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ABSTRACT
The importance of modeling contextual information within a search
session has beenwidely acknowledged. However, learning represen-
tations of multi-query multi-modal (MM) search, in which Mobile
Taobao users repeatedly submit textual and visual queries, remains
unexplored in literature. Previous work which learns task-specific
representations of textual query sessions fails to capture diverse
query types and correlations in MM search sessions. This paper
presents to represent MM search sessions by heterogeneous graph
neural network (HGN). A multi-view contrastive learning frame-
work is proposed to pretrain the HGN, with two views to model
different intra-query, inter-query, and inter-modality information
diffusion in MM search. Extensive experiments demonstrate that,
the pretrained session representation can benefit state-of-the-art
baselines on various downstream tasks, such as personalized click
prediction, query suggestion, and intent classification.
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1 INTRODUCTION
In-site Product search [7, 21] has become an indispensable compo-
nent in most E-commerce platforms. To provide better search expe-
rience, Mobile Taobao, one of China’s most popular E-commerce
apps, has deployed an important feature to allow consumers to
search in different ways. Consumers can use the conventional way
of typing textual keyword queries. When the results of keyword
queries return, they can also click on one of the resulting product
and “search similar products". A short piece of product descriptions
extracted from the product title (i.e., product query) and an product
image (i.e.,image query) will be input queries to the search system.
The two types of queries can be repeated in a search session, gen-
erating an Multi-modal Multi-query search (MM search) session,
as illustrated in Figure 1.

MM search plays a crucial role in Mobile Taobao. Currently,
“search similar product" is a popular feature embraced by millions
of daily active users. MM search is contributing an increasing part
to the overall search traffic. Compared with conventional, purely
textual search (i.e., a user only types in textual keyword queries
and never uses “search similar product" in a search session), MM
search provides an opportunity to encourage user engagements. As
shown in Figure 2 (a), more than 55% conventional textual search
sessions contain only one query, while MM search sessions tend to
be longer, 9% sessions even contain more than ten queries. On the
other hand, MM search reflect E-commerce users’ complex search
behaviors, whose information needs are more difficult to satisfy.
As shown in Figure 2 (b), in all major product categories, number
of clicks per query for MM search is significantly smaller than pure
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(a) Textual query “seashell natural" (b) Image query and product query (c) Refined query “cowrie shell natural"

Figure 1: A typical MM search session contains multiple occurrences of textual and visual queries. (a) The user first types in a
keyword query containing two terms “seashell natural". He/she clicks on one of the preferred results and searches similar
product. The product image and product descriptions extracted from product title, which are fed to the search system as the
second query, are shown in the blue box. (b) Screenshot of the second query (i.e., the image query and product query) and
search results. (c) Based on previous results, the user inputs a refine keyword query “cowrie shell natural".
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Figure 2: Characteristics of MM search v.s. conventional tex-
tual search. (a) Percentages of search sessions w.r.t. session
length. (b) Average number of clicks per query

textual search, implying that the conversion rate of MM search
remains a performance bottleneck in Mobile Taobao.

In the literature, learning representations of search sessions
can be used for many downstream E-commerce tasks, including
query performance prediction [19, 34], intent classification [11,
30, 36], query suggestion [5, 8, 24, 37], click prediction [3, 11, 12,
17, 35, 36], to name a few. Existing works are task-oriented, i.e.,
they encode information of the search sessions explicitly for the
task. Furthermore, they focus on multi-query sessions of purely
textual queries [3, 5, 8, 11, 12, 17, 24, 35–37], or multi-modality
query in single-query sessions [21]. A question naturally arises,
can we enhance our understanding of MM search by pre-training to
benefit various downstream tasks?

Learning pre-trained representations for MM search is non-
trivial, due to the following two intrinsic challenges.

C1: how to represent diverse query types and correlations
in MM search sessions. The query keywords, product descriptive
terms, and images in anMM search session show rich semantics and
complex intra-query, inter-query, and inter-modality correlations.
For example, as shown in Figure 1, a keyword query describes search
intent in seashell species, while an image query, complementing
to previous keywords, describes search intent in pattern and color.
Most existing work, despite the end-to-end infrastructure, adopts
sequential model at the query/session level. Thus, they are not able
to represent diverse query types and complex correlations. To the

best of our knowledge, representing a multi-modal and multi-query
search session has never been explored in literature.

C2: how to design an informative pre-training task. In-
spired by recent breakthrough in contrastive learning, we adopt
contrastive loss to learn representations for MM search sessions.
The effectiveness of contrastive loss relies on informative and fea-
sible positive and negative samples. However, most existing con-
trastive learning methods are designed for language and visual do-
mains [31, 38]. The positive and negative samples are sub-optimal
for MM search. Furthermore, a search session can be interpreted
from different views, while important semantics are shared across
views. For example, the search session in Figure 1 can be inter-
preted from the view of how the user refines queries, or from the
view of how different types of queries in the whole session comple-
ment each other. Considering only one interpretation can not fully
encode the information in MM search sessions.

