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ABSTRACT
Extracting expressive visual features is crucial for accurate Click-
Through-Rate (CTR) prediction in visual search advertising systems.
Current commercial systems use off-the-shelf visual encoders to
facilitate fast online service. However, the extracted visual features
are coarse-grained and/or biased. In this paper, we present a visual
encoding framework for CTR prediction to overcome these prob-
lems. The framework is based on contrastive learning which pulls
positive pairs closer and pushes negative pairs apart in the visual
feature space. To obtain fine-grained visual features, we present con-
trastive learning supervised by click-through data to fine-tune the
visual encoder. To reduce sample selection bias, firstly we train the
visual encoder offline by leveraging both unbiased self-supervision
and click supervision signals. Secondly, we incorporate a debiasing
network in the online CTR predictor to adjust the visual features
by contrasting high impression items with selected, low impression
items. We deploy the framework in a mobile E-commerce app. Of-
fline experiments on billion-scale datasets and online experiments
demonstrate that the proposed framework can make accurate and
unbiased predictions.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Visual search advertising systems have been embraced by E-commerce
platforms such as Amazon and Taobao, and have become a billion
dollar business. In visual search advertising systems, items are dis-
played with images and the images of items are accepted as queries.
E-commerce platforms display ads in search results whenever a
user searches for an item, and gain revenue whenever the user
clicks an ad. The decision of ad placements is based on the product
of predicted Click-Through-Rate (CTR) and the bid price. Therefore,
to improve the performance of CTR prediction and consequently
increase revenue, extracting expressive visual features from item
images to match user intent, is of vital importance.

Current commercial visual search systems consist of two compo-
nents [6], the Visual Encoder with various Deep Neural Network
(DNN) based modules which is trained off-the-shelf to extract vi-
sual features, and the CTR predictor fuses visual features with
non-visual features in different DNN modules to make predictions.
However, training the Visual Encoder is challenging. On one
hand, training the Visual Encoder with non-click-through sig-
nals leads to sub-optimal, coarse-grained feature representations.
For example, if the training task uses category labels, the feature
representations can distinguish the category of clothes, but can not
discover subtle style differences, which have a significant impact
on user behaviors [11]. On the other hand, if the Visual Encoder
uses interaction signals such as clicks or purchases to be labels, it
will face the problem of sample selection bias. For example, ads
with low impressions (i.e., displayed less often in the system) will
receive fewer positive labels and therefore are under-represented
in the learning process.

This paper describes our solution in Alibaba. To facilitate real-
time CTR prediction at scale, our solution also consists of two
components, i.e., an off-the-shelf Visual Encoder and an online
CTR predictor. Our work is based on contrastive learning, i.e., the
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learned feature representation of positive sample is pulled closer
to the anchor image, while representation of a negative sample
is pushed apart. Visual Encoder is firstly pre-trained with self-
supervised contrastive loss, with random negative samples. It is
then fine-tuned with supervised contrastive loss, where the selec-
tion of positive and negative samples is dependent on user clicks.
Thus, we obtain finer-grained, more expressive visual features for
CTR prediction, by leveraging user behavior information. In CTR
predictor, we feed the extracted visual features through a debias-
ing network before fusing with non-visual features. The debiasing
network regularizes the CTR prediction loss with a contrastive loss,
which encourages similar images from low impression items and
high impression items to assemble. In this manner, we reduce the
selection sample bias which has been introduced in the previous
finetuning stage, while preserving the CTR prediction accuracy.

In summary, our contributions are three-fold. (1) We study the
problem of sample selection bias in visual features in advertising
systems, which has not been explored in literature. Solutions to
this problem shed light on the well-known “accuracy-diversity”
dilemma in recommender systems. (2) We present a novel approach,
which operates at scale, to extract effective visual features for ac-
curate and unbiased CTR prediction. (3) Offline experiments on
ten-billion scale real production datasets demonstrate that the pro-
posed pretraining-finetuning-debiasing framework has increased
the accuracy of CTR prediction, especially for long-tail ads. Online
A/B testing shows that, deploying the solution in a mobile advertis-
ing app improves performance metrics such as the click-through
rate and revenue per mille.

