
Multi-view Heterogeneous Temporal
Graph Neural Network for “Click

Farming” Detection

Zequan Xu1, Qihang Sun2, Shaofeng Hu2, Jiguang Qiu3, Chen Lin1,
and Hui Li1(B)

1 School of Informatics, Xiamen University, Xiamen, China
xuzequan@stu.xmu.edu.cn, {chenlin,hui}@xmu.edu.cn

2 Tencent, Guangzhou, China
{aaronqhsun,hugohu}@tencent.com

3 Xiamen Meiya Pico Information Co., Ltd., Xiamen, China
qiujg@300188.cn

Abstract. Multi-purpose Messaging Mobile App (MMMA) combines
several functionalities in a single APP to provide integrated service that
brings tremendous convenience to users. Therefore, MMMAs become
more and more popular. However, the prevalence of MMMAs also makes
them a hotbed for cybercrime. Among them, “Click Farming” fraud
requires special attention, as it causes substantial pecuniary losses and
is challenging to detect. In this paper, we describe Multi-view Hetero-
geneous Temporal Graph Neural Network (MHT-GNN), a framework
for detecting “Click Farming” fraudsters in a popular MMMA called
WeChat. We first adopt a Heterogeneous Temporal Graph (HTG) to
model spatial, heterogeneous and temporal information contained in
MM-MA data. We then extract two different types of user history
sequences as two “views” of user behavior patterns from HTG. MHT-
GNN contains a pretraining phase and a detection phase. The main com-
ponents in MHT-GNN include Inductive Heterogeneous GNN Encoder,
Temporal Snapshot Sequence Encoder, and User Relation Sequence
Encoder. The first encoder aims to capture spatial information and the
heterogeneity in each snapshot of HTG. The later two encoders are
designed to incorporate temporal information to better reveal user’s
behavior patterns and MHT-GNN leverages them to capture the two
different views of user history behavior data. We conduct experiments
on a real-world, million-scale dynamic graph extracted from WeChat.
Experimental results demonstrate the effectiveness of MHT-GNN: it sig-
nificantly exceeds existing detection methods, and it is able to block
“Click Farming” fraud activities.

Keywords: Click farming detection · Multi-purpose messaging mobile
app · Graph based anomaly detection · Graph neural network

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Khanna et al. (Eds.): PRICAI 2022, LNCS 13629, pp. 148–160, 2022.
https://doi.org/10.1007/978-3-031-20862-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20862-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-20862-1_11

MHT-GNN for “Click Farming” Detection 149

1 Introduction

Smart phones have become an essential tool in our everyday life and they pro-
vide different functionalities (e.g., socializing, online games, online shopping and
mobile payment) via installed apps. Nowadays, one single app is no longer limited
to one application scenario. Several functionalities can be assembled in one app
to provide integrated service that helps users handle their daily demands. Such
apps are often referred to as Multi-purpose Messaging Mobile Apps (MMMAs).
WeChat, with over a billion users, is a representative app in this category. Users
can easily chat with their friends using texts, voice messages or voice/video calls
provided by WeChat. Moreover, the digital payment service of WeChat has rev-
olutionized people’s daily life: we can simply use QR code to replace wallet and
transfer money, which is more convenient and safer.

Fig. 1. An illustration of “Click Farming” in WeChat.

The great convenience brought by MMMAs attracts more and more users.
On the other hand, the prevalence of MMMAs like WeChat makes them a hotbed
for cybercrime [19]. This paper studies the detection task of “Click Farming” in
WeChat: a type of deception that recently emerges. As depicted in Fig. 1, in
“Click Farming” frauds, fraudsters first use illegally acquired personal informa-
tion (e.g., phone number) and send “add friend” requests to victims (i.e., ADD in
Fig. 1 - Step 1). Additionally, certain chat groups are created where cybercrimi-
nals enter and disguise as normal users (i.e., ENTER and CREATE in Fig. 1 - Step
1). Then, fraudsters will invite victims (i.e., PULL in Fig. 1 - Step 2) to join these
groups (i.e., ENTER in Fig. 1 - Step 2) by using high reward as bait. After that,
group members are encouraged to complete some tasks (i.e., FINISH in Fig. 1 -
Step 3) posted in the group (i.e., POST in Fig. 1 - Step 3). Typical tasks include
buying a number of products or topping up online shopping cards. The first a
few tasks are easy. Victims do not need to pay too much (i.e., TRANSFER in Fig. 1
- Step 3) and fraudsters pay the commission as promised to gain the trust of
victims. With victims’ guard down, fraudsters raise the request of new tasks and
ask victims to pay much more money. Victims may see that other group mem-
bers (they are conspirators) complete new tasks and get reward. Hence, they
decide to pay the money to complete new tasks. However, after victims transfer