Our solution is a MUlti-View COntrastive Graph neural network
framework (MUVCOG). To address challenge C1, we model an MM
search session as a Heterogeneous Graph, and adopt Graph Neural
Networks (GNNs) to encode diverse query types and interactions.
Unlike other heterogeneous graph neural networks, we present
two views to interpret MM search sessions. The first view aggre-
gates globally correlated queries from different modalities. The
second view interprets the session in a hierarchical manner and
captures local correlations at query level. Thus, the graph level
representation derived by these views capture complex local and
global interactions among various query types of MM sessions. To
address challenge C2, we present strategies to generate positive
samples and hard negatives for MM sessions. Hard negatives en-
hance the difficulty of contrastive task. Then, the representations
are contrasted across two views in pretraining, so that the learned
representations are more effective and robust. We verify the effec-
tiveness of the learned representations of MM sessions in various
downstream tasks, including personalized click prediction, query
suggestion, and intent classification.

In summary, our contributions are three-fold. (1) We study the
novel problem of pre-training for Multi-modal Multi-query search

 

3430



Pretraining Representations of Multi-modal Multi-query E-commerce Search KDD ’22, August 14–18, 2022, Washington, DC, USA

in Mobile Taobao. We release the first public dataset of Multi-modal
Multi-query search. (2) We present an effective contrastive pretrain-
ing framework MUVCOG to learn representations of MM search
sessions based on multi-view heterogeneous graph networks. (3)
We conduct extensive experiments to show that the pretrained
representations of MM sessions benefit various downstream tasks,
including personalized click prediction, query suggestion, and in-
tent classification.

2 RELATEDWORK
We identify two lines of related work: E-commerce search and
contrastive pretraining.

2.1 E-commerce Search
Click prediction. Click prediction has received a lot of attention
from both industry and academy. Nonetheless, multi-query search
sessions are less extensively studied than single query search ses-
sions. Previous work [3, 11, 12, 17, 35, 36] reveals that contextual
information in a search session is helpful to predict clicked items.
Most of these frameworks [11, 12, 36] adopt sequential models such
as gated recurrent unit network (GRU) and attention mechanisms
to encode a query based on preceding queries. Recurrent neural
network (RNN) and attention are also adopted to represent inter
query preference in cross-modal search, e.g., for image search based
on multiple textual queries [32]. A few recent research employs
Graph Neural Network (GNN). However, the graph is built beyond
session-level and involves user feedback [4, 35]. Since click signals
depend on items which are displayed, involving user feedback in the
graph faces the risk of confusing GNN with noisy and incomplete
user feedback. Previous work ignores contextual information for
multi-modal queries. Single query which consists of an image of a
product together with text to alter or add certain product attributes
is studied in [21].

Query suggestion. When users are struggling to reform queries,
search engines can provide assistance by predicting their next
query, based on the contextual information or/and personal pref-
erence [37]. Again, sequential models and attention mechanism
are heavily adopted in encoding session information. For example,
hierarchical RNN in HRED [24], bidirectional RNN with attention
in RIN [18], combined RNN in user-level and session-level in AH-
NQS [5], GRU with feedback memories (i.e., search results and
the clicked positions) in FMN [29], etc.. Pure attention models are
presented, such as the multi-head self attention in HSCM [3], the
flat-Transformer and hierarchical-Transformer [22] and the hierar-
chical attention mechanism and a copy network in ACG [8]. There
is a trend of jointly learning for click prediction and query sugges-
tion [1, 3, 6], where representation of the search session is shared
to improve performance for multiple tasks.

Other tasks. Many other applications have been proposed. For
example, session length prediction [14], user reformulation pre-
diction [16] (i.e., whether users will reformulate their query be-
fore presenting the search results), user intent classification [25]
(i.e., whether users explore in a search session or browses with
strong purchase intent), query performance prediction [34], and
multi-query evaluation [19]. In these studies, pre-retrieval features
(i.e., features that can be obtained before the results and feedback

are available ) are preferred than post-retrieval features (e.g., user
clicks), because pre-retrieval features can facilitate real-time pre-
diction [16].

Summary. Representing contextual information in search ses-
sions is important for a variety of tasks. However, representation
learning for search sessions containing multiple textual and image
queries has never been studied in these tasks. A recent large-scale
query log analysis [7] is the only known study related to multi-
querymulti-modality search sessions. It points out that multi-modal
search sessions are very different from textual search sessions and
require special treatments.

2.2 Contrastive Pretraining
Self-supervised Pretraining. A major and ongoing thrust of re-
search recently is on self-supervised pretraining, which automati-
cally learns task-independent, useful features without expensive
annotations. Pretraining-finetuning has become the predominant
approach to achieve state-of-the-art results in NLP (natural lan-
guage processing) and CV (computer vision) tasks. In NLP, popular
pretraining tasks include masked token prediction (e.g., BERT [9])
and auto-regressive language modeling (e.g., GPT [2]), where the
typical architecture is based on Transformer [26]. It is found that
neither of the above objectives can produce better sentence embed-
dings than contrastive pretraining tasks [10]. In CV, both masked
autoencoders [15] and contrastive learning [31], with different ar-
chitectures, obtain promising results.

Contrastive learning. For any anchor data point, the con-
trastive loss pulls closer some positive points and push apart some
negative points in the feature space. For graph data, positive data
is obtained by a number of graph augmentations and negative
data is usually randomly sampled [23, 33]. Cross-view contrastive
learning which contrasts representation from one view to represen-
tation from another view is presented to represent heterogeneous
graph [28].

Summary. Existing contrastive learning methods for graph
data are sub-optimal for MM search pretraining. (1) They can not
generate high quality positive and negative samples for MM search.
(2) The contrastive task is not effective for MM search sessions and
the discriminating power is weaken.

