with inverted
intron sequences on both sides, and RNA circularization is
achieved by participating in base pair interactions. There are
approximately 5000–25,000 circRNAs in each cell, and 20% of
the transcribed genes produce unique circRNAs, which are
expressed in a tissue-specific manner [7–9]. Initially, it was
thought that circRNA was a byproduct of splicing errors and
had few functions [6, 10]. Recent studies have shown that
circRNAs can regulate gene splicing or transcription, such as
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the sponge effect of miRNAs, which relieves the inhibitory effect
of miRNA on its target genes [11], transcription regulation, and
adsorption of miRNAs to affect the expression of it and its target
genes [12–14]. Moreover, RNA sequencing (RNA-seq) has revealed
that circRNA is widespread [15, 16]. More than 10,000 circRNAs
have been identified in various animals such as humans, mice,
nematodes, macaques, fruit flies and marlinus [12]. In addition,
circRNAs have also been shown to exist in plants, such as rice,
and in protists [13]. With the discovery of more circRNAs in
animals and plants, researchers have begun to ask whether
viruses produce circRNAs.

Recent studies have shown that the virus encodes the
entire sequence of the circRNA, and some viruses express
large amounts of circRNA. Viral circRNA is a nonreplicating,
noninfectious RNA transcript obtained through reverse splicing
of viral genes [17, 18]. It has been identified and discovered in
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Figure 1. The biogenies of the viral circRNAs.

a variety of single- and double-stranded viruses (Figure 1) [19].
Erik Flemington’s research team found that viral circRNA can be
expressed between the latency and lysis cycles of Epstein–Barr
virus (EBV), and spanned cell lines in different latency states
[20]. Huang et al. performed RNA-seq on the RNA consumed
by ribosomal RNA in various latent cell line models of EBV
infection and confirmed that the circRNA encoded by EBV is
in cell lines and tumor tissues (type I latent EBV-related gastric
cancer and type II latent nasopharyngeal carcinoma) [20, 21]. Two
other reports have found that EBV-circrpms1, circlmp2 and EBV-
circbhlf1 can encode circRNAs [21, 22]. Studies have found that
Burkitt’s lymphoma, EBV-associated gastric cancer, nasopharyn-
geal carcinoma and AIDS-related lymphoma were expressed in
EBV-positive cell lines and tissues [23, 24]. And Toptan’s research
shows that besides EBV virus, Kaposi’s sarcoma herpesvirus
(KSHV) can also encode circRNA. Moreover, recent studies have
proved that DNA viruses have found viral circRNAs, for instance,
herpesviruses and papillomaviruses [25]. Interestingly, the circR-
NAs in EBV virus are encoded by latent genes, and the expression
of a part of the viral circRNA after lysis activation is up-regulated
[26]. Moreover, the biological function and significance of viral
circRNA have been explored and discovered [27–29]. CircRNA can
show antiviral effects. A special upregulated circRNA, circPSD3,
has shown significant effects on viral RNA abundance in cells
infected with hepatitis C virus and dengue virus [2]. It has been
found that the expression levels of some viral circRNAs (such
as circRPMS1_E4_E3a and circBHLF1) are not much different
from the host circRNA levels, or even higher, which indicates
the potential biological significance of viral circRNAs [30].
Furthermore, researchers have found that cells infected with
EBV and KSHV not only change the cell morphology of circRNA
but also show evidence of viral circRNA [10, 20, 21]. The discovery
of latent related circRNAs has increased the repertoire of
potential future therapeutic targets. EBV ring RNA has other
non-microRNA sponge functions [31]. The circRNA in tumor
viruses is a long-lived and unique tumor biomarker. Because

of its characteristics, this provides new research direction for
understanding how these viruses cause cancer [32–34].