150 Z. Xu et al.

money, fraudsters disappear and do not response anymore (i.e., DISAPPEAR in
Fig. 1- Step 4).

Due to the pecuniary losses that “Click Farming” frauds cause, the “Click
Farming” fraudsters detection task (the CFD task) requests our attention. The
social nature of WeChat makes it a natural choice to model WeChat user rela-
tionships as a user-user interaction graph. This way, the CFD task is closely
related to Graph-based Anomaly Detection (GBAD) [1]. However, the CFD
task in WeChat has unique properties and therefore is more challenging. The
data of WeChat is dynamic and diverse. A fraudster may appear to be normal
in each individual snapshot. But he/she becomes suspicious when considering
all his/her different behaviors at each snapshot together.

In the literature, only few works [17,21] study the GBAD task in the dynamic
setting. But they cannot handle both dynamics and diversity of WeChat data
well. Particularly, all previous works leverage only one view of dynamic data
(e.g., viewing states of a node in different snapshots of the dynamic graph as
a sequence [21]), which is not sufficient to model the dynamic and diverse user
behaviors in the CFD task. We propose a framework Multi-View Heterogeneous
Temporal Graph Neural Network (MHT-GNN) for the CFD task in WeChat.
We extract two types of user history sequences from our designed Heteroge-
neous Temporal Graph (HTG) as two “views”. Then, MHT-GNN captures both
temporal dependencies (dynamics) and behavior patterns (diversity) from user
history sequences and the HTG through multi-view learning and graph repre-
sentation learning. To our best knowledge, we are the first to study the “Click
Farming” detection problem in MMMAs. The contributions of this work can be
summarized as follows:

– We analyze and design features used in the CFD task of WeChat. We further
propose a Heterogeneous Temporal Graph to model diverse MMMA data.

– We adopt an Inductive Heterogeneous graph encoder to capture spatial depen-
dencies and heterogeneity in WeChat. It provides better representation learn-
ing for the WeChat graph compared to other GNN-based methods and it can
generalize to unseen nodes.

– We construct two types of user history sequences for each node as two “views”
of the dynamic data. We further design two encoders to encode two views
to capture the temporal dependencies and behavior patterns, which helps
generate better node representations in the CFD task.

– We conduct evaluations on a million-scale real-world graph extracted from
the CFD task in WeChat. Results show that MHT-GNN exceeds existing
methods by a large margin.

2 Related Work

2.1 Graph-Based Anomaly Detection (GBAD)

Anomaly detection identifies the abnormal patterns that deviate from the
majorities [8]. Graph-based Anomaly Detection (GBAD) extends it to the graph

MHT-GNN for “Click Farming” Detection 151

data. Earlier methods for GBAD are mainly based on handcrafted feature engi-
neering [6]. Recent works are mostly inspired by the deep learning techniques.
DOMINANT [4] leverages the graph embeddings from GCN to reconstruct the
original adjacent matrix for anomaly detection. ALARM [12] further employs
multiple attributed views to describe different perspectives of the objects for
anomalies detection. Different from previous methods that jointly learn the node
representation and the classifier, DCI [18], inspired by the recent advances of self-
supervised learning, decouples these two phases for node representation learning.

Fig. 2. Overview of MHT-GNN.