3 METHODOLOGY
3.1 Preliminaries
An MM (Multi-Modal Multi-query) search session, like a conven-
tional search session, is a series of consecutive queries input by
the same user, where the idle time between two adjacent queries is
limited by a threshold. To represent an MM search session, it is im-
portant to capture different query types and complex interactions.
Firstly, an MM search session contains three query types: keyword
query, product query and image query. The former two query types
are textual queries, i.e., keyword queries and product queries both
consist of a set of words from the vocabulary. To distinguish differ-
ent query types and capture complex correlations, we model each
MM search session as a Heterogeneous Graph.

Formally, a heterogeneous graph for an MM search session 𝑠 is
a directed, labeled graph 𝐺𝑠 = {V𝑠 , E𝑠 ,Q,A, 𝜙𝑠 ,𝜓𝑠 }, where V𝑠 =

{v𝑠1, · · · , v
𝑠
𝑁 𝑠 } is a set of nodes, each node v𝑠

𝑖
∈ R𝐷 is represented
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Figure 3: Overall framework of MUlti-View COntrastive Graph neural network (MUVCOG)

by a 𝐷−dimensional embedding vector. E𝑠 = {𝑒𝑖, 𝑗 |𝑖 ∈ V𝑠 , 𝑗 ∈ V𝑠 }
is a set of edges.Q is the set of distinct node types and𝜙𝑠 : V𝑠 → Q
is the node mapping function. A is the set of distinct edge types
and𝜓𝑠 : E𝑠 → A is the edge mapping function.

Next, we design two views to construct heterogeneous graph for
MM search sessions and learn node embeddings by heterogeneous
graph neural network.

3.2 AGV: Attentive Global View
Under attentive global view,we construct𝐺𝑠 withQ = {𝐾𝑄, 𝑃𝑄, 𝐼𝑄},
which corresponds to keyword query, product query and image
query, respectively. For keyword queries and product queries, we
add a node for each distinct word in the graph, since words are
the basic units of a query. Note that we treat words in keyword
queries and product queries differently. For example, word ‘w4" in
Figure 3 appears in both a keyword query and a product query, we
add two nodes, one is assigned with node type 𝐾𝑄 and the other
is with 𝑃𝑄 . The motivation is that, keyword queries are manually
input by users, while product queries are extracted from product
descriptions, thus they are distinguished to reflect different user
intents. For each distinct image query, we add a node and assigne
it with type 𝐼𝑄 . We consider two edge types A = {𝐶𝑂, 𝑅𝐹 }, corre-
sponding to co-occur and refine relations, respectively. If two words
𝑖, 𝑗 co-occur in the same keyword query or product query, we add
two edges 𝑒𝑖, 𝑗 , 𝑒 𝑗,𝑖 and assign the edge type𝜓 (𝑒𝑖, 𝑗 ) = 𝜓 (𝑒 𝑗,𝑖 ) = 𝐶𝑂 .
For any pair of nodes 𝑖, 𝑗 , if node 𝑖 appears in a query and node 𝑗
appears in an immediate subsequent query, we add a refine edge
𝑒𝑖, 𝑗 ,𝜓 (𝑒𝑖, 𝑗 ) = 𝑅𝐹 .

We initialize the node embeddings by pretrained word embed-
dings and image embeddings. Note that since visual queries and
textual queries lie in different feature spaces, we apply an projec-
tion function in the initialization to transform visual nodes into
the textual space, i.e., v𝑖 = 𝜎 (W𝑒 ṽ𝑖 + b), where ṽ𝑖 is the initialized
image embedding for image 𝑖 .

In updating the node embeddings, intuitively, contributions of
neighboring nodes depend on the query types and the semantics
of nodes. Inspired by [28], we employ attention mechanism to first
aggregate information from different nodes with the same type, and
then aggregate information from different query types. Specifically,

we update the hidden state vector of node 𝑖 w.r.t to type 𝑝 by:

v𝑝
𝑖
= 𝜎 (

∑︁
𝑗 ∈N𝑖 ,𝜙 ( 𝑗)=𝑝

𝛼
𝑝

𝑖,𝑗
v𝑗 ), (1)

where 𝑝 ∈ {𝐾𝑄, 𝑃𝑄, 𝐼𝑄} is the query type, N𝑖 is the neighbor set,
i.e., ∀𝑗 ∈ N𝑖 , there exists an edge 𝑒 𝑗,𝑖 . 𝜎 is the nonlinear activation
function, 𝛼𝑝

𝑖,𝑗
is the type-specific attention, computed by:

𝛼
𝑝

𝑖,𝑗
=

𝑒𝑥𝑝

(
𝜎 (W𝑎 [v𝑖 , v𝑗 ])

)
∑
𝑙 ∈N𝑖 ,𝜙 (𝑙)=𝑝 𝑒𝑥𝑝

(
𝜎 (W𝑎 [v𝑖 , v𝑙 ])

) , (2)

where [] is the concatenation operation.
Then, we utilize attention to aggregate different types, to obtain

the node embedding under AGV.

z𝐴𝐺𝑉𝑖 =
∑︁
𝑝

𝛽𝑝v𝑝
𝑖

(3)

where z𝐴𝐺𝑉
𝑖

is the node embedding for node 𝑖 under the attentive
global view. The computation of type-specific attention involves
globally information diffusion from nodes across queries. 𝛽𝑝 is the
weight of each query type 𝑝 .