At present, although research on viral circRNA has achieved
certain results [35, 36], there are still many problems and chal-
lenges. These include: (1) How does the virus synthesize cir-
cRNA? (2) What is the function of the viral circRNA? (3) What
is the difference between viral circRNA and circRNA of ani-
mal and plant? (4) Whether all viruses can encode circRNA, or
whether circRNA only exists specifically. To better understand
the functions of viral circRNAs and study the characteristics of
viral circRNAs, in this paper, we first analyzed the conservation
of viral circRNA, then explored the main characteristic rela-
tionship between viral circRNA and animal and plant circRNA,
and employed these characteristics to predict new circRNAs in
viruses. After that, we analyzed viral circRNA. Subsequently,
machine learning methods were applied to build a model for
identifying viral circRNA. Next, the interactions between circRNA
and miRNA were evaluated. Furthermore, gene ontology (GO)
and kyoto encyclopedia of genes and genomes (KEGG) analyses
were carried out for the target genes of circRNA to deeply explore
the function of circRNA (Figure 2).

Results
Sequence conservation of viral circRNA

First, the Clustal X method was used for multiple sequence align-
ment of the 1592 viral circRNA sequences. The results revealed
that HAdV5_circ_Homo_sapiens_5253 and HAdV2_circ_Homo_
sapiens_6330 have the highest similarity, which is 99.524%. The
similarity of EBV_circ_Homo_sapiens_1742 and macacine her-
pesvirus 4 was 88.5%. The similarity between EBV_circ_Homo_
sapiens_1683 and macacine herpesvirus 4 was 88.1%. Both of
these viruses belong to the herpesvirus family; HAdV5_circ_
Homo_sapiens_5255/7–6, EBV_circ_Homo_sapiens_circle 13912_
HS1_PR327/HSV_circ_Homo_sapiens_1683-623 and HSV1_circ_
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Characterizing viral circRNAs and their application 3

Figure 2. Flowchart of viral circRNA research. A. Conservative analysis. B. Analysis of sequence characteristics. C. Construction of a prediction model of viral circRNAs.

D. Analysis of interaction between viral circRNAs and miRNAs.

Homo_sapiens_4/1471-1470, HSV1_circ_Homo_sapiens_825/499–
498, HSV1_circ_Homo_sapiens_7329/3878-3877 did not match
any of the above. Therefore, we deleted the nonconserved
sequences and the low-similarity sequences, obtained 121
sequences and then used DNAMAN for sequence alignment and
MEGA 5.0 software to construct a phylogenetic tree (Figure 3A).
The analysis found that 121 viral circRNAs clustered into five
subgroups, and each subgroup contained a different number of
viral circRNAs. Among them, the IV subgroup contained the least
number of sequences, and the III subgroup contained the most
number of sequences. It can be seen from the phylogenetic tree
that there are very close evolutionary relationships and both
close and long genetic distances within the phylogenetic tree.
The distribution of viral circRNAs in different viruses on the
phylogenetic tree was clustered, suggesting that viral circRNAs
derived from the same or similar genetic relationship may have
the same or similar characteristics. This provided a basis for the
study of the characteristics of the circRNA of the new virus.

We used three tools, MEME, Homer, and STREME, to pre-
dict motif. The seven motifs contain nucleotide sequences of
different lengths. The motif and P value results are shown in
Figure 3B (In order to compare the motifs obtained by the three
methods more intuitively, we changed the display order of the
motifs, which took the motif of MEME as the reference basis, and
intuitively changed the order of Homer, and STREME). Although
the lengths of the obtained motifs were not the same, it can
also be found that there are similarities in the probability of the
occurrence of bases at some sites. For example, in the third motif,
there are fragments of ATAAA in the results obtained by the three
methods; in the fifth motif, there is an obvious high probability
distribution of base A. There is an AAA fragment in the second
motif and a CTC fragment in the seventh motif. These predicted

motifs have not been discovered by any early studies and cannot
be verified with existing knowledge, and we hope that they can
be further verified in future experiments.

Sequence characteristics analysis of viral circRNA

We explored the similarities and differences between the char-
acteristics of viral circRNA and animal circRNA. To make a more
intuitive graphical expression, a dimensionality reduction algo-
rithm—uniform manifold approximation and projection (UMAP)
for dimension reduction [37] was used to visualize it in a two-
dimensional space. Figure 4A shows the distribution map of the
two datasets simplified by UMAP for all the learned features.