2.2 Anomaly Detection in Dynamic Graphs

Anomaly detection in dynamic graphs attracts increasing interest since many
real-world networks can be generally represented in the form of dynamic
graphs. Earlier methods such as CAD [15] detect node relationships respon-
sible for abnormal changes in graph structure by tacking a measure that com-
bines information regarding changes in both graph structure and edge weights.
StreamSpot [10] is a clustering based approach that introduces a new similar-
ity function for heterogeneous graph comparison. Another branch of approaches
employs deep learning. [21] first utilizes temporal GCN and attention mech-
anism to model short-term and long-term patterns. Then a GRU network is
introduced to process such patterns and encode temporal features. NetWalk [20]
adopts a random walk based encoder to learn the network representations and
employs a clustering-based anomaly detector to score the abnormality of each
edge. StrGNN [2] extracts the h-hop enclosing subgraph of edges and labels each
node to identify its corresponding role in the subgraph. Then it leverages GCN
and GRU to capture the spatial and temporal information for anomaly detection.

152 Z. Xu et al.

3 Our Framework MHT-GNN

3.1 Overview

Figure 2 provides an overview of MHT-GNN. It consists of two phases: pretrain-
ing and detection. We first extract node features (Sect. 3.2) and construct a
Heterogeneous Temporal Graph (Sect. 3.3) for WeChat data. Then, in the pre-
training phase (Sect. 3.4), we construct two types of history sequence for each
node in the constructed graph, namely temporal snapshot sequence and user
relation sequence. These two types of sequences can be regarded as two “views”
of user history sequence for each user. MHT-GNN generates embeddings for
each node in each snapshot using an Inductive Heterogeneous GNN Encoder
(IHG-Encoder).

Based on the graph representations generated by IHG-Encoder, tempo-
ral snapshot sequences and user relation sequences are passed through our
designed Temporal Snapshot Sequence Encoder (TSS-Encoder) and User Rela-
tion Sequence Encoder (URS-Encoder) to generate more informative represen-
tations, respectively.

In the detection phase (Sect. 3.5), MHT-GNN uses pretrained encoders to
generate sequence representations for predicting the suspicious score of a user.

3.2 Feature Extraction

For each user, we pre-extract six features from WeChat data based on the knowl-
edge of human experts. Note that the detection of “Click Farming” fraudsters
should not violate users’ privacy. Hence, private information like chat content
(text, video or speech) in WeChat is unaccessible. The data used for the CFD
task is chosen through a strict investigation process in order to protect users’
privacy.

3.3 Graph Construction

To capture the diverse behavior patterns in the WeChat graph, we construct
a heterogeneous graph [14] capable of modeling heterogeneous spatial depen-
dencies among different types of node entities and relations. Among different
nodes and behaviors in WeChat, we consider two key node types (i.e., users and
chat groups) and three important relation types: “join a group” (ENTER), “invite
someone to join a group” (PULL) and “become WeChat friends” (ADD). The het-
erogeneous graph not only depicts the graph structure of WeChat graph, but
also provides a higher-level abstraction of the user association. For example, a
pattern of fraudulent user PULL−−−→normal user ENTER−−−→group ENTER←−−−fraudulent user in
the heterogeneous graph can characterize a “Click Farming” fraud case: a fraud-
ster invites a victim to join a chat group and another fraudster is also a member
of this group.

Based on the above designed heterogeneous graph, we propose to further
consider temporal dependencies (i.g., evolving user states and behaviors) and
build a Heterogeneous Temporal Graph (HTG) for the CFD task:

MHT-GNN for “Click Farming” Detection 153

Definition 1. Heterogeneous Temporal Graph (HTG). We model a HTG as a
graph stream consists of discrete snapshots. Let the latest timestamp be T . A
graph stream can be denoted as G = {Gt}Tt=1, where each Gt = (Vt, Et) is a
heterogeneous graph at timestamp t. We use nt = |Vt| and mt = |Et| to denote
the number of nodes and edges at timestamp t, respectively.

HTG is the combination of several basic heterogeneous graphs from different
time points. And each basic heterogeneous graph of the HTG is a snapshot of
the HTG at the corresponding time point.

3.4 Pretraining Phase

Inductive Heterogeneous GNN Encoder (IHG-Encoder). We adopt an
IHG-Encoder as the backbone of MHT-GNN for encoding graph data.

In the following, we only consider one snapshot of the WeChat graph to
illustrate IHG-Encoder. We first project the raw user features pv ∈ R

6 of a
user u to a feature space and utilize projected features as the initial user node
embedding for u. For the initial embeddings of a group node g, we aggregate all
its members’ initial embeddings:

h(0)
v = Whpv, h(0)

g = mean({hv′ ,∀v′ ∈ Ng}) (1)

where h(0)
v and h(0)

g are initial embeddings for the user node v and the group
node g, respectively. Ng denotes users in g, and Wh is a learnable matrix.