𝛽𝑝 =
𝑒𝑥𝑝

∑
v𝑖 ∈V 𝜎 (W𝑔v𝑝

𝑖
+ b𝑔)∑

𝑝 𝑒𝑥𝑝
∑
v𝑖 ∈V 𝜎 (W𝑔v𝑝

𝑖
+ b𝑔)

(4)

Finally, the session representation under the attentive global view
is computed by :

g𝐴𝐺𝑉𝑠 = 𝐴𝑣𝑔
(
z𝐴𝐺𝑉𝑖 |𝑖 ∈ V𝑠 ), (5)

where𝐴𝑣𝑔 is the mean pooling operation, 𝑖 ∈ V𝑠 means the session
representation is averaged over all nodes (including words and
images) in the session.

3.3 HLV: Hierarchical Local View
Different from the attentive global view, the assumption of hier-
archical local view is to first capture intra-query dependencies
and then capture inter-query dependencies in a hierarchical man-
ner. Thus, as shown in Figure 3, we construct 𝐺𝑠 with four node
types, Q = {𝐾𝑄, 𝑃𝑄, 𝐼𝑄,𝑉𝑄}, where 𝑉𝑄 is a “virtual" word which
corresponds to the aggregated query. Thus, the HLV contains
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more nodes than the AGV graph. HLV also has two edge types
A = {𝐶𝑂, 𝑅𝐹 }. We add 𝐶𝑂 edges between a 𝑉𝑄 node and all of
its query words/images. We add a 𝑅𝐹 edge from a 𝑉𝑄 node to its
subsequent query’s 𝑉𝑄 node.

In initialization, we first initialize 𝐾𝑄, 𝑃𝑄, 𝐼𝑄 nodes with the
corresponding pretrained word embeddings and image embeddings.
We use a linear transformation to word and image embeddings
v𝑖 , 𝜙 (𝑖) ∈ {𝐾𝑄, 𝐼𝑄, 𝑃𝑄} and obtain a more expressive hidden state
h𝑖 = W𝑏v𝑖 , whereW𝑏 is a learnable weight matrix. We initialize
𝑉𝑄 nodes as zero vectors.

Then, we apply GCN [20] hierarchically. First we obtain the node
embedding of a𝑉𝑄 node h𝑞, 𝜙 (𝑞) = 𝑉𝑄 by query-level aggregation:

h𝑞 =
∑︁

𝜓 (𝑒 𝑗,𝑞 )=𝐶𝑂
𝜎
( 1√︁
𝑑 𝑗𝑑𝑞

W𝑐h𝑗
)
, (6)

where
∑
𝜓 (𝑒 𝑗,𝑞 )=𝐶𝑂 means the information is aggregated over query

words and images that belong to the current query𝑞,𝑑 𝑗 is the degree
of node 𝑗 ,W𝑐 is the learnable weight matrix.

Then we update the node embedding by inter-query aggregation:

z𝐻𝐿𝑉
𝑞 =

∑︁
𝜓 (𝑒𝑞′,𝑞 )=𝑅𝐹

𝜎
( 1√︁
𝑑𝑞′𝑑𝑞

W𝑑h𝑞′
)
, (7)

where
∑
𝜓 (𝑒𝑞′,𝑞 )=𝑅𝐹 means the information is aggregated over a

receptive area of the query sequence,W𝑑 is the learnable weight
matrix.

Finally we obtain the session representation under hierarchical
local view by averaging all 𝑉𝑄 node embeddings:

g𝐻𝐿𝑉
𝑠 = 𝐴𝑣𝑔

(
z𝐻𝐿𝑉
𝑞 |𝑞 ∈ V𝑠 , 𝜙 (𝑞) = 𝑉𝑄

)
(8)

3.4 Multi-view Contrast
With the two view-specific session representation, we employ a
contrastive learning across these two views. The motivation is, for
each anchor session 𝑠 , we want its similar session (i.e., positive
sample) to be close in the representation space, and the dissimilar
session (i.e., negative sample) to be far-apart, even under a different
view. Thus, we employ a Multi-Layer Perceptron (MLP) to predict
the label (i.e., positive or negative) of a pair of sessions (𝑠, 𝑠 ′). The
MLP takes the concatenation of [g𝑠 , g𝑠′] as input, and adopts 𝑙 lay-

ers of transformation,𝑀𝐿𝑃 (g𝑠 , g𝑠′) = 𝜎
(
𝑓 𝑙
(
· · · 𝑓 1 ( [g𝑠 , g𝑠′]) · · ·

) )
,

where in each layer 𝑓 𝑙 (x) = 𝑅𝑒𝐿𝑈
(
W𝑙

𝑀𝐿𝑃
x + 𝑏𝑙

𝑀𝐿𝑃

)
. Then we

optimize the binary cross entropy loss:

𝐿 =
∑︁

<𝑠,𝑝,𝑛>∈B
𝐵𝐶𝐸 (g𝐴𝐺𝑉𝑠 , g𝐻𝐿𝑉

𝑝 , g𝐻𝐿𝑉
𝑛 )+𝐵𝐶𝐸 (g𝐻𝐿𝑉

𝑠 , g𝐴𝐺𝑉𝑝 , g𝐴𝐺𝑉𝑛 )

(9)
where 𝐵𝐶𝐸 (𝑖, 𝑗, 𝑘) =

[
𝑙𝑜𝑔(𝑀𝐿𝑃 (𝑖, 𝑗)) + 𝑙𝑜𝑔

(
1 −𝑀𝐿𝑃 (𝑖, 𝑘)

) ]
is the

binary cross entropy loss, B is a mini-batch of sampled sessions, 𝑠
is every anchor session in the batch, 𝑝 is the positive session for
𝑠 . The positive sample is obtained by randomly masking a query
(including all query words and images in this query) in the session.
𝑛 is a negative session for 𝑠 .