From Figure 4A, it can be seen that the divergence in the
distribution of feature points based on k-mer (k = 2 and 3) is
imperceptible. There is a phenomenon of repeated distribu-
tion of data points, which shows that in sequence features, k-
mer indicates that the sequence frequency characteristics of
the viruses are not significantly different between circRNAs. In
terms of nucleotide composition characteristics and structural
characteristics, the distribution of characteristic points is quite
dissimilar, with apparent differences. This shows that at the
sequence level, the similarity between structural features and
nucleotide composition features is less ambiguous. We can also
conclude that viral circRNAs and animal circRNAs are simi-
lar in their distribution of nucleotides. Viruses may change
the structure of circRNAs when encoding them. This may also
provide new direction for the study of the structure of viral
circRNA.

After analyzing the performance of each feature, all the
feature of the datasets were merged and used t-distributed
random neighbor embedding (t-SNE) [38] for feature selection

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab404/6377516 by U

niversity of Electronic Science and Technology of C
hina user on 23 January 2022



4 Niu et al.

Figure 3. Conservative analysis results. A. Phylogenetic tree. B. conserved motif.

and visualization in a two-dimensional space. Figure 4B shows
the distribution curves of the two datasets simplified by t-SNE
for all the learned features.

As shown in Figure 4B, the distribution boundaries of viral
circRNAs and animal circRNAs were relatively explicit. The char-
acteristics after t-SNE can clearly distinguish the two, indicat-
ing that the distinction in viral circRNAs and animal circRNAs
are quite evident. The positive and negative datasets have a
significant correlation with the data displayed on the horizontal
axis, that is, the normalized basic polar coordinate vector.

Therefore, we drew a violin graph to visualize the horizontal
vector of t-SNE results of viral circRNAs and animal and plant
circRNAs (Figure 4C). There were still noticable differences in
the distribution of characteristic data between viral circRNAs
and animal circRNAs, further demonstrating the characteristic
diverse between the two.

Predicting viral circRNAs using sequence features

Based on the above analysis of the sequence characteristics of
viral circRNA, we tried to use generally used machine learn-
ing algorithms [MLAs, such as NaiveByes (NB), support vector
machine (SVM) and Random forest (RF)] to analyze viral circRNA
(positive example) and non-viral circRNA (negative example,
mentioned in the Materials and Methods) in human. We con-
structed a predictive model and used the 10-fold cross-validation
for model verification. The accuracy of using each single fea-
ture, the feature after feature fusion (written as all feature) are
summarized in Figure 5A.

From the prediction results, we identified different prediction
effects of each feature. Moreover, these analyses highlighted the
features that were more important. Structural features achieved
the best results among all single features, and the accuracy of
the three classifiers was 75.107, 75.130, and 78.433%, respectively.
The opposite sequence composition characteristics achieved the
worst results, especially the worst when k = 2, and the accuracy
rates were 64.391, 59.782 and 67.391%. After feature fusion, the
prediction accuracy improved, and among the three classifiers,
RF achieved the best results. These results also verified the
feasibility of using machine learning to study viral circRNA. The
sequence features related to viral circRNA shown in this paper
will also be applied to the next step of viral circRNA research.

To verify the robustness and generalization of RF, indepen-
dent verification is entailed. Consequently, we used 80% of the
datasets to train a model, and the left-over 20% were used for
independent test set validation (Figure 5B). From Figure 5B, it

can know that RF achieve the best ACC (83.032%) than other
algorithms (NB is 76.195%, SVM is 75.858%). It demonstrated
that the prediction performance of RF is preferable than others.
Through the independent test set verification, it can beared
out that the classification performance of RF is not accidental
and has a certain stability, and RF effectively recognizes new
viral circRNA. Tools developed based on RNA-seq data have been
widely used. Although tools developed based on sequence data
have achieved good results on training and test data, they still
hope to be widely used in future practical applications and prove
their effectiveness.