The messaging passing mechanism in IHG-Encoder is relation-wise. Repre-
sentations of neighboring nodes connected to a user u by the same relation r are
aggregated by three different pooling methods. Results are concatenated and
passed to a single-layer feedforward neural network:

x(k+1)
Nr

i
= mean(h(k)

r,j1
, . . . ,h(k)

r,j∗) h(k+1)
Nr

i
= x(k+1)

Nr
i

⊕ y(k+1)
Nr

i
⊕ z(k+1)

Nr
i

y(k+1)
Nr

i
= max(h(k)

r,j1
, . . . ,h(k)

r,j∗) m(k+1)
Nr

i
= Wrh

(k+1)
Nr

i
+ br

z(k+1)
Nr

i
= sum(h(k)

r,j1
, . . . ,h(k)

r,j∗)

(2)

where the superscript (k) indicates the k-th iteration, ⊕ is the concatenation
operation, Nr

i denotes the relation-r-based neighbors of node i and j∗ ∈ Nr
i .

h(k)
r,j∗ is the representation of node j∗ for relation r, and h(0)

r,j∗ is equivalent to
h(0)
j∗ . mean(·),max(·) and sum(·) are average pooling, max pooling and sum

pooling, respectively. Wr and br are learnable weights for relation type r.
IHG-Encoder adds a self-connection to each node so that the original node

attributes extracted based on human knowledge can be retained in message
passing:

s(k+1)
r,i = Wr,sh

(0)
r,i + br,s, g(k+1)

r,i = RELU(m(k+1)
Nr

i
⊕ s(k+1)

r,i) (3)

154 Z. Xu et al.

where Wr,s and br,s are learnable parameters and RELU(·) is the Rectified
Linear Unit. The acquired gr,i is then passed to a feedforward neural network
with an L2 normalization:

q(k+1)
r,i = RELU(Wr,qg

(k+1)
r,i + br,q), h(k+1)

r,i = q(k+1)
r,i

/∥∥∥q(k+1)
r,i

∥∥∥ (4)

where Wr,q and br,q are learnable weights, and hr,i indicates the final generated
representation of i w.r.t. the relation r.

The output representations of node i for all relations will go through an
inter-relation aggregation module and the result is the representation for node
i:

h(k+1)
i = AGG({h(k+1)

r,i ,∀r ∈ R}) (5)

where AGG is the aggregation function and we adopt mean pooling. IHG-
Encoder stacks two of the above GNN layers (i.e., Eqs. 2, 3, 4 and 5) to generate
the final representation of node i. Note that some user nodes may only exist in
certain view of the constructed heterogeneous graph, e.g., a user only has ADD
actions in the considered time period. For other views the users are absent, their
corresponding passing messages will be set to zero.

IHG-Encoder can be optimized with a standard binary cross entropy loss
over labeled nodes. IHG-Encoder does not maintain node embeddings which are
bounded by specific nodes. Instead, learnable weights W and b are updated
during optimization. In detection, the trained model can be used to produce
representations for new nodes based on their structural and raw attribute infor-
mation. Hence, IHG-Encoder is indeed inductive (i.e., the trained model can
be used over unseen nodes), which is essential for representation learning in
WeChat as new users emerge every day. MHT-GNN, which uses IHG-Encoder
as its backbone, is therefore also able to generate representations for unseen
nodes.

Temporal Snapshot Sequence Encoder (TSS-Encoder). We observed
that, in “Click Farming”, a fraudster’s fraud actions may spread across mul-
tiple timestamps. A fraudster Alice adds many potential victims as friends at
time t1. Alice spends a few days using high reward as bait to convince them to
join a “Click Farming” group. Then, at time t2, Alice will invite baited users to
the group. Alice may continue to be active in the group performing actions like
sending bonus packages for encouragement at time t3. On the contrary, a normal
user Bob typically does not have so many behaviors within a relatedly short time
window. Hence, we concatenate the presentations of a user in different snapshots
as its temporal snapshot sequence to capture temporal patterns in the HTG.