2 RELATEDWORK
Previous work [1] extracts visual features of raw image and predicts
CTR in one step. To speed up training online advertising system
which encounters massive responses everyday, adopting off-the-
shelf visual feature extraction modules has recently gained popular-
ity [3–7, 15, 16, 18, 19]. Most of them use CNNs as a visual encoder
and pre-train the CNNs on image classification task. To learn visual
compatibility across categories for fashion recommendation, the
visual encoder in [16] is pre-trained with weakly-labeled clothing
collocation data. To learn category-specific inter-channel depen-
dency, category-specific CNNs are adopted [6]. While images can
be similar from multiple perspectives, training the visual encoder
with image category labels is sub-optimal for CTR prediction.

The click-through data is inheritantly biased, because ads must
be exposed before being clicked. There are fruitful literature to
alleviate Sample Selection Bias in the search and recommendation
community, e.g., adapt models from causal inference [9, 12, 17], or
leverage purchase-related actions with multi-tasking [8, 13, 14] to
transfer features in entire action space. However, to the best of our
knowledge, SSB in visual feature extraction has not been explored.

3 METHODOLOGY
As shown in Figure 1, the Visual Encoder (Section 3.1) extracts vi-
sual features for any image. It consists of two stages: S1 and S2, both
of which are based on contrastive learning. The Visual Encoder
is trained offline separately, while the online serving system is the

CTR predictor (Section 3.2). A debiasing network is plugged in
CTR predictor to process visual features for ad items.

3.1 Visual Encoder
S1: Pretraining Visual Encoder. The standard self-supervised
contrastive learning scheme is adopted. In a mini-batch of images
N𝑆1, for each anchor image 𝑖 ∈ N𝑆1, we augment it with a series
of transformation, including random cropping, random color jitter,
random grayscale, and random flipping. Thus, the positive sample
𝑖 ′ is obtained by 𝑖 ′ = 𝑡 (𝑖), where 𝑡 (·) represents the transformation.
The rest of the images within the mini-batch are considered as
negative samples. Then, the anchor image, the positive sample, and
the negative sample go through a visual encoder to obtain their
visual features, by minimizing the contrastive loss:

L𝑆1 = −
∑︁
𝑖∈N𝑆1

log
exp

(
𝑔(v𝑆1

𝑖
, v𝑆1
𝑡 (𝑖) )

)∑
𝑗 ∈N𝑆1∪{𝑡 (𝑖) } exp

(
𝑔(v𝑆1

𝑖
, v𝑆1
𝑗
)
) , (1)

where v𝑆1
𝑖

∈ R𝐷 is the output visual feature vector of image 𝑖 , 𝐷
is the embedding size, 𝑔(v𝑆1

𝑖
, v𝑆1
𝑗
) = 𝑐𝑜𝑠𝑖𝑛𝑒 (v𝑆1

𝑖
, v𝑆1
𝑗
) is the cosine

similarity between two visual feature vectors.
S2: Finetuning Visual Encoder. After pre-training the visual

encoder, we fine-tune its parameters. The difference between S2
and S1 lies in the construction of positive and negative samples.

Clicks are one of the most invaluable sources to estimate visual
relevance of an item given the query image. Thus we use the image
of a clicked item as positive sample for an image query. However,
it is well known that lack of clicks does not indicate irrelevance.
To improve the quality of negative samples, we use the category
information to build a negative sample pool. In E-commerce, each
image is clearly labeled by its category (e.g., in the clothing section,
an image could be labeled as “dress” or “pants”, etc.).

For each query image 𝑞, we sample a clicked image 𝑖 as 𝑞’s
positive image. The category label of 𝑖 is denoted by 𝑐𝑖 , N𝑆2

𝑐𝑖
is a

collection of images of category label 𝑐𝑖 which can be seen as a
negative sample pool.

L𝑆2 = −
∑︁
𝑞∈Q

log
exp

(
𝑔(v𝑆2𝑞 , v𝑆2𝑖 )

)∑
𝑗 ∈N𝑆2

𝑐𝑖
∪{𝑖 } exp

(
𝑔(v𝑆2𝑞 , v𝑆2𝑗 )

) , (2)

where v𝑆2
𝑖

∈ R𝐷 is the output visual feature of image 𝑖 in stage
S2. It is of the same size as v𝑆1

𝑖
. 𝑗 ∈ N𝑆2

𝑐𝑖
restricts negative samples

belong to the same category as anchor, thus the negative samples
are more informative and the contrastive task will be more difficult.