Hard negative sample. To generate the negative sample 𝑛, we
first count the number of common clicks between each pair of
sessions. Within the batch B, for each session 𝑠 ′ which shares zero
common clicked items with the anchor session 𝑠 , we compute their

similarity by the aforementioned𝑀𝐿𝑃 (𝑠, 𝑠 ′), and select the session
with the largest similarity, i.e., 𝑛 = 𝑎𝑟𝑔max𝑠′∈B 𝑀𝐿𝑃 (𝑠, 𝑠 ′). Thus,
the negative sample is the most difficult sample to distinguish for
the contrastive learner.

4 EXPERIMENT
In this section, we conduct three important tasks in E-commerce,
namely personalized click prediction (Section 4.2), query suggestion
(Section 4.5), and intent classification (Section 4.6). We evaluate the
effectiveness of the pretrained MUVCOG framework in extracting
useful session representations on these tasks.

4.1 Experimental Setup
Dataset. We gather search logs of Mobile Taobao in a period of
seven days in November 2021 in three product categories: clothes,
beauty and digital. Clothes is the largest product category in Mobile
Taobao with the most items and search traffic. Beauty and digital
are two popular product categories which target different market
demographics. For each category, we divide search sessions. As
most of previous research [7, 14, 16, 25], we use the 30 minute
threshold for idle time. Then, we delete purely textual sessions
which contain no image queries, as we focus on multi-modal multi-
query sessions in this paper. This step also removes all single query
sessions, because a product query and image query can only be
issued after a keyword query. Finally, for the convenience of click
prediction task, we collect click events, and the corresponding user
IDs and item IDs, for each resulted search session.

We report the key statistics of the three datasets in Table 1.
Beauty and Digital differ with Clothes in scale (i.e., number of
sessions/users/items/clicks). In all datasets, keyword queries are
slightly more than product queries. Note that a product query al-
ways accompanies an image query, i.e., #PQ equals #IQ. The three
categories show different characteristics of search behavior. We
compute the time span of each search session, i.e., 𝑇 (𝑠) is the dif-
ference of timestamps between the first query and the last query
in search session 𝑠 . As shown in Table 1, MM search sessions in
clothes (averagely 42 minutes) are longer than digital (36 minutes)
and beauty (27minutes). We compute the number of queries in each
session (i.e., 𝐿(𝑠)). Averagely, each clothes session (7.23 queries) is
longer than beauty session (6.13 queries) and digital session (6.47
queries). Finally we compute the number of words in each prod-
uct query (𝐿(𝑃𝑄)) and keyword query (𝐿(𝐾𝑄)). We can see that
averagely, digital products (20.17 words) tend to use more words
in their titles than beauty products and clothes (approximately 14
words). Users averagely use more keywords to search for clothes
(2.84 words) than beauty products (2.42 words) and digital products
(2.77 words).

Implementation. We made our code and data publicly avail-
able1. MUVCOG parameters are initialized with Glorot initialization
and trained using Adam SGD optimizer. For all models, includ-
ing all baselines and competitors, the input word embeddings are
50−dimensional vectors extracted from a word2vec model trained
on in-house large-scale E-commerce corpus, the input image embed-
dings are 512−dimensional vectors extracted from a metric learning

1https://github.com/XMUDM/MMsession
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Table 1: Dataset statistics: total number of sessions, number of keyword queries (#KQ), number of product queries (#PQ),
number of users, number of items, number of clicks, average time-span of each session, average number of queries in each
session, average number of words in each product query, average number of words in each keyword query

Dataset #Sessions #KQ #IQ(#PQ) #Users #Items #Clicks Avg.𝑇 (𝑠) Avg.𝐿(𝑠) Avg.𝐿(𝑃𝑄) Avg.𝐿(𝐾𝑄)
Clothes 8,729,238 34,622,269 28,453,958 6,379,040 11,965,004 245,587,692 42 min 7.23 13.95 2.84
Beauty 851,250 2,865,293 2,349,832 778,451 1,704,675 13,967,180 27 min 6.13 13.84 2.42
Digital 713,445 2,597,696 2,017,968 655,022 1,253,623 13,886,197 36 min 6.47 20.17 2.77

model trained on Taobao visual search dataset. The session embed-
ding size for the MM session is 32 for a single view. The MLP in
MUVCOG has three layers with [64, 32, 1] neurons.

4.2 Personalized Click Prediction
Experimental protocol. Personalized click prediction is treated
as a supervised learning problem where each training sample is
a five-tuple < q𝑖 , u𝑖 , p𝑖 , s𝑖 , 𝑐𝑖 >, where q𝑖 is a query, u𝑖 is a user,
p𝑖 is an item, s𝑖 is a search session (optional), and 𝑐𝑖 is a corre-
sponding relevance label (i.e., 𝑐𝑖 = 1: click or 𝑐𝑖 = 0: non-click).
Most existing work [3, 11, 12, 17, 35, 36] follows a two-stage frame-
work, where the first stage is to extract feature representations
for user/item/query/session, and the second stage is to compute
a matching score. Our goal is to evaluate whether an MM search
session can provide more contextual information and boost click
prediction accuracy. Towards this goal, we extract a representation
for the MM search session and integrate it to into different baseline
click prediction models. For a fair comparison, we do not devise a
specialized integration for each baseline. To be specific, the session
representation s𝑖 is concatenated with the other representations
learned (e.g., for user/item/query, etc.) by each model’s feature
extractor, immediately before the matching module.

