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Abstract

Hyperparameter tuning is an essential task in automatic ma-
chine learning and big data management. To accelerate tun-
ing, many recent studies focus on augmenting BO, the pri-
mary hyperparameter tuning strategy, by transferring infor-
mation from other tuning tasks. However, existing studies ig-
nore program similarities in their transfer mechanism, thus
they are sub-optimal in cross-program transfer when tun-
ing tasks involve different programs. This paper proposes
CaTHPO, a code-aware cross-program transfer hyperparam-
eter optimization framework, which makes three improve-
ments. (1) It learns code-aware program representation in a
self-supervised manner to give an off-the-shelf estimate of
program similarities. (2) It adjusts the surrogate and AF in
BO based on program similarities, thus the hyperparameter
search is guided by accumulated information across simi-
lar programs. (3) It presents a safe controller to dynamically
prune undesirable sample points based on tuning experiences
of similar programs. Extensive experiments on tuning various
recommendation models and Spark applications have demon-
strated that CatHPO can steadily obtain better and more ro-
bust hyperparameter performances within fewer samples than
state-of-the-art competitors.

1 Introduction
Hyperparameter tuning is an important task in machine
learning and big data management. For example, hyperpa-
rameters of Machine Learning (ML) models (e.g., learning
rates and batch size) affect learning accuracy (Bergstra et al.
2011). Configuration knobs of Spark1 (e.g., the memory size
and number of cores for each executor) have a great im-
pact on the execution time of a Spark application (Srini-
vasa and Muppalla 2015). Therefore, HyperParameter
Optimization (HPO) (Thornton et al. 2013) has at-
tracted much attention in both machine learning (He, Zhao,
and Chu 2021) and database communities (Li, Zhou, and
Cao 2021).

Bayesian Optimization (BO) (Jones, Schonlau, and Welch
1998) has been successfully applied in HPO. BO treats the
hyperparameter performance as a black-box function which
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is expensive to evaluate. BO iteratively (1) updates a prob-
abilistic surrogate model which measures the uncertainty of
hyperparameter performance based on previous evaluations,
and (2) computes an acquisition function based on the surro-
gate and sample the next hyperparameters to evaluate. Con-
ventional BO suffers from the “cold-start” problem (Swer-
sky, Snoek, and Adams 2013), i.e., since each tuning task
searches from scratch, it needs to explore more samples (i.e.,
sample efficiency) and causes a large tuning overhead (i.e.,
time efficiency). Here a tuning task refers to hyperparameter
tuning for a specific program (e.g., an ML model or a Spark
application) on a certain dataset. To address the cold-start
problem, a major and ongoing thrust of work has attempted
to transfer information from other tuning tasks (i.e., source
tasks), under the premise that hyperparameter performances
of similar tuning tasks are likely to be similar (Bardenet et al.
2013).

However, defining similar tasks and their transfer mecha-
nism remains an open problem. Some previous studies learn
task similarities from evaluations of each task (Swersky,
Snoek, and Adams 2013; Wistuba, Schilling, and Schmidt-
Thieme 2016; Feurer, Letham, and Bakshy 2018; Soares and
Brazdil 2000). For these methods, providing ample eval-
uations to accurately estimate task similarity is a hurdle.
Other studies determine similar tasks based on manually de-
fined meta-features of datasets (Yogatama and Mann 2014;
Feurer, Springenberg, and Hutter 2015; Schilling, Wistuba,
and Schmidt-Thieme 2016; Law et al. 2019). While these
methods are useful in tuning a same ML model on differ-
ent datasets, they are sub-optimal in cross-program tuning,
e.g., tuning different ML models or Spark applications, be-
cause the hyperparameter performances are usually incon-
sistent for different programs. The nature of a program – the
key element in a tuning task, has been largely ignored in ex-
isting studies.