3.2 CTR Predictor
The CTR predictor aims to rank items in a pool of candidate ads
to be displayed by predicting the possibility of each item 𝑝 being
clicked by user 𝑢 given query 𝑞 under context 𝑥 . The inputs include
the image of the item (to simplify notations, we also use 𝑝 to denote
the item image), other item metadata such as item ID, shop ID,
brand, category, price, and so on, user features such as user ID,
user demographic features, preferred categories, and so on, context
features such as device and position. Each query is an image, also
denoted as 𝑞.

Debiasing Network. It is possible that S2 introduces sample
selection bias to the visual features. For example, long-tail items
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Figure 1: The proposed architecture. Left: offline Visual Encoder. Right: online CTR predictor.

with small impressions (i.e., number of times the ad has been dis-
played in total) are less likely to be clicked, so they consequently
make little contribution to S2. To eliminate such bias, in the CTR
predictor, each item image goes through a debiasing network,
which is also based on contrastive learning. Our intuition is to pull
image-pairs that are visually similar but significantly different in
the number of impressions closer. In order to mine such sample
pairs, we use unbiased S1 representation to depict the similarity of
images and construct debiasing samples.

To construct positive sample for each anchor item image 𝑝 , item
image 𝑝 to be displayed, we go through two steps. Firstly we re-
trieve a set P̃ = {𝑝 ′} of K most similar images of non-displayed
items with the same category label. We use the visual features
extracted by stage S1 to compute the similarity, i.e., 𝑠𝑖𝑚(𝑝, 𝑝 ′) =
𝑐𝑜𝑠𝑖𝑛𝑒 (v𝑆1𝑝 , v𝑆1𝑝′ ), so that the similarity will not be biased against
long-tail items. Secondly, the positive sample is selected based on
the similarity, i.e., 𝑃𝑟 (𝑝 ′) = 𝑠𝑖𝑚(𝑝, 𝑝 ′)/∑

𝑝′∈P̃ 𝑠𝑖𝑚(𝑝, 𝑝 ′), where
𝑃𝑟 (𝑝 ′) is the probability of 𝑝 ′ being selected as a positive sample.
The negative sample of each anchor is randomly selected.

Then, the debiasing network D feeds a Multilayer Perceptron
(MLP) with the visual features obtained by S2, i.e., v𝑆2𝑝 . The image
𝑝 is then contrasted positively with 𝑝 ′ and negatively with other
images in the mini-batch N𝐶𝑇𝑅 .

L𝐷 = −
∑︁

𝑝∈N𝐶𝑇𝑅

log
exp

(
𝑔(v𝐷𝑝 , v𝐷𝑝′)

)∑
𝑜∈N𝐶𝑇𝑅∪{𝑝′ } exp

(
𝑔(v𝐷𝑝 , v𝐷𝑜 )

) , (3)

where v𝐷𝑝 ∈ R𝐷 is the output visual features of image 𝑝 in by
the MLP, i.e., v𝐷𝑝 = 𝑀𝐿𝑃 (v𝑆2𝑝 ). Minimizing L𝐷 pushes item images
with high impressions to be closer to similar item images with low
impressions, and thus mitigates the bias of v𝑆2𝑝 .

Next, v𝑆2𝑝 and v𝐷𝑝 go through a gating layer to generate effective

and unbiased visual features for item 𝑝 . 𝛼 = 𝜎

(
W𝑇

[
v𝑆2𝑝 , v

𝐷
𝑝

] )
,

where 𝜎 (·) is the sigmoid function, W is a learnable weight matrix,[
· · ·

]
is the concatenation of several vectors/scalers. Finally, the

visual feature of item 𝑝 is obtained: v𝑝 = 𝛼v𝑆2𝑝 + (1 − 𝛼)v𝐷𝑝 .
Since in this paper we focus on visual encoding, the rest of the