Baselines.We adopt the following recent deep learning based
click prediction models with publicly available source codes and
their default hyper-parameter settings. These baselines use different
network architectures to extract features and model user-query-
item correlations. (1) TranSearch [13]2 uses feed forward network
to convert user preference, query, and item into a latent multi-modal
feature space. It translates the user preference with the query to
the item based on a comparative learning strategy. The vanilla
TranSearch does not consider session information. (2) ALSTP [12]3
uses GRU and attention mechanism to extract long-term user pref-
erence and short-term purchase inclination from sessions and their
corresponding purchases. Prediction is based on cosine similarity
between item and query representation upgraded by user inten-
tions. ALSTP considers not only immediately preceding queries but
also historical queries of the user. (3) HSCM [3]4 is originally pre-
sented for document search. It uses self-attention to extract session
representation. It aggregates representations of the current query,
search session, feedback within the session, and query-item click
bipartite graph in multi-task learning, i.e., document ranking and
query suggestion. In implementation, we use the product titles as
the documents. HSCM captures not only query interactions within
a session, but also cross-session dependencies.
2https://github.com/guoyang9/TranSearch
3https://github.com/guoyang9/ALSTP
4https://github.com/xuanyuan14/HSCM-master

Feature representation of MM sessions. We use different
methods to extract an embedding vector of the MM session and
concatenate the embedding with other features in the baselines
to feed the matching stage. (1) Vanilla: the vanilla baselines with-
out any special treatments for MM search sessions. Note that the
vanilla ALSTP and HSCM take into account preceding queries in
the session, however, they do not distinguish query types, i.e., they
ignore the image queries in the MM sessions. (2) LSTM: we use a
Long Short Term Memory network on the MM search session (trun-
cated at the current query). Note that the LSTM encoder is trained
end-to-end with the baseline. (3) MUVCOG-T: we remove all im-
age queries in each MM search session and pretrain MUVCOG on
purely textual queries. Then we use the pretrained model to extract
embedding vector for each session (truncated at the current query).
(4) MUVCOG-M: the session representation extractor is pretrained
on MM sessions. Note that for MUVCOG-T and MUVCOG-M, we
keep the extracted session embeddings fixed and do not update
them when training the baselines.

Evaluation Metrics.We apply a random 80 − 20 train-test split
to each dataset. For each session in the testing set, we predict item
labels (click or not clicked) for each query. We adopt commonly
used evaluation metrics [3, 11, 12, 17, 35, 36] for click prediction,
i.e., Normalized Discounted Cummulative Gain (NDCG)@10, Hit
Ratio (HR)@10 (HitRatio), and Mean Reciprocal Rank (MRR)@10.
Higher metric values indicate more accurate click predictions.

Results andAnalysis.We report the results of all baselines with
different MM session representations. We compute performance
improvements of MUVCOG-M over vanilla baselines in Table 2.
Note that we are not comparing the performances among baselines.
Instead, we are interested in comparing the effect of different rep-
resentations of MM sessions. We have the following observations.
(1) MUVCOG-M significantly improves various vanilla baselines in
terms of NDCG@10, HR@10, and MRR@10, on all datasets. Given
the wide coverage of feature extraction and matching mechanisms
adopted in various baselines, it verifies our assumption that incor-
porating contextual information in MM search session can robustly
and effectively enhance click prediction performance. (2) Even base-
lines which already encode contextual information in previous
queries, i.e., ALSTP and HSCM, can benefit from the proposed
MM session representations. The underlying reason is that existing
methods only consider conventional purely textual sessions and
ignore image queries. Image queries are an important supplement
to textual queries, because some information need aspects are dif-
ficult to be verbally expressed. (3) Pretrained MUVCOG (without
task-specific finetuning) outperforms LSTM which encodes MM
sessions in an end-to-end fashion. It suggests that the complex cor-
relations between different types of queries can not be captured by
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a sequential model such as LSTM, while the heterogeneous graph
neural network is superior. (4) In most cases, MUVCOG-M out-
performs MUVCOG-T, which verifies the importance of encoding
visual contextual information in MM sessions.

4.3 Ablation Study
Next, we study the contributions of different components in MU-
VCOG. We choose ALSTP as the baseline, because it is single task
learning with contextual information. Thus it can show how MU-
VCOG can provide additional information of MM session on click
prediction.

Impact of multi-view contrastive learning. We first study
the impact of multi-view heterogeneous graph neural network.
The competiters include: (1) vanilla ALSTP without MM session
encoding. (2) GAT: the MM search sessions are represented as ho-
mogeneous graphs and apply graph attention network [27] which
employes Graph Attention Network (GAT) as the pretraining back-
bone. (3) AGV: the MM search sessions are represented as heteroge-
neous graphs and only the attentive global view is applied. (5) HLV:
the hierarchical local view is applied on the heterogeneous network.
(6) MUVCOG: the proposed multi-view pretraining framework.