Given a series of historical snapshots {Gt}Tt=1 as inputs, we apply IHG-
Encoder over each snapshot to obtain the representations for all the nodes in
each snapshot. By doing so, we collect a sequence of representations for each
user u at different time steps. Specifically, for each node u, we define its tem-
poral snapshot sequence as seqtemp

u = [h1
u,h2

u, . . . ,hT
u]. Note that the WeChat

graph can easily scale to millions or even tens of millions due to its massive

MHT-GNN for “Click Farming” Detection 155

users. We can utilize an efficient database (e.g., a key-value pair database) to
store previous feature representations generated by IHG-Encoder for each user.
When checking a user’s anomalousness in current timestamp t, we can easily
retrieve his/her historical representations from the database and construct the
temporal snapshot sequence in a blink. Only the current representations requires
the generation of the IHG-Encoder.

Next, we aggregate the retrieved temporal snapshot sequence to a represen-
tation that captures user behavior patterns. We adopt the Long Short-Term
Memory (LSTM) as TSS-Encoder to model the input sequence seqtemp

u and cap-
ture the dynamic of user activities. LSTM fits perfectly in this scenario for the
reason that it recognizes temporal dependencies. Each layer of the LSTM com-
putes the following transformations:

ft = σ(Wf [ht−1, et] + bf), ct = ft � ct−1 + it � c̃t
it = σ(Wi[ht−1, et] + bi), ot = σ(Wo[ht−1, et] + bo)
c̃t = tanh(Wc[ht−1, et] + bc), ht = ot � tanh(ct)

(6)

where t is the time step, ht, ct, et are hidden state, cell state and previous layer
hidden state at time t, respectively. ft, it, ot are respectively the forget gate,
input gate and output gate, and � indicates the Hadamard product.

The last hidden state output by TSS-Encoder is used as the representation
hseqtemp

u
of temporal snapshot sequences for a user u.

User Relation Sequence Encoder (URS-Encoder). In social networks,
a user’s direct actions explicitly reveal his/her characteristics. In the HTG, a
user’s direct actions manifest in edges between itself and its 1-hop out-neighbors.
Observed from the “Click Farming” fraud example we discussed in Fig. 1, we can
conclude that this type of fraud typically involves several direct actions (e.g., ADD
and PULL) of fraudsters appearing in different stages of “Click Farming” frauds
(i.e., searching, gain trust and deceive). Hence, we believe it is beneficial to
consider a special type of sequence called user relation sequence. Such sequences
are composed of edges in all the 1-hop neighboring subgraphs of a user node
from different snapshot and these edges are sorted in chronological order.

Given a node v and its 1-hop out-degree neighboring node set
Nv = [u1, . . . , um] associated with corresponding edge set Ev =
{(v, u1, t1), . . . , (v, um, tm)} where |Nv| = m and a tuple (v, ui, ti) indicates that
there is an edge from v to ui at time step ti, we sort Nv in a chronological
manner and sample nodes from each time step to form a user relation sequence
{u1, u2, . . . , uT }v for user v. For any two nodes ui and uj in the sequence with
i < j, their associated edges (v, ui, ti) and (v, uj , tj) satisfy that ti < tj . An
example is provided in the bottom left of Fig. 2.

When constructing user relation sequences, some issues require extra atten-
tion and we handle them as follows:

– The number of 1-hop neighbors is uneven across the graph, meaning that
some users are relatively active in the recorded time period while some are
not. Active users have much more user relation sequences than inactive users,

156 Z. Xu et al.

which may lead to model bias. Therefore, we sample up to a predefined max-
imum number of sequences for each user to avoid model bias as well as speed
up model training.

– For users with few or no out-degree neighbors during the recorded time period,
we take the sub-sequence from other users as sequences. For instance, node
v2 in the bottom left of Fig. 2 has no out-degree neighbors. But v2 exists in
the out-degree neighborhood of v1. Hence, we extract the sub-sequence from
v1 that starts with v2 as the user relation sequence for v2.