CTR predictor can be very flexible as the pretraining-finetuning-
debiasing network can plug into various frameworks. In the experi-
ments, the visual feature of the query image 𝑞 is generated by the
fine-tuned Visual Encoder, i.e., v𝑞 = v𝑆2𝑞 . The CTR predictor

takes input of non-visual features, transforms them into embedding
vectors through lookup tables, and feeds the concatenation of all
embedding vectors to a tower MLP to make the prediction. Overall,
the CTR predictor is optimized by minimizing the loss function:

L𝐶𝑇𝑅 = L𝑝𝑟𝑒𝑑 + L𝐷 , (4)

where L𝑝𝑟𝑒𝑑 = −∑
𝑦∈N𝐶𝑇𝑅

[
𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦)

]
is the

cross-entropy loss to evaluate CTR prediction accuracy, 𝑦 ∈ {0, 1}
is the actual click, and 𝑦 is the predicted click probability. By in-
corporating L𝐷 , the debiasing network is trained jointly with CTR
predictor to achieve accurate and unbiased predictions.

4 EXPERIMENTS
In this section we analyze our experimental results in offline and
online evaluations. The backbone of the visual encoder in S1 and S2
is ResNet50. We set the dimension size of visual features as 𝐷 = 512.
In the debiasing network, we select 𝐾 = 15 similar images, the MLP
has three hidden layers with 128, 16, 128 units, and the activation
functions are 𝑅𝑒𝐿𝑈 , 𝑡𝑎𝑛ℎ, 𝑅𝑒𝐿𝑈 . The output layer has 512 units to
output the visual feature vector. The tower MLP in CTR predictor
has three hidden layers with 512, 256, 128 units, and the activation
functions are 𝑅𝑒𝐿𝑈 , the output layer applies the sigmoid function
to bound the prediction to (0, 1). We use the Adagrad optimizer
with learning rate 0.05.

4.1 Offline Visual Search Evaluation
Dataset. To evaluate whether the extracted visual features are
effective in identifying items, we perform a visual search task on
an internal dataset. The dataset contains tens of thousands of item
images sampled from multiple categories in our production system
(e.g., clothing section, digital device section, furniture section, and
so on.). The relevant image-pairs are manually annotated. The
relevance judgement is binary (i.e., relevant or irrelevant), and it is
based on a set of factors including style and design.
Baselines.We compare the following visual encoders, including
deep neural network classifiers and basic contrastive learning meth-
ods. (1) ResNet-C: a ResNet50 is trained on the item images to
predict the correct category labels. (2) S1: ResNet50 trained with
self-supervised contrastive loss as in stage S1; (3) S2: the ResNet50
trained with click-through supervisions as described in stage S2; (4)
S1+S2: first pre-train the ResNet50 as in stage S1 and then fine-tune
it as in stage S2.
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Table 1: Visual search performance

Method HR LR CR
LR@10 LR@100 CR@10 CR@100

ResNet-C 0.2626 0.5126 0.5123 0.8132 0.7791
S1 0.8504 0.5001 0.5059 0.6357 0.5524
S2 0.8510 0.5184 0.5174 0.7178 0.6318

S1+S2 0.8825 0.5259 0.5207 0.7540∗ 0.6850∗

Evaluation Metric. After training each visual encoder𝑀 , visual
feature vectors are extracted, we rank the images based on cosine
similarity of visual feature vectors to the query image𝑞. The result is
denoted asM𝑞 . We adopt three evaluation metrics. (1) The primary
metric is HitRatio, i.e., 𝐻𝑅 =

∑
𝑞 |Q𝑞

⋂M𝑛𝑞
𝑞 |/∑𝑞 |Q𝑛𝑞𝑞 |, where 𝑛𝑞

is the number of relevant images in the groundtruth |Q𝑞 | = 𝑛𝑞 .
Higher 𝐻𝑅 suggests higher search accuracy. (2) To reveal the diver-
sity of results, we compute the ratio of images with low impressions
in the returned images, i.e., 𝐿𝑅@𝐾 =

∑
𝑞 |L

⋂M𝐾
𝑞 |/∑𝑞 |M𝐾

𝑞 |,
where L is the set of images which receive less than five impres-
sions during the last 30 days, and M𝐾