Analysis of the interactions of viral circRNA and miRNA

CircRNA can be used as a miRNA sponge that indirectly regulates
gene expression. Does viral circRNA interact with miRNA?
Furthermore, most viral circRNAs are found in human cell lines
or tissues infected by virus. Thus, we used viral circRNA and
human miRNAs target prediction tools to analyze the interaction
between viral circRNA and human miRNAs and explored the
biological characteristics of viral circRNA (Figure 4D). Viral
circRNAs are expected to interact with 518 human miRNAs.
We found that chi-miR-103-5p_R-7, chi-miR-26b-3p, chi-miR-
92a-5p and chi-miR-122-R_1 can bind at least four circRNAs.
PC_3p-10316_124 of microRNA is shared by circRNA-186
and circRNA-10,457, whereas chi-miR-2335 and circRNA8386
have a unique combination. Some viral circRNAs, such as
EBV_circ_Homo_sapiens_1693, EBV_circ_Homo_sapiens_1757
and HHV8_circ_Homo_sapiens_1972, are predicted to interact
with more than 260 human miRNAs, and EBV_circ_Homo_
sapiens_6528 interacts with 50 miRNAs. Moreover, hsa-miR-
3912-3p, hsa-miR-6732-5p, hsa-miR-181a-5p, hsa-miR-23c, hsa-
miR-23b-3p and hsa-miR-23a-3p were also found. Human
miRNAs are predicted to interact with more than 320 viral
circRNAs. In this study, we predicted the interaction target
of viral circRNA and miRNA. We can guess that one function
of viral circRNAs is that regulate viral cells by affecting cell
growth, apoptosis and/or DNA replication. Nevertheless, more
experiments are necessitated to prove its function. We believe
that with a better understanding of its functions, better methods
can be designed to heal viral infections of humans and animals.

Analysis of the functions of viral circRNA

To further explore the potential functions of viral circRNA, we
analyzed the GO and KEGG pathways using all hypothetical
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Figure 4. A. Diagram of the two-dimensional distribution of each sequence feature. B. Diagram of distribution after T-SNE feature selection. C. Diagram of the violin

with important features. D. The interactions between viral circRNAs and human miRNAs. E. GC content and transcript size comparison on between viral circRNAs and

animal and plant circRNAs.

target genes of miRNA. Figure 6 shows the top 10 enrichment of
GO and KEGG pathways analysis.

In terms of biological process (BP), the top 10 are enriched
in protein-mediated transport, exogenous apoptosis, nervous
system development, cell regulation, virus cycle, etc.; in terms of
cell composition (CC), it is mainly in cell connections, nerve
growth cones and transcription factors, etc. On molecular
function (MF), it mainly includes RNA polymerase binding, DNA
binding protein transcription activity, calmodulin-dependent
protein kinase activity, cadherin binding, chromatin binding,
etc. It can be found that 5 of them are related to binding, and 4
Related to kinase activity. The top 10 pathways obtained by KEGG
pathway analysis are: RNA transport, viral infection pathway,
tuberculosis pathway, MAPK signaling pathway, neurotrophic

factor signaling pathway, dopamine synapse, etc. It can be
found that these pathways are widely involved in cell growth,
differentiation, stress, inflammation and other physiological
and pathological effects, and it can also indicate that viral
circRNA is likely to participate in a variety of important
physiological/pathological effects such as the nervous system
and cancer.

Web server
As a bioinformatics analysis about viral circRNAs, we developed
an online web server. Web is built on eclipse, and developed in
JAVA language, and extensively tested using several commonly
used web browsers. Through the web server, the data used in
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Figure 5. A. The result of using different feature representation methods on cross-validation. B. The result of using different feature representation methods on external

validation.

Figure 6. GO and KEGG analysis of viral circRNAs. A. Top ten enrichment GOs. B. Top ten enrichment pathways.
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this study can be accessed online; the viral circRNA can be
predicted online, and the supplementary intermediate data of
the experiment can be browsed. The web server access URL is:
http://server.malab.cn/viral-CircRNA/. Among them, when pre-
dicted viral circRNA, users can provide viral circRNA sequences,
and web server performs feature extraction. Then based on the
trained model, it gives the probability value of the predicted viral
circRNA.

Discussion
As more and more viral circRNAs are found to play an impor-
tant role in single-stranded and double-stranded viruses, we
attempted to perform mechanical analyses on viral circRNAs.
The evolution of circRNA from one species to another in the
same biological kingdom is highly conserved. In animals, cir-
cRNAs are highly conserved [21]. In plants, some circRNAs are
conserved in highly flowering plants (such as Arabidopsis rice)
[18, 20]. Compared with animal and/or plant circRNAs, viral cir-
cRNAs are rarely conserved. Among the viral circRNAs currently
stored in the viral circRNA database, most have recently been
reported. Most viral circRNAs come from two related viruses,
EBV and HSV. Viral circRNAs may evolve faster than circRNAs in
plant/animals. As for circRNAs in plant/animals, after evolution,
they were almost identical in mature form. For viral circRNAs, it
may be tough to detect homologous genes in distantly related
species. Although some homologous genes have been found
in related species, such as EBV and HSV, there is no obvious
homology between them.