User relation sequence describes a user’s behavior over time, which remedies
the limitation of temporal snapshot sequence that solely contains the hidden state
of the same user over time. Given the user relation sequence of node u: seqrel

u =
[v(u)

1 , v
(u)
2 , . . . , v

(u)
T], where v

(u)
t (1 ≤ t ≤ T) denotes the user/group node with

which u interacts at t-th time step, we first generate initial embeddings for nodes
in the sequence using the same projection shown in Eq. 1. Then, similar to TSS-
Encoder, the embeddings sequence [h

v
(u)
1

,h
v
(u)
2

, . . . ,h
v
(u)
T

] is fed intoURS-Encoder
composed of a LSTM to produce the representation hseqrel

u
of the user relation

sequences for the user u.

Optimization of Pretraining Phase. We train TSS-Encoder, URS-Encoder
and IHG-Encoderdetect independently on the training data with limited labels
using binary cross-entropy loss and Adam optimizer. IHG-Encoderdetect adopts
the same encoder design as IHG-Encoder. As shown in Fig. 2, IHG-Encoderdetect
is later used in the detection phase. During training, each of TSS-Encoder, URS-
Encoder and IHG-Encoderdetect is connected to its own score module, which is
a linear mapping layer followed by a sigmoid function, for predicting suspicious
scores. If the predicted score of an input node is larger than 0.5, it is labeled as
a “Click Farming” fraudster.

3.5 Detection Phase

During the detection phase, for a user node v, we generated temporal snap-
shot sequence representation hseqtemp

v
and user relation sequence representation

hseqrel
v

using pretrained TSS-Encoder and URS-Encoder. Then, hseqtemp
v

, hseqrel
v

and initial representation h(0)
v are concatenated and the result is fed into IHG-

Encoderdetect followed by its scoring module to estimate the suspicious score of v.
If the output value for v is larger than 0.5, v will be predicted as a “Click Farming”
fraudster.

4 Experiments

4.1 Experiment Setting

Data. We extract a 14 day-period dataset from WeChat and construct a million-
scale HTG as defined in Sect. 3.3. The graph contains nearly 4.6 million user
nodes and 190 thousand WeChat chat group nodes. The number of edges are

MHT-GNN for “Click Farming” Detection 157

approximately 15 million covering three relations: ADD, PULL and ENTER. We use
one day as the interval between two timestamps. Thus, for a 14 days observation
period we derive 14 separate graph snapshots. We set the maximum number
of sampled user relation sequence for each user to be 10. 85,000 user nodes are
manually labeled by human experts: 25,000 are fraudsters and 60,000 are normal
users. The labels for other 4.5 million user nodes are unknown. We randomly
divide the labeled users by a ratio of 8:1:1 for training, validation and testing.

Baseline. We compare MHT-GNN with several competitive baselines:

– Non-GNN classification methods. XGBoost [3] and MLP. XGBoost is a
gradient boosting algorithm that shows promising results in numerous predic-
tion tasks and MLP is a feedfoward neural network with three hidden layers
to predict the suspicious score of a node. The two methods only relies on data
attributes for prediction.

– Homogeneous graph based methods. Graph Convolutional Network
(GCN) [5] averages neighbor’s embeddings with a linear projection, and
Graph Attention Network (GAT) [16] utilizes attention mechanism to aggre-
gate information of neighbors.

– Heterogeneous graph based methods. Relational Graph Convolutional
Network (RGCN) [13] designs different linear projections for different types
of relations for information aggregation, and Simple Heterogeneous Graph
Neural Network (Simple-HGN) [7] enhances GAT with the redesign of three
techniques: learnable edge-type embedding, residual connections, and L2 nor-
malization on the output embeddings.

– Temporal graph anomaly detection method. AddGraph [21] is an
dynamic graph anomaly detection method. It leverages a GCN module to
capture spatial information, and employs a GRU-attention module to extract
short- and long- term dynamic evolving patterns. Furthermore, we modify
the base graph encoder of AddGraph from GCN to RGCN in order to model
the heterogeneous information and name this variant as AddGraph-H.

To verify the contribution of each component in MHT-GNN, we design sev-
eral versions of MHT-GNN as follows:

– IHG-Encoder: It only contains the inductive heterogeneous GNN encoder.
– MHT-GNN-T: It is a variant of MHT-GNN that removes URS Encoder.
– MHT-GNN-R: It is a variant of MHT-GNN that removes TSS Encoder.