This paper presents CaTHPO, Code-aware cross-program
Transfer HyperParameter Optimization. CaTHPO makes
the following contributions. (1) Since the program code is its
most distinguishing feature, a code-aware program represen-
tation module is proposed. This module is trained with self-
supervised learning, so that it gives an off-the-shelf estimate
of program similarities based on program representations.
(2) The program similarities are used to adjust a Gaussian
Process surrogate and a neural acquisition function network.
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Thus, the hyperparameter search is guided by accumulated
information across similar programs, and the tuning can be
more sample efficient. (3) The program similarities are used
in a safe controller to dynamically prune search space, based
on bad hyperparameters of similar programs. Thus, undesir-
able hyperparameters will not be sampled, and the tuning
can be more time efficient.

Extensive experiments are conducted on tuning various
Spark applications and recommendation models. Experi-
mental results show that, compared with state-of-the-art
competitors, CaTHPO can steadily find better hyperparame-
ters in shorter runs for different programs. Performances of
CaTHPO’s sampled hyperparameters are significantly more
robust.

2 Related Work
Numerous studies have been proposed to increase BO’s sam-
ple efficiency by transferring information from related tun-
ing tasks. We briefly introduce their choices of surrogate
models, acquisition functions and search paradigms.

Gaussian Process (GP) is the most commonly adopted
surrogate model (Jones, Schonlau, and Welch 1998). Some
existing studies use a single global GP to represent mul-
tiple tuning tasks, including SCoT (Bardenet et al. 2013),
MTGP (Swersky, Snoek, and Adams 2013), wsKG (Soares
and Brazdil 2000), and DistBO (Law et al. 2019). How-
ever, it incurs a prohibitive cost of computing the GP if
there are many tuning tasks. Efforts to circumvent the scal-
ability limitation fall into three categories. They either (1)
build a hierarchical global GP where each level is trained
on levels below, e.g., SHGP (Tighineanu et al. 2022) and
HyperTune (Golovin et al. 2017); or (2) build separate lo-
cal GPs for each tuning task. These local GPs can be iso-
lated (Wistuba, Schilling, and Schmidt-Thieme 2018) or re-
lated. For example, the kernel of the target GP can look at
points from nearest neighbor source tasks (Yogatama and
Mann 2014). MisoKG (Poloczek, Wang, and Frazier 2017)
assumes that the kernels of source tasks are approximat-
ing the target task with variable bias. POE (Schilling, Wis-
tuba, and Schmidt-Thieme 2016) directly uses product of
Gaussian experts trained on source tasks as the target surro-
gate. TSTR (Wistuba, Schilling, and Schmidt-Thieme 2016)
and RGPE (Feurer, Letham, and Bakshy 2018) both build
an ensemble target surrogate by linearly combining source
GPs. Env-GP (Joy et al. 2016) stretches the target function
noise to fit the evaluation difference between source and
target tasks. Diff-GP (Shilton et al. 2017) improves over
Env-GP by using bias-corrected source evaluations to up-
date the target GP. (3) The GP can be replaced by a neu-
ral network. For example, BOHAMIANN (Springenberg
et al. 2016) uses a Bayesian neural network whose input
includes a task-specific embedding vector. ABLR (Perrone
et al. 2018) builds a Bayesian linear regression surrogate for
each tuning task and requires all surrogates to share an un-
derlying basis expansion learned from a feedforward neu-
ral network. FSBO (Wistuba and Grabocka 2021) builds a
shared deep surrogate for all tasks and adopts a deep kernel
to learn the surrogate’s task-independent parameters.

Information transfer can also be encoded in the Acqui-
sition Function (AF). Expected Improvement (EI) (Jones,
Schonlau, and Welch 1998) has been adopted by a large
body of literature. TAF (Wistuba, Schilling, and Schmidt-
Thieme 2018) defines a new AF as a weighted superposi-
tion of EI on the target task and the predicted improvements
on source tasks. Some previous studies consider incremen-
tal gain per unit cost, including misoKG (Poloczek, Wang,
and Frazier 2017) and MTGP (Swersky, Snoek, and Adams
2013). Instead, Monte Carlo estimates of the AF is adopted
in (Snoek, Larochelle, and Adams 2012). Other than hand-
crafted AFs, recent studies have turned to neural AF. For ex-
ample, MetaBO (Volpp et al. 2020) and FSAF (Hsieh, Hsieh,
and Liu 2021) both train a neural network which represents
AF across tasks via reinforcement learning.