From Figure 4, we have the following observations. (1) Incor-
porating MM session encoding can significantly improve ALSTP’s
prediction performance, despite the pretrain settings. (2) MUVCOG
consistently outperforms single-view contrastive learning (i.e., AGV
and HLV), suggesting that single-view is incomplete for MM ses-
sions. (3) HLV produces higher accuracy than AGV and GAT, sug-
gesting HLV is more powerful to capture the intent revealed by
query refining and reforming. However, the difference between
AGV and GAT is less significant.

Impact of hard negatives. Then, based on multi-view con-
trastive learning MUVCOG, we compare the results obtained by
different negative sampling strategies. (1) random: the negative sam-
ples are randomly drawn to form a batch. (2) hard: the proposed
hard negative sampling strategy.

From Figure 5, we observe that hard negative sampling strategy
is better than random negative sampling strategy on all datasets.
It verifies the necessity of using hard negatives to increase the
difficulty of contrastive learning and improve the quality of the
learned session representations.

4.4 Case Study
To demonstrate that MUVCOG learns good representations for MM
sessions, we show a real search session in Figure 6 (a), where the
user first types in a query and then searches for similar product. We
can see that the image query provides visual characteristics (e.g.,
diamonds, layered) that are not articulated by the keyword query.
Figure 6 (b) plots the embedding vectors of the session learned by dif-
ferentmodels. (1) LSTM trained jointly with ALSTP, (2)MUVCOG-T,
and (3) MUVCOG-M, both are pretrained and extract session em-
beddings off-the-shelf. The user clicks one item in this session. We
also plot the embedding vectors of the clicked item and a randomly
sampled non-clicked item. For better illustration, we exhibit the
product images of the clicked item and the non-clicked item. We
can see that the clicked item is indeed a layered diamond neck-
lace, with properties that are only revealed in the image query and

product query. We observe that MUVCOG-M and MUVCOG-T are
able to learn a representation of the session which is closer to the
clicked item and apart from the the non-clicked item. MUVCOG-M
is better than MUVCOG-T as it minimizes the discrepancy between
the session and the click. On the contrary, LSTM performs poorly
and the session embedding is closer to the non-clicked item.

4.5 Query Suggestion
Given an MM search session 𝑠𝑖 =< 𝑞1, · · · , 𝑞𝑖 > of 𝑖 queries, the
goal of query suggestion is to predict the next (i.e., 𝑞𝑖+1) query the
session will contain. Note that we do not consider user interactions
(e.g., click history) in this task. To deliver predictions, we encode
the session 𝑠𝑖 and feeds the encoding to a feed-forward network
with one hidden layer and sigmoid activation function.

Baselines.To isolate the impact of image queries inMM sessions,
the comparative study is carried on two settings, with image queries
andwithout image queries. “Without image queries" (corresponding
to the top three rows in Table 3) means we remove the image queries
in all MM sessions, and compare MUVCOG-T, i.e., pretrained on
textual sessions, with (1) LSTM which is adopted in [37], and (2)
Transformer which is adopted in [22]. We use the flat-transformer
in [22], since it is reported that flat-transformer works better for
longer sessions. LSTM and Transformer are trained end-to-end with
the prediction layer, while MUVCOG-T is fixed during the training
for query suggestion. We also experiment with the image queries in
the MM sessions (corresponds to the bottom three rows in Table 3).
We apply mean pooling to all image queries, and the LSTM and
Transformer encodings, respectively. They are compared against
MUVCOG-M, i.e., pretrained on full MM sessions.

Evaluation Metrics. Ranking metrics are commonly adopted
to evaluate query suggestion performance. We adopt NDCG@10,
HR@10, and MRR@10, to measure the ranking accuracy of top 10
predicted query words. An additional metric is the average cosine
similarity between the embedding vectors of predicted query words
and actual query words (Avg.Sim). We find that similar search in-
tents may be represented by a diverse vocabulary, which makes pre-
dicting the exact queryword difficult. For example, the word “shells"
and “seashells" can replace each other. Thus we adopt Avg.Sim to
eliminate the effect of synonyms.

Results and Analysis. As shown in Table 3, the variants of
MUVCOG outperform LSTM and Transformer in terms of all evalu-
ation metrics, on all datasets, with and without image queries. The
proposed pretraining framework can extract more useful contextual
information than existing sequential encoders. We also observe that
all encoding methods perform better with image queries, which
again indicates the importance of encoding image queries in MM
search sessions.

4.6 Intent Classification
Intent classification task aims to classify a completed MM search
session based on the category of products clicked in this session.

Baselines. Since our goal is to investigate whether MUVCOG
can automatically extract useful session features, we keep the classi-
fication framework as simple as possible. The classifier is XGBoost,
which is a gradient boosting algorithm that has been widely used
in various classification tasks. We use three petrained models to
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Table 2: Personalized click prediction performance of different baselines with various MM session representations. Best results
for each baseline and dataset are shown in bold fonts. Improvements of MUVCOG-M over vanilla baselines are presented.