We adopt the same score module design (i.e., a linear mapping layer followed
by a sigmoid function) as MHT-GNN for baselines without a score module. All
methods adopt Adam optimizer if possible. We set initial learning rate to be
0.001 and use 128 as the dimension of representations. We use a batch size of
256. All methods will terminate optimization when they converge.

Evaluation Metrics. We use five widely adopted evaluation metrics:

158 Z. Xu et al.

– AUC: It signifies the probability that the positive sample’s score is higher
than the negative sample’s score.

– KS: It is a measure of the degree of separation between the positive and
negative distributions [11].

– Precision, Recall and F1-score: Precision is a measure of how many posi-
tive predictions are correct while Recall measures how many positive cases the
classifier correctly predicted over all the positive cases in the data. F1-score
is the harmonic mean of Precision and Recall.

Table 1. Overall detec-
tion performance.

Method AUC KS Precision Recall F1-score

XGBoost 0.7452 0.3385 0.5783 0.3224 0.4140

MLP 0.7248 0.3375 0.5809 0.3287 0.4193

GCN 0.7946 0.4560 0.6488 0.4670 0.5431

GAT 0.8060 0.4801 0.6443 0.4869 0.5547

RGCN 0.8483 0.5308 0.7063 0.5373 0.6097

Simple-HGN 0.8498 0.5452 0.6972 0.5556 0.6183

IHG-Encoder 0.8623 0.5642 0.6907 0.5990 0.6415

AddGraph 0.8239 0.4949 0.6505 0.5716 0.6085

AddGraph-H 0.8416 0.5499 0.6467 0.6078 0.6251

MHT-GNN 0.8969 0.6397 0.7297 0.6943 0.7115

Table 2. Results of abla-
tion study.

Method AUC KS Precision Recall F1-score

IHG-Encoder 0.8623 0.5642 0.6907 0.5990 0.6415

MHT-GNN-R 0.8853 0.6169 0.7222 0.6853 0.7031

MHT-GNN-T 0.8856 0.6239 0.7300 0.6622 0.6944

MHT-GNN 0.8969 0.6397 0.7297 0.6943 0.7115

Table 3. t-SNE Projection of User
Node Representations Generated
by MHT-GNN: (1) Red Nodes:
Fraudsters. (2) Blue Nodes: Nor-
mal users. (Color figure online)

Overall Detection Results. Table 1 presents the overall results of each
method. The best performance are denoted in bold. From the results, we can
see:

1. GNN-based approaches GCN and GAT generally exceed non-GNN methods
XGBoost and MLP, indicating the spatial dependencies depicted by graph
structure in WeChat contain rich information that can improve model per-
formance in the CFD task.

2. Both dynamic and heterogeneous graph based models could achieve satisfac-
tory results, and heterogeneous graph based methods generally outperform
homogeneous graph based approaches. This observation shows that tempo-
ral dependencies and multi-relation information help model a user’s behavior
pattern better and boost the detection accuracy.

MHT-GNN for “Click Farming” Detection 159

3. IHG-Encoder significantly outperforms other GNN-based methods. This
observation has supported our decision of using IHG-Encoder as the back-
bone of MHT-GNN.

4. MHT-GNN achieves much better performance than other baselines including
state-of-the-art dynamic graph anomaly detection methods AddGraph and its
multi-relation version AddGraph-H. MHT-GNN consistently outperforms all
baselines on all measures. The results demonstrate the superiority of MHT-
GNN over existing methods for the CFD task.

Ablation Study. Table 2 lists the results of different variations of MHT-GNN.
From Table 2, we can observe that:

1. The incorporation of either TSS Encoder or URS Encoder brings performance
gain, as both MHT-GNN-T and MHT-GNN-R outperform IHG-Encoder.

2. The complete MHT-GNN shows the best result, indicating that modeling
two views of historical data in HTG together can remedy the limitation of
capturing only one view.

Overall, we can conclude that each module in MHT-GNN indeed contributes to
the superior performance of MHT-GNN over existing detection methods in the
CFD task of WeChat.