Finally, A few studies have investigated transfer in the
initialization and search space of BO. For example, a
static sequence of hyperparameters is optimized across tasks
in (Wistuba, Schilling, and Schmidt-Thieme 2015). MI-
SMBO (Feurer, Springenberg, and Hutter 2015) initializes
search on target task with best configurations on similar
source tasks. BLB (Anderson et al. 2017) proposes to sub-
sample in parallel based on Bag of Little Bootstraps. Low-
volume ellipsoid search space is found to be superior than
traditional rectangular boxes in (Perrone and Shen 2019).

Remarks. (1) Task similarity plays a key role in trans-
fering information among tuning tasks. Previous studies
capture task similarities by a fixed relative importance of
new and old tasks (Golovin et al. 2017), manually defined
meta-features of datasets (e.g., descriptive statistics of the
datasets) (Yogatama and Mann 2014; Feurer, Springenberg,
and Hutter 2015; Schilling, Wistuba, and Schmidt-Thieme
2016; Law et al. 2019), or evaluation similarities (e.g., pair-
wise ranking of evaluations in each task) (Swersky, Snoek,
and Adams 2013; Wistuba, Schilling, and Schmidt-Thieme
2016; Feurer, Letham, and Bakshy 2018; Soares and Brazdil
2000). To the best of our knowledge, all existing studies are
empirically verified on tuning the same ML model on differ-
ent datasets. We argue that their assumption is too strong for
cross-program transfer, e.g., good performing hyperparame-
ters for an ML model A do not necessarily perform well for a
dissimilar model B. Thus, we present a novel transfer frame-
work based on learned program similarities, and we conduct
thorough experimental studies on cross-program tuning. (2)
Most existing studies focus on one or two components of the
BO. Our code-aware program representation is incorporated
in the whole process of BO, i.e., adjusting the surrogate and
AF, as well as pruning the search space. Thus the sample
efficiency and time efficiency of BO can be simultaneously
enhanced by transfer learning. (3) The proposed CaTHPO
adopts separate local GPs and a neural AF. Therefore, it in-
tensifies the AF’s capability by learning a shared AF from
multiple tasks, while maintaining a good scalability on the
GP.

3 Model
We are interested in cross-program hyperparameter tuning.
The setting can be formalized as follows. Given T tasks,
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Figure 1: Framework overview of CaTHPO

where each task t = 1 · · ·T is to tune hyperparameters as-
sociated with a program pt on a dataset dt. The program is
drawn from a pool of programs pt ∈ P and the dataset be-
longs to a task-specific set of datasets dt ∈ Dt.

The framework of CaTHPO is shown in Figure 1. It con-
tains two major components. (1) A code-aware program rep-
resentation module (Section 3.1) is trained on P. (2) A cross-
program transfer BO module (Section 3.2) relies on the ex-
tracted program representations and searches for good hy-
perparameters for task t = 1, · · · , T .

3.1 Code-aware Program Representation
This module aims to extract a vectorized representation pt

for each program pt, from the program’s code. Instead of us-
ing plain code, we use the Abstract Syntax Tree (AST) ob-
tained by parsing the code. AST has been considered as an
easily obtainable, intermediate representation between orig-
inal source code and a machine- and language-independent
description, and has been successfully utilized in many code
related tasks (Tang et al. 2022).

Preprocessing. AST is a tree structure where every node
has a type specifying its meaning (e.g., a function call, a
value, etc.). Some nodes (e.g., all leaf nodes) correspond to
actual code tokens (they are illustrated as circles in Figure 1)
and others correspond to an abstract “part” of the code (they
are illustrated as squares in Figure 1) . For parallel computa-
tion, we can “flatten” the AST to obtain a sequence of nodes
by pre-order traversing the tree (Xie et al. 2021). Further-
more, since ASTs can be very complicated for large pro-
grams, to speed up computation and to enhance sample di-
versity, during training we randomly segment the AST pre-
order traversal sequence. Let oi =< oi

1, · · · ,oi
K > denotes

a consecutive subsequence of program pt’s AST pre-order

traversal sequence opt . We also maintain a sequence of bi-
nary indicators βi =< βi

1, · · · , βi
K >, where βi

k = 1 sug-
gests that the k−th node in the training instance corresponds
to a code token.