Baseline DataSet Beauty Clothes Digital
Feature NDCG@10 HR@10 MRR@10 NDCG@10 HR@10 MRR@10 NDCG@10 HR@10 MRR@10

TranSearch

vanilla 0.4991 0.7365 0.4208 0.5074 0.7721 0.4201 0.4709 0.7147 0.3915
LSTM 0.5009 0.7458 0.4206 0.5370 0.8112 0.4468 0.4787 0.7199 0.4011

MUVCOG-T 0.5162 0.7756 0.4306 0.5417 0.8127 0.4527 0.4756 0.7249 0.3947
MUVCOG-M 0.5362 0.8024 0.4485 0.5632 0.8314 0.4753 0.4959 0.7463 0.4150

Improv. ↑ 7.4% ↑ 8.9% ↑ 6.6% ↑ 11.0% ↑ 7.7% ↑ 13.1% ↑ 5.3% ↑ 4.4% ↑ 6.0%

ALSTP

vanilla 0.4410 0.7140 0.3566 0.4063 0.7239 0.3090 0.2267 0.4152 0.1697
LSTM 0.4500 0.7468 0.3589 0.4295 0.7353 0.3357 0.2461 0.4418 0.1869

MUVCOG-T 0.5864 0.8932 0.4905 0.4876 0.7795 0.3973 0.4245 0.6671 0.3500
MUVCOG-M 0.6049 0.9002 0.5123 0.5116 0.8014 0.4216 0.4674 0.7468 0.3819

Improv. ↑ 37.2% ↑ 26.1% ↑ 43.7% ↑ 25.9% ↑ 10.7% ↑ 36.4% ↑ 106.2% ↑ 79.9% ↑ 125.1%

HSCM

vanilla 0.2902 0.5796 0.2010 0.3474 0.7224 0.2314 0.3057 0.6073 0.2124
LSTM 0.3208 0.6704 0.2161 0.3484 0.7297 0.2304 0.3084 0.6136 0.2143

MUVCOG-T 0.3230 0.6603 0.2213 0.3571 0.7328 0.2407 0.3105 0.6206 0.2151
MUVCOG-M 0.3251 0.6766 0.2200 0.3590 0.7317 0.2435 0.3278 0.6767 0.2232

Improv. ↑ 12.0% ↑ 16.7% ↑ 9.4% ↑ 3.3% ↑ 1.3% ↑ 5.2% ↑ 7.2% ↑ 11.4% ↑ 5.1%
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Figure 4: Click prediction performance of ALSTP with MM session encoding by different pretrain settings
Table 3: Query suggestion performance by different session encoding methods with and without image queries (IQ)

IQ Method Beauty Clothes Digital
NDCG@10 HR@10 MRR@10 Avg.Sim NDCG@10 HR@10 MRR@10 Avg.Sim NDCG@10 HR@10 MRR@10 Avg.Sim

No
LSTM 0.0707 0.1435 0.0489 0.8208 0.0463 0.0936 0.0322 0.7979 0.073 0.1441 0.0519 0.8322

Transformer 0.1333 0.2488 0.0993 0.8463 0.0845 0.1536 0.0635 0.8248 0.1259 0.2322 0.0937 0.8504
MUVCOG-T 0.1698 0.2879 0.1229 0.8792 0.1344 0.2259 0.0948 0.8589 0.1843 0.3159 0.1397 0.8891

Yes
LSTM 0.1284 0.2278 0.0982 0.8211 0.0689 0.1288 0.0507 0.8147 0.1217 0.2267 0.0904 0.8291

Transformer 0.1442 0.2647 0.1045 0.8591 0.1028 0.1827 0.0722 0.8360 0.1439 0.2697 0.1147 0.8714
MUVCOG-M 0.1721 0.3019 0.1337 0.8823 0.1527 0.2551 0.1082 0.8663 0.2017 0.3413 0.1444 0.895

Figure 5: Click prediction performance by different negative
sample strategy of MUVCOG

extract session features for XGBoost. (1) word2vec+IQ: we first
obtain the word embeddings extracted by a word2vec pretraining
model (i.e., the input word embeddings), and apply mean pooling
over all query words in the session to obtain the textual features.
We then apply mean pooling to image embeddings for all image
queries in the session (i.e., the input image embeddings) and obtain
visual features. Finally, the textual features are concatenated with

Figure 6: A real MM search session and its session embedding
vectors learned by different models.

the visual features. (2) BERT+IQ: we obtain the word embeddings
extracted by a BERT pretraining model on all sessions. The textual
features are also obtained by averaging all query words in the ses-
sion, and the textual features are concatenated with visual features
in the same manner as word2vec+IQ. (3) MUVCOG-M: the session
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Table 4: Intent classification results for XGBoost with fea-
tures extracted by different pretrain models

Features AUC Acc P R F1

word2vec+IQ 0.9701 0.9523 0.9476 0.9537 0.9506
BERT+IQ 0.9821 0.9742 0.9617 0.9738 0.9677

MUVCOG-M 0.9977 0.9963 0.9948 0.9969 0.9958

features are extracted by the graph neural network pretrained using
multi-view contrastive loss on all MM sessions. Note that for all
methods, once the session features are extracted, they are fixed and
only parameters of XGBoost will be updated.

Evaluation Metrics. We use Area Under the ROC Curve (AUC),
average Accuracy per class (ACC), Macro-Precision (P), Macro-
Recall (R) and Macro-F1 as the evaluation metrics.

Results andAnalysis.As shown Table 4, MUVCOG-M achieves
optimal results, in terms of all evaluation metrics. It shows that the
proposed pretrain model MUVCOG can produce universally useful
session features to represent user intents.

5 CONCLUSION
This paper studies the problem of modeling multi-query multi-
modal (MM) search sessions in Mobile Taobao. We present a multi-
view contrastive learning framework to pretrain heterogeneous
graph neural network and learn feature representations of the MM
sessions. We show that the pretrained session representations, with-
out task-specific fine-tuning, are effective for a number of important
Ecommerce downstream tasks such as personalized click prediction,
query suggestion, and intent classification.
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