
Mitigating Sentiment Bias for Recommender Systems
Chen Lin

School of Informatics, Xiamen University

Xiamen, China

chenlin@xmu.edu.cn

Xinyi Liu

School of Informatics, Xiamen University

Xiamen, China

xinyiliu@stu.xmu.edu.cn

Guipeng Xv

School of Informatics, Xiamen University

Xiamen, China

xuguipeng@stu.xmu.edu.cn

Hui Li
∗

School of Informatics, Xiamen University

Xiamen, China

hui@xmu.edu.cn

ABSTRACT
Biases and de-biasing in recommender systems (RS) have become a

research hotspot recently. This paper reveals an unexplored type

of bias, i.e., sentiment bias. Through an empirical study, we find

that many RS models provide more accurate recommendations

on user/item groups having more positive feedback (i.e., positive

users/items) than on user/item groups having more negative feed-

back (i.e., negative users/items). We show that sentiment bias is

different from existing biases such as popularity bias: positive

users/items do not have more user feedback (i.e., either more rat-

ings or longer reviews). The existence of sentiment bias leads to

low-quality recommendations to critical users and unfair recom-

mendations for niche items. We discuss the factors that cause senti-

ment bias. Then, to fix the sources of sentiment bias, we propose

a general de-biasing framework with three strategies manifesting

in different regularizers that can be easily plugged into RS models

without changing model architectures. Experiments on various RS

models and benchmark datasets have verified the effectiveness of

our de-biasing framework. To our best knowledge, sentiment bias

and its de-biasing have not been studied before. We hope that this

work can help strengthen the study of biases and de-biasing in RS.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
sentiment bias, de-biasing, recommender systems

ACM Reference Format:
Chen Lin, Xinyi Liu, Guipeng Xv, and Hui Li. 2021. Mitigating Sentiment

Bias for Recommender Systems. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’21), July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3404835.3462943

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00

https://doi.org/10.1145/3404835.3462943

1 INTRODUCTION
Recommender Systems (RS) are powering our everyday life. As peo-

ple are producing more data than ever, RS have become an essential

component in many online services to save us from information

overload [6].

Unfortunately, the prevalence of RS is accompanied by the as-

sertion that RS are severely biased [9]. User feedback data, which

builds the foundation to train RS models, is observational rather

than experimental [9]. Therefore, various biases (e.g., selection

bias [30], popularity bias [1] and position bias [11]) exist in user

feedback data. Simply fitting RS models to biased user feedback will

increase discrepancy between offline evaluation and online test,

and undermine user satisfaction.

From a broader perspective, biases in Machine Learning (ML)

systems have become a bustling topic in recent years [32]. ML

exhibits systematic error on certain groups of data samples (i.e.,

biases). In computer vision, demographic bias has been observed

broadly, e.g., face recognition models perform poorly on certain

demographic groups defined by sex, age, and race [42]. In natural

language processing, word embeddings pre-trained on massive

text have shown a strong gender bias, e.g., certain professions

are wrongly correlated with a single gender [39]. Discovering the

sources of biases and mitigating biases will lead to more fair and

unbiased ML systems [32].

Users interact with RS, using reviews, ratings and other formats,

to express their emotions and opinions concerning items. In this

paper, we are interested in an unexplored question: are RS models
biased towards a certain user/item group with a specific sentiment
polarity? Through an empirical study, we discover a new type of

bias, i.e., sentiment bias: RS models make significantly more accurate
recommendations on users/items having more positive feedback (i.e.,
positive users/items) than on users/items having more negative feed-
back (i.e., negative users/items). Sentiment bias incurs low-quality

recommendations to critical users (who are more likely to give

negative feedback) and unfair recommendations for niche items

(which are appreciated by only a small population). We observe the

existence of sentiment bias in various review-based and non-review

based RS models over several benchmark datasets. In our empirical

study, we also show that sentiment bias is not the same as existing

biases such as the popularity bias: the performance degradation on

negative users/items is not caused by their lack of user feedback

data. Due to the wide existence of sentiment bias and its unique

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

31

https://orcid.org/0000-0002-2275-997X
https://doi.org/10.1145/3404835.3462943
https://doi.org/10.1145/3404835.3462943

nature, we seek general de-biasing strategies that can be applied to

different RS models in this paper.

We summarize our contributions as follows: (1) Firstly, we iden-

tify sentiment bias in RS and find that many RS models achieve

lower accuracy on negative users/items. To our best knowledge,

sentiment bias and its de-biasing strategies have