Then, we analyzed the characteristics of viral circRNAs and
animal circRNAs and analyzed the differences in characteris-
tics. Viral circRNAs and animal circRNAs have relatively subtle
distinctions in sequence composition and obvious differences
in structural characteristics and autocorrelation characteristics.
Moreover, excellent feature descriptors provide a basis for better
prediction of viral circRNAs, and the results also indicate that
viruses may change the structure of circRNAs when encoding
them, which is also the structure of viral circRNAs. The results of
this research provide direction for future studies. Second, some
targets have been predicted through the interactions of viral cir-
cRNA and miRNA. And it has been also found that viral circRNAs
may be involved in many KEGG pathways related to nervous
system and cancer. Although the development of circRNA based
on RNA-seq data has achieved good applications [39–42], the
application of MLAs based on sequence feature information to
identify new viral circRNA is also one of the current research
hotspots in bioinformatics [19, 36, 43, 44]. Moreover, machine
learning analysis of viral circRNA provides new ideas for similar
machine learning analyses. To a certain extent, the developed
prediction model can help biologists improve the efficiency of
predicting viral circRNA. In future work, we will also improve
prediction algorithms to increase prediction performance and
use more data for verification. At the same time, regarding
questions such as whether all viruses can encode circRNA, we
will also collect more data from the GEO database and cooperate
with relevant research laboratories to explore and solve more
practical problems.

Materials and methods
Dataset

The viral circRNA sequence data were downloaded from the
VirusCircBase database [35]. The VirusCircBase database was

built by Cai et al. and included the circRNA sequences of 23
viruses [the first version of the database (2019-08-23)]. All
viral circRNA sequences were identified using circRNA_finder
[45], find_circ [8] and CIRI [46]. Some studies have shown that
circRNAs with a sequence length of less than 200 bp cannot show
RNase R resistance and will cause be false positives [8]. Moreover,
the lengths of most human circRNAs range from 200 bp to 1
kbp [47]. Therefore, sequences with lengths ≤200 bp and ≥1
kbp were removed, and then a total of 1592 high-confidence
sequences were obtained. Among the 1592 sequences, the
virus types included were Zika virus, EBV, rLCV, KSHV, mouse
gamma herpesvirus, herpes simplex virus and monkey virus
40, influenza A virus, and Zaire Ebola virus. The original
sequence data were obtained from NCBI Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and Sequence
Read Archive, so we have added all relevant Accession number
of virus reference genome. Moreover, it can be downloaded from
web server and github.

The circRNA sequence data came from the circBase database
[7], which is a collection of datasets released by multiple
laboratories, all of which have been verified by experiments.
We downloaded 2082 circRNA transcripts from circBase. For
circRNAs, we deleted transcripts smaller than 200 bp and
overlapping circRNA transcripts and finally generated a set
of 1884 circRNAs, which are also used in Niu et al. [22] and
Pan et al. [48].

As described in the steps for obtaining viral circRNAs, we can
also obtain sequences that are predicted by three software as
non-viral circRNAs. Then, using the same processing steps as the
viral circRNA sequence, a total of 4080 sequences were obtained.
To use machine learning to predict viral circRNAs, we used
viral circRNAs sequences as positive examples and non-viral
circRNAs as negative examples. Because of the potential redun-
dancy in the viral circRNA dataset, we use CD-HIT to eliminate
redundancy. CD-HIT is a program based on sequence similarity
clustering to remove redundant sequences, which is widely used
in large-scale biological sequence data clustering [22]. According
to the empirical value, the similarity thresholds of positive and
negative examples are set as 0.8 and 0.4, respectively, and the
number of negative and positive samples were 1359 and 2772,
respectively.