Code Semantic Encoding. We extract a subsequence of
code tokens from oi, denoted as ci =< cik1

, · · · , cikJ
>

where βi
kj

= 1, ∀1 ≤ j ≤ J . Due to the property
of pre-order traversal, code tokens in ci are in the same
order as in the original source code. We use the stan-
dard, word embedding based representation, i.e., cikj

is
the embedding vector for the corresponding code token.
ci is fed into a Transformer encoder, which is based on
multi-headed self-attention mechanism. The output ei =<
eik1

, · · · , eikJ
>= Transformer(ci) represents the seman-

tic encoding learned by Transformer in the code contexts.
Code Syntax Encoding. Next, we proceed to integrate

the syntactic structure of code. On oi, for βi
k = 0 we use

the embedding vector of the node type; for βi
k = 1 we

replace the node embedding by eik, which is the output of
Transformer encoder. In this way, we preserve both learned
semantics and syntactic structure. We then input oi into a
LSTM layer and the output is denoted as hi = LSTM(ei).

Prediction and Self-supervised Training Task. We use
two related self-supervised training tasks, i.e., predict the
next AST node type and the next code token in the orig-
inal AST pre-order traversal sequence. Thus, the training
instance is a triplet (oi, qi, wi, ), where qi is the type of
the next AST node, and wi is the next code token. To
make the predictions, the last hidden state of LSTM, i.e.,
hi
K , is passed to two seperate MLPs, i.e., MLP type and

MLP token, both with softmax output layer. Finally, the
code-aware program representation module is optimized to
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minimize the training loss:

L =
∑
i∈B

(
Li
type + Li

token

)
, (1)

where Li
type is a cross entropy loss between the predicted

AST node type MLP type(hi
K) and the ground truth next

AST node type qi. Similarly, Li
token is the cross entropy loss

between the predicted code token MLP token(hi
K) and the

ground truth next code token wi. B is a batch of training
instances.

Extracting Program Representations. After the code-
aware program representation module is trained, in testing
time, for every program pt, we obtain its full AST preorder
traversal sequence opt of length L. opt goes through the
trained Transformer and LSTM layers. We apply a mean
pooling over the hidden states of LSTM to obtain the pro-
gram representation, i.e., pt = MeanPooling(hpt

1 ,hpt

L ).

3.2 Cross-program Transfer BO
The goal of hyperparameter tuning is to find the optimal
hyperparameter x∗ for ft(x), where ft(·) is the hyperpa-
rameter performance for task t. Without loss of generality,
we can assume that T − 1 tasks have been tuned (i.e., they
are source tasks). We allow each tuning task to be repeated
for several runs, but for simplicity here we assume only one
run for each task Ut is recorded, which consists of N obser-
vations Ut = {xi, yi}Ni=1, where xi corresponds to a sam-
pled hyperparameter setting, yi is a noisy observation, i.e.,
yi = ft(xi) + ϵi, ϵi ∼ N (0, σ2). The length of the run N
is usually set according to user’s budget. As shown in Fig-
ure 1, in tuning task T (i.e., the target task), we implement
the following steps at each iteration i.2

Adjusting Surrogates. As with many previous stud-
ies (Wistuba, Schilling, and Schmidt-Thieme 2016; Feurer,
Letham, and Bakshy 2018; Wistuba, Schilling, and Schmidt-
Thieme 2018), we model each task’s hyperparameter perfor-
mance with an individual GP, ft ∼ GPt(µt, kt), where the
mean µt(·) and kernel kt(·, ·) can be updated by posterior
mean and variance conditioned on observations up to now.
Using individual GPs has the advantage of scalability, but
fails to capture cross-task correlations. Thus, we next adjust
the mean µT of the current GP by combining other tasks’
GPs:

µ̂T =

∑T
t=1 wT,tµt∑T
t=1 wT,t

. (2)

To compute the ensemble weight wT,t, we propose a code
sensitive kernel:

wT,t = αT,tγ(Ut,UT ), (3)
where γ is the Epanechnikov quadratic kernel used in
TSTR (Wistuba, Schilling, and Schmidt-Thieme 2016), αT,t

is the attention score computed on program representations
pt,pT ,

αT,t =
exp(pT

Tpt)∑T
t′=1 exp(p

T
Tpt′)

. (4)

2We omit indicator i in all equations in this subsection. Note
that they are computed iteratively at the arrival of each observation
1 ≤ i ≤ N .