𝑞 is the top-K results. Higher
𝐿𝑅@𝐾 suggests that the visual encoder is more fair to items with
low impressions. (3) We also compute a supplementary metric,
the ratio of images with the same categories in the results, i.e.,
𝐶𝑅@𝐾 =

∑
𝑞 |C𝑞

⋂M𝐾
𝑞 |/∑𝑞 |M𝐾

𝑞 |, where C𝑞 is the set of images
which are under the same category label of query image 𝑞. 𝐶𝑅
provides information about the granularity of the visual features.
Analysis. As shown in Table 1, the proposed off-the-shelf visual
encoding framework (i.e., S1+S2) achieves both highest accuracy
(i.e., HR) and highest coverage of low impression items (i.e., LR).
It outperforms using only self-supervision and click signals (i.e.,
S1 and S2 alone) in terms of all metrics, because the pretraining-
finetuning framework adopts click-through data to obtain finer-
grained features, and the self-supervision mitigates bias in click-
through data. Although the conventional ResNet Classifier produces
the highest CR, its HR is the lowest, which suggests that using
category labels as supervision is able to capture coarse-grained
category specific features but fails to capture fine-grained details
such as style and design.

4.2 Offline CTR Evaluation
Dataset. The offline CTR evaluation is conducted on a billion-scale
dataset, which is collected from our production system, the training
data spans for a period of 15 days sampled from July, 2021,with 0.4
billion different item images and 1 billion samples. The testing data
is collected from the next day of the last training date.
Evaluation protocols. The competitors are CTR predictors using
different visual encoding modules, including (1) ResNet-C, (2) VGG
trained with category labels [10], (3) VIT trained with category
labels [2]. We also conduct ablation study with different combina-
tions of S1, S2, and D (debiasing network). The evaluation metric
is AUC. We report the average AUC results and the AUC results
on items with the lowest impressions (bottom 10%) and the highest
impression (top 10%).
Analysis. As shown in Table 2, compared with the best competi-
tor ResNet, the proposed framework S1+S2+D increases AUC on
testing set by 5%. Given the scale of our data, this is a significant
improvement. Comparing among the different combinations of pre-
training, finetuning and debiasing, we can see that neither S1 nor
S2 alone can achieve optimal results. Furthermore, although S1+S2

Table 2: CTR prediction on billion-scale E-commerce data

Method Visual Encoding AUC
Impression Bottom10% Top10% Overall

Competitors
ResNet-C 0.7061 0.6959 0.7042
VGG 0.6667 0.6679 0.6779
VIT 0.7047 0.6971 0.6981

Ablation

S1 0.6874 0.6942 0.7034
S2 0.7340 0.7240 0.7293

S1+S2 0.7673 0.7494 0.7515
S1+S2+D 0.7681 0.7495 0.7518

Figure 2: A case study of debiased item ranking

Figure 3: CTR and RPM improvements during A/B testing

can already produce good predictions, with the debiasing network,
S1+S2+D is able to further improve predictions on low impression
items over S1+S2, while preserving the overall accuracy for all items.
We demonstrate the necessity of adopting the debiasing network
by a case study in Figure 2, where the second result of S1+S2 is
a more popular but not similar item, while S1+S2+D reduces bias
against low impression items.
4.3 Online CTR Evaluation
Finally we conduct an online A/B testing on the visual sponsor
search system of mobile Taobao. The items of the control group in
the A/B test period are provided by the previous version of online
ranking system, which is based on S2 for visual encoding. The
items offered to the experiment group are ranked based on the
visual encoding S1+S2+D. We report the performance during 24
hours of the A/B test period. In Figure 3, 𝑥 represents the hours in
a day, 𝑦 represents the CTR improvements and RPM (Revenue per
Mille) improvements of the proposed framework with respect to the
previous version up to this hour. We observe stable and significant
increase of CTR (4% ∼ 5%) and RPM (1% ∼ 2%).

5 CONCLUSION
This paper presents a pretraining-finetuning-debiasing framework
to extract fine-grained and unbiased visual features for CTR predic-
tion. The proposed system has been deployed in mobile taobao.
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