Analysis of conservation of viral circRNA

First, we used the Clustal X [49] method to do multiple sequence
alignment on the viral circRNAs sequences, and the sequences
with particularly poor gap conservation were deleted. Then,
DNAMAN software was used to perform multiple sequence
alignment. Based on the results of the alignment, we used
MEGA 5.0 to draw a phylogenetic tree using the neighbor-joining
algorithm, and the test parameter (bootstrap) was set to 1000.
The MEME online tool [50], Homer [25] and STREME [26] was used
to analyze conserved domains of the obtained viral circRNA
sequences, and the parameters were set as follows: motif length
was limited to 6–100, and the total number of recognized motifs
was limited to 7.

Analysis of sequences characteristics of viral circRNA

As shown in Figure 4E, simple characteristics such as GC content
and transcript size cannot clearly distinguish viral circRNA from
animal and plant circRNA. To achieve a more elaborate analysis,
we extracted comprehensive features from the sequence,
including Graph characteristic [51], Nucleotide composition
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characteristic, autocorrelation characteristic, Pseudo ribonucleic
acid composition and structural features.

Graph characteristic

Graph is a method to encode information about viral circRNA
sequence and structure in a natural way. Graph encoded the
RNA sequence and its folded structure in the form of a graph,
where nodes represent nucleotides, and edges represent the
relationship between backbones or bonds. In addition, in order to
model the high-level features of the structure, we have added an
extra layer of secondary structure annotations, which summa-
rizes specific nucleotide information and describes the general
shape of the substructure, similar to the shape abstraction in
RNAshapes [17], such as stem (S), multilayer ring (M), hairpin (H),
inner ring (I), protrusion (B) and outer area (E). A detailed intro-
duction can be obtained from https://github.com/dmaticzka/Gra
phProt.

Nucleotide composition characteristic

This feature is composed of two parts: (i) k-mer and (ii) Mis-
match. (i) K-mer expresses RNA sequences by counting the fre-
quency of k adjacent nucleic acids. We used k = 2,3. For example,
when k = 2, we obtain the frequency features for four nucleotides
that are adjacent to each other, such as ‘AA’, ‘AC’. (ii) For a
sequence of k length, Mismatch counts the occurrences of adja-
cent nucleic acids that differ by at most m mismatches. For
example, there is a sequence of 3 lengths ‘CCA’, and max 1
mismatch, so there are three cases: ‘-CA’,‘C-A’ and ‘CC-’ (‘-’ can
be replaced by any nucleic acid).

Autocorrelation characteristic

This feature is composed of four parts: (i) DAC, (ii) DCC, (iii)
DACC and (iv) NMBAC. They are all based on the physicochem-
ical attribute matrix of nucleotides to extract features. (i) DAC
calculates the correlation between two dinucleotides separated
by λ along the sequence of the same physicochemical index. (ii)
DCC calculates the correlation of two dinucleotides separated
by λ distance under different physicochemical properties. (iii)
DACC combines the DAC and DCC methods. (iv) NMBAC calcu-
lates the correlation between two nucleotides separated by a
distance under the same physical and chemical properties. The
calculation formula is as Equations (1–3).

DAC (u, γ ) =
L−γ∑
i=1

(
Pu (Di) − Pu

) (
Pu

(
Di+γ

) − Pu

)
/ (L − γ ) (1)

DCC (u1, u2, γ ) =
L−γ∑
i=1

(
Pu1 (Di) − Pu1

) (
Pu2

(
Di+γ

) − Pu2

)
/(L) (2)

NMBAC (u, γ ) =
L−γ∑
i=1

(
Pu (xi) × Pu

(
xi+γ

))2 (3)

Pu =
L−1∑
i=1

(
Pu (Di) / (L − 1) (4)

where u indicates the physicochemical properties index; L is the
length of the viral circRNA sequence;Di ∈ {AA, AC, AG, AU, CA, CC,
CG, CU, GA, GC, GG, GU, UA, UC, UG, UU}, 1 ≤ γ < L, Pu represents
the mean value of the ith row of the above physical and chemical
attribute matrix.