Since the Epanechnikov quadratic kernel γ(·, ·) com-
putes the proportions of discordant pairs between tasks, and
the attention α computes the distance between pre-trained
code feature similarity, the adjusted µ̂T strengthens posterior
mean of the current GP by similar previous tasks in terms of
observation similarity and program similarity.

Following TSTR, we do not combine variance across
tasks.

Predicting Candidates. Inspired by MetaBO (Volpp
et al. 2020), we present a neural network to serve as Acqui-
sition Function (AF). The AF network is a policy network in
Reinforcement Learning . Its output (i.e., action) is to pre-
dict the sampling probability over a set of M candidate hy-
perparameters, i.e., V = {v1, · · · ,vM}. Its input represents
the state in reinforcement learning. We make two major im-
provements over MetaBO.

Firstly, we extend the input of AF network to incorporate
the program representation and the adjusted GP mean. Thus,
the input of AF is

sT =
{
dT ,pT ,

[
µ̂T (vm), σT (vm),vm,m,N

]M
m=1

}
, (5)

where dT represents manually defined metafeatures for the
current task’s dataset, pT represents the pretrained program
representations. Incorporating these two terms increases the
AF’s ability to tailor actions for the current task (which in-
volves a program and a dataset). vm is a candidate hyper-
parameter setting, µ̂T (vm) is the posterior estimate of mean
performance of vm augmented by combining similar tasks,
σT (vm) is the current posterior estimate of vm’s perfor-
mance variance. We concatenate the M candidates to help
the AF decide a preference among candidates.

Secondly, we present a safe controller to assess the safety
of each candidate. The safe controller outputs a binary vector
gT ∈ RM , which has the same dimensionality as the number
of candidates,

gT,m = I(lT (vm) > τT ). (6)

gT,m = 1 means that lT (vm), the lower bound of candidate
m’s predicted performance on task T , is better than the per-
formance threshold τT . Based on the adjusted mean µ̂T and
the varianceσT , we have

lT (vm) = µ̂T (vm)− ξσT (vm). (7)

The definition of safety threshold τT takes into account the
performance boundaries from similar tuning tasks,

τT =
T∑

t=1

αT,tqt, (8)

where qt is the 25% quartile of observed hyperparameter
performances in Ut, α is attention score computed by pro-
gram representations.

Following MetaBO (Volpp et al. 2020), our AF network
also uses an adaptive candidate generation method. It firstly
predicts for coarse-grained candidate sets Vcoarse spanning
the entire domain by sobol sampling. Then, it zooms into
a sub-region of the highest scored coarse-grained candidate
and randomly selects M candidates around it to form a fine-
grained candidate set Vfine. The safe controller works as a
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gate upon the prediction of AF on both coarse-grained and
fine-grained candidates. Given the input s, the AF’s output
is:

AF (sT ) = softmax(gT ⊙MLP (sT )), (9)

where ⊙ is the Hadamard product over two vectors, MLP
is a multi-layer perceptron which maps an input vector to a
M -dimensional vector.

Sampling, Evaluating, and Updating. Based on the pre-
dictions of AF network (augmented by the safe controller),
we sample a hyperparameter setting, evaluate it and use the
observed evaluation to update the current GP GPT . The AF
network is updated via proximal policy optimization with
reward defined as the maximal hyperparameter performance
up to the current sample3.