Visualization of Representation. To investigate the qualities of node repre-
sentations generated by MHT-GNN, we adopt t-SNE [9] to project representa-
tions of nodes in the test set into a 2-dimensional space. The projection result is
visualized in Fig. 3. From the result, we can see that representations of fraudsters
and normal users have a clear distinction, showing that MHT-GNN is able to
produce high-quality representations for the CFD task of WeChat.

5 Conclusion

In this paper, we illustrate MHT-GNN for the CFD task in WeChat. MHT-GNN
can capture dynamics and diversity of MMMA data through multi-view learning
and graph representation learning. Experiments on a real-world graph extracted
from the CFD task in WeChat demonstrate the effectiveness of MHT-GNN. In
the future, we will introduce attention mechanism for both intra-relation and
inter-relation aggregation to adaptively assign weights for modeling the impor-
tance of information and further improve detection results. We also plan to
enhance the interpretability of detection results so that fewer normal users will
be wrongly labeled as fraudsters.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 62002303, 42171456), the Natural Science Foundation of
Fujian Province of China (No. 2020J05001), the China Fundamental Research Funds
for the Central Universities (No. 20720210098), and 2021 Tencent WeChat Rhino-Bird
Focused Research Program.

160 Z. Xu et al.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)

2. Cai, L., et al.: Structural temporal graph neural networks for anomaly detection
in dynamic graphs. In: CIKM, pp. 3747–3756 (2021)

3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp.
785–794 (2016)

4. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed
networks. In: SDM, pp. 594–602 (2019)

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

6. Li, N., Sun, H., Chipman, K.C., George, J., Yan, X.: A probabilistic approach to
uncovering attributed graph anomalies. In: SDM, pp. 82–90 (2014)

7. Lv, Q., et al.: Are we really making much progress?: Revisiting, benchmarking and
refining heterogeneous graph neural networks. In: KDD, pp. 1150–1160 (2021)

8. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep
learning. IEEE Transactions on Knowledge and Data Engineering (2021)

9. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

10. Manzoor, E.A., Milajerdi, S.M., Akoglu, L.: Fast memory-efficient anomaly detec-
tion in streaming heterogeneous graphs. In: KDD, pp. 1035–1044 (2016)

11. Massey, F.J.: The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc.
46(253), 68–78 (1951)

12. Peng, Z., Luo, M., Li, J., Xue, L., Zheng, Q.: A deep multi-view framework for
anomaly detection on attributed networks. IEEE Transactions on Knowledge and
Data Engineering (2020)

13. Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC, pp. 593–607 (2018)

14. Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information
network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

15. Sricharan, K., Das, K.: Localizing anomalous changes in time-evolving graphs. In:
SIGMOD, pp. 1347–1358. ACM (2014)

16. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

17. Wang, L., et al.: TCL: transformer-based dynamic graph modelling via contrastive
learning. arXiv Preprint (2021). https://arxiv.org/abs/2105.07944

18. Wang, Y., Zhang, J., Guo, S., Yin, H., Li, C., Chen, H.: Decoupling representation
learning and classification for GNN-based anomaly detection. In: SIGIR, pp. 1239–
1248 (2021)

19. Xu, Z., et al.: Efficiently answering k-hop reachability queries in large dynamic
graphs for fraud feature extraction. In: MDM, pp. 238–245 (2022)

20. Yu, W., Cheng, W., Aggarwal, C.C., Zhang, K., Chen, H., Wang, W.: NetWalk: a
flexible deep embedding approach for anomaly detection in dynamic networks. In:
KDD, pp. 2672–2681 (2018)

21. Zheng, L., Li, Z., Li, J., Li, Z., Gao, J.: AddGraph: anomaly detection in dynamic
graph using attention-based temporal GCN. In: IJCAI, pp. 4419–4425 (2019)

https://arxiv.org/abs/2105.07944

	Multi-view Heterogeneous Temporal Graph Neural Network for ``Click Farming'' Detection
	1 Introduction
	2 Related Work
	2.1 Graph-Based Anomaly Detection (GBAD)
	2.2 Anomaly Detection in Dynamic Graphs

	3 Our Framework MHT-GNN
	3.1 Overview
	3.2 Feature Extraction
	3.3 Graph Construction
	3.4 Pretraining Phase
	3.5 Detection Phase

	4 Experiments
	4.1 Experiment Setting

	5 Conclusion
	References