Pseudo ribonucleic acid composition

This feature uses sequence local sequence information and
sequence global sequence information to represent RNA

sequences, which is composed of two parts: (i) General parallel
correlation pseudo dinucleotide composition (PC-PseDNC), (ii)
general series correlation PC-PseDNC (SC-PseDNC). The PC-
PseDNC method considers the parallel correlation between two
dinucleotides under certain physical and chemical properties.
SC-PseDNC method considers the continuous correlation of two
dinucleotides under certain physical and chemical properties.

Structural features

Local structure-sequence triplet element (Triplet) express RNA
sequence by counting the status of secondary structure. Triplet
is an early method that uses structural information from RNA
sequences and can calculate secondary structure characteristics.
Triplet calculates its secondary structure through the Vienna
RNA software package (version 2.1.6), and each nucleotide has
two states (paired or unpaired), which are represented by brack-
ets ‘(“or”)’ and dots ‘.’, respectively.

Identification of viral circRNA based on sequence
features

Just as we used three tools developed based on RNA-Seq data
(circRNA_finder, find_circ and CIRI) when processing the dataset.
However, on the other hand, many pieces of research on RNA
recognition and site detection are based on machine learning.
Moreover, with the increase of circRNA sequences, there are
more and more researches using machine learning methods to
predict circRNA [19, 22, 36, 43, 48]. Based on the characteristics
of sequence data, the use of MLAs to develop viral circRNA
prediction models is another important direction for predict-
ing circRNA. For another, viral circRNA sequences are gradually
increasing. Therefore, how to use the characteristics of viral
circRNA sequences to identify viral circRNA more accurately
is a problem that needs to be studied. First, we constructed
a new dataset, including the sequence data of viral circRNA
(positive example) and circRNA (negative example). Then used
MLAs (NB, SVM and RF) to analyze the effectiveness of the
sequence feature descriptors of the viral circRNA analyzed above
and predictive performance. RF is an important bagging-based
ensemble learning method, which can be used for classification,
regression and other problems. Its composition is composed of
multiple weak learners, and it is relatively simple to implement.
The parameters in the SVM, RF and NB algorithms directly use
the default parameters, and the programming environment used
is python3.7.4. We performed 10-fold cross-validation and inde-
pendent test set validation and used accuracy as an evaluation
indicator.

Analysis of the function between viral circRNA
and miRNA

TargetScan 7.0 [52], miRanda [53] and CCmiR [54] software pro-
grams were used to predict the circRNA-miRNA interaction,
and the intersection was performed to obtain a more accurate
target gene. TargetScan 7.0 is a method for predicting miRNAs
targets based on the homology of seed regions. MiRanda is a
method of miRNA target prediction based mainly on the free
energy combination of miRNA and its target genes. Moreover,
the binding strength of the target gene is inversely proportional
to the free energy. The lower the free energy, the stronger the
binding. CCmiR is a method based on a hidden Markov model, a
statistical method that models the observations generated from
a hidden Markov chain. CCmiR has an optional file input, miRNA
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expression information, which considers the expression level
of miRNAs and the competition and cooperation of multiple
miRNAs. The percentile of the TargetScan score was less than
50, and the maximum free energy value of miRanda was less
than 10, and a Miranda score greater than 140 was defined as
the cutoff point for target prediction. Target prediction takes the
intersection of the three results.

Functional enrichment analysis of viral circRNAs

Functional enrichment of viral circRNA source genes or potential
target genes to determine its potential biological functions is
an important method for studying circRNA. Therefore, based on
the 1592 high-confidence circRNA from the virus, we used The
Database for Annotation, Visualization and Integrated Discovery
(DAVID) [55] to perform GO and KEGG enrichment analysis of
miRNA target genes to further understand the potential func-
tions of circRNA. DAVID is a biological information database
that integrates biological data and analysis tools to provide
systematic and comprehensive biological function annotation
information for large-scale gene or protein lists. GO analysis
evaluates from three aspects: BP, MF and CC. We also analyzed
related pathways through KEGG.

Key Points
• We built the first recognition model for viral circRNAs

using MLAs.
• Viral circRNAs and animal circRNAs have relatively

subtle distinctions in sequence composition and obvi-
ous differences in structural characteristics and auto-
correlation characteristics.

• Viral circRNAs may be involved in many KEGG path-
ways related to nervous system and cancer.
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