4 Experiments
We conduct two types of hyperparameter tuning tasks: Spark
tuning and Recommender System (RS) tuning, to reflect
highly demanded tuning tasks in big data management and
AutoML. In Spark tuning, we tune 15 configuration knobs
for eight Spark applications on a cluster of eight computing
nodes. The hyperparameter performance is measured by Ex-
ecution time (in seconds). Lower execution time is better. In
RS tuning, we tune three hyperparameters for eight recom-
mendation models on a GPU computing server. The hyper-
parameter performance is measured in NDCG@10, higher
NDCG@10 suggests the model achieves higher recommen-
dation accuracy. Each program in Spark and RS tuning
is associated with five different open benchmark datasets.
Among them, four small datasets are used in source tasks
and one large dataset is used in the target task for testing. It
simulates the scenario where little tuning overhead (i.e., total
time used to train the HPO method) is demanded (Lin et al.
2022), so that small datasets are preferred in meta-training
the HPO. Each source task runs once, each target task is re-
peated for three runs so that our analysis is more reliable.
Each run contains 16 samples, i.e., N = 16. More details
of hyperparameters, programs, and datasets for Spark and
RS tuning are provided in the supplementary material. The
datasets and codes are available online 4.

4.1 Ablation Study
Here we empirically testify the impact of code-aware cross-
program transfer on the surrogate, AF, and safe controller.
We use two cases: tuning a Spark application PR and tun-
ing an RS model VAECF. Despite CaTHPO, we consider
two other program presentations. (1) codeRand: program
representation is a concatenation of an AST encoding us-
ing ASTNN (Zhang et al. 2019) and a code encoding using
Transformer Encoder (Vaswani et al. 2017). The models are
assigned with random network parameters. CodeRand is a
“dummy” representation learned from program codes. (2)
codeBERT: the program representations are derived using

3For tuning tasks which pursue the smallest performance value,
we simply use the negative reward.

4https://github.com/XMUDM/CaTHPO

Surrogates Spark RS

Transfer Task similarity PR VAECF

No N/A 32.41 25.49

Yes

observation 32.89 26.49

program
codeRand 31.61 26.58
codeBERT 32.70 27.64
CaTHPO 26.79 31.03

Table 1: Tuning performance by variants of surrogates

a pre-trained codeBERT (Feng et al. 2020) model. Code-
BERT is a well trained program representation learned from
conventional pre-training tasks.

Ablation on surrogates First, we implement variants of
the surrogate, while fixing the AF network. (1) We use an
individual GP for each tuning task, and there is no trans-
fer across tasks. (2) The current GP is adjusted by a linear
combination of source tasks using Epanechnikov quadratic
kernel, i.e., Equation 3 without α. This is the method used
in the surrogate of TSTR (Wistuba, Schilling, and Schmidt-
Thieme 2016). This variant utilizes cross-task transfer based
on observation similarity only. (3) The current GP is ad-
justed by the code sensitive kernel in Equation 3, where the
program presentation is codeRand. (4) The current GP is ad-
justed by the code sensitive kernel in Equation 3, where the
program presentation is codeBERT.

We compare CaTHPO with the above variants. The per-
formance (i.e., best hyperparameter performance obtained
in the task) are shown in Table 1. We have the following
observations. (1) Transfer using only observation similarity
does not outperform individual GP without transfer. This
observation reveals the importance of an in-depth under-
standing of task similarities. (2) Program representation by
a random network is comparable to program representation
by codeBERT. This observation suggests that, existing self-
supervised training task is not suitable for learning program
representations in hyperparameter tuning. (3) CaTHPO sur-
passes the variants by a large margin. It reduces PR’s execu-
tion time by 15%, and increases VAECF’s accuracy by 12%
than the best variant.

Ablation on AF Next, we implement variants of the AF
network, while fixing the surrogates. (1) We use the Ex-
pected Improvement (EI), so that there is no transfer across
tasks. (2) We use a neural AF, whose input does not include
program representation. This variant empowers cross-task
transfer, but it does not distinguish programs. (3) We use the
input state in Equation 5 for the neural AF, where the pro-
gram presentation is codeRand. (4) The input state in Equa-
tion 5 includes codeBERT based program representations.

Results in Table 2 show that CaTHPO again outperforms
different AF variants. There are two discoveries that are dif-
ferent from Table 1. (1) All transfer AFs are significantly
better than EI. This suggests that the transfer mechanism
is more helpful for AF than for the surrogates. (2) Code-
BERT based program representation is better than random
program representation. The underlying reason is that care-
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fully designed program representations is crucial to describe
the state for the neural AF.

AF Spark RS

Transfer Program
representation PR VAECF

No No 50.27 21.74

Yes

No 30.15 28.11
codeRand 28.58 27.56
codeBERT 27.92 28.27
CaTHPO 26.79 31.03

Table 2: Tuning performance by variants of AFs

Ablation on safe controller Finally, we implement vari-
ants of the safe controller, while fixing the surrogates and
AF. (1) w/o safe: no safe controller module is implemented.
(2) vanilla: a safe controller using a vanilla threshold as
described in SafeOPT (Sui et al. 2015). (3) codeRand: the
safety threshold is defined by Equation 8, where the atten-
tion α is computed based on codeRand. (4) codeBERT: com-
putation of threshold in Equation 8 uses CodeBERT based
program representations.

We plot the performance of 16 samples in the tuning tasks
in Figure 2. We can see that using a safe controller, regard-
less of the definition of safe threshold, reduces the perfor-
mance variance. CaTHPO has the highest average perfor-
mance and smallest performance variance among samples.
This shows that properly identifying similar programs can
find more reasonable safety threshold. It is worthy to note
that, hyperparameter tuning must balance the exploration-
exploitation trade-off. However, the ablation study here
shows that, CaTHPO produces a stable exploration of well
performing samples, which is advantageous for time effi-
ciency.

Figure 2: Tuning performance by variants of safe controllers

4.2 Comparative Study
We compare CaTHPO with six state-of-the-art competitors,
including (1) standard BO with Gaussian Process and Ex-

pected Improvement (EI), (2) ABLR (Perrone et al. 2018),
(3) TSTR (Wistuba, Schilling, and Schmidt-Thieme 2016),
(4) FSBO (Wistuba and Grabocka 2021), (5) SafeOPT (Sui
et al. 2015) and (6) MetaBO (Volpp et al. 2020). We use
the public implementations5 and default settings released by
their authors.

Figure 3 reports the tuning performance w.r.t iterations.
For each run from iteration i = 1, · · · , N , we first average
performance over all tuning tasks, then we plot the average
performance of three runs. We have the following observa-
tions. (1) The starting point of CaTHPO at iteration i = 1 is
better than the competitors, which demonstrates CaTHPO’s
ability to initialize well on a new task by transfer learning
from similar tuning tasks. (2) CaTHPO converges faster than
the competitors, which shows that CaTHPO achieves satis-
fying tuning performance with less samples (i.e. sample effi-
cient). (3) At each iteration, CaTHPO generally has smaller
variance, which indicates that CaTHPO generates robustly
performing samples and its run is likely to end within a
shorter time period (i.e., time efficient).

Figure 4 reports the tuning performance w.r.t target tuning
tasks (i.e., best performance of a tuning task produced by
the hyperparameter samples in each run) by different tuning
methods. We observe that CaTHPO steadily outperforms the
competitors on all tuning tasks. (1) Figure 4 reports tuning
performance of three runs. Hyperparameter performances
sampled by the competitors spread in a large range (i.e., a
long line in Figure 4) for most tuning tasks. CaTHPO yields
similar results (i.e., in most cases they are clustered as a
dot in Figure 4) across runs. This indicates that CaTHPO
is less likely to be affected by the randomness of each run.
(2) CaTHPO produces the best performance averaged over
runs for each tuning task. Some tasks, e.g., DT and PR,
benefit more from cross program transfer. Compared with
the best competitor, CaTHPO reduces the execution time
by 25% on DT and 11% on PR. On average, CaTHPO re-
duces execution time by 24%, 17%, 20%, 14%, 36%, 32%
of all Spark programs than BO, TSTR, ABLR, MetaBO,
FSBO, and SafeOPT. CaTHPO increases NDCG@10 by
22%, 23%, 25%, 10%, 19%, 96% of all RS models than BO,
TSTR, ABLR, MetaBO, FSBO, and SafeOPT. (3) Compar-
ing non-transfer BO (e.g., BO and SafeOpt) with transfer
BOs, we find that transfer BOs do not universally outper-
form non-transfer BO. Since tuning tasks may be dissimi-
lar, holding a strong assumption and transferring informa-
tion from all source tasks may not be a good choice.

4.3 Performance on Never-seen Programs
We further investigate the impact of source tuning tasks. The
experiment protocol is: we select an RS model as the target
tuning task and exclude it from the source tuning tasks. We
repeat this procedure for eight RS models. For each target
tuning task, there are 28 source tuning tasks (i.e., 4 datasets
× 7 models), while in Section 4.2, there are 32 source tuning
tasks. Moreover, the target program is absent in the source
tasks, while in Section 4.2 the target program is present in

5https://github.com/automl/transfer-hpo-framework
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Figure 3: Performance of different tuning methods at each iteration in a run

Figure 4: Performance of different tuning methods in each
run w.r.t the target tuning task

the source tasks. Thus, we have two settings: a setting of
never-seen program v.s. a setting of warm-start program.

We report the tuning performances by CaTHPO and the
competitors in Table 3. Note that we do not include BO and
SafeOPT as they do not enable transfer learning. Less source
tasks and tuning a never seen program will have little impact
on BO and SafeOPT. We can see that CaTHPO achieves best
results, which verifies that the program representation ex-
traction generalizes well to never-seen programs.

Furthermore, we compare the performance under two set-
tings. We compute the performance change ∆, which is the
average performance change over RS models or Spark appli-
cations (i.e., never-seen performance minus warm-start per-
formance) ± the standard deviation. For RS models, nega-
tive ∆ suggests worse performance on never-seen programs.
For Spark applications, positive ∆ suggests worse perfor-
mance on never-seen programs. We can see that almost all
tuning methods have some degree of performance degrada-
tion. It shows that fewer source tuning tasks has a negative
impact on transfer tuning. ABLR has a positive average per-
formance change on RS models, however, the standard de-
viation is very large. CaTHPO has the smallest ∆, demon-
strating that CaTHPO is able to maintain a relatively robust
tuning performance with less source tuning tasks and never-
seen target program.

RS TSTR ABLR MetaBO FSBO CaTHPO

BiVAE 15.52 28.1 22.79 22.84 32.29
VAECF 25.5 28.41 26.29 25.3 30.24

NCF 15.8 15.33 14.64 13.49 16.86
LightGCN 35.2 30.57 33.13 33.87 36.76

CML 35.13 35.51 34.44 35.3 36.13
CDAE 21.5 23.55 20.59 21.05 32.88

UAutoRec 73.17 73.49 73.86 73.61 75.64
IAutoRec 73.15 74.52 73.07 71.58 75.61

∆ -0.80±1.101.50±3.66-2.48±2.68-0.80±2.21 -0.51±0.41
Spark TSTR ABLR MetaBO FSBO CaTHPO

CC 70.16 65.98 60.17 66.34 54.98
DT 68.94 54.22 43.72 63.28 34.14
KM 32.22 50.34 35.06 90.19 25.06

Linear 32.22 53.3 35.47 76.55 31.88
Logit 55.32 53.85 60.32 57.09 43.28
PCA 44.88 46.44 42.51 60.13 39.68
PR 41.21 48.35 34.68 35.35 30.24
TC 68.98 64.79 68.11 75.40 56.09
∆ 4.05±3.496.60±7.36 3.04±1.77 2.71±2.51 1.31±1.47

Table 3: Tuning performance on never-seen programs and
the performance change ∆ w.r.t warm-start programs

5 Conclusion

In this paper we study an under-explored problem: cross-
program hyperparameter tuning. We present CaTHPO, the
superiority of which is achieved by transferring from sim-
ilar programs. Program similarities are computed by self-
pretrained code-aware program representations. We adopt
program similarities to adjust the surrogate, AF, and search
space during the whole process of BO and empirically ver-
ify the effectiveness of these adjustments. The key idea of
CaTHPO, i.e., the code-aware cross-program transfer, has
the potential to be adapted to other transfer BOs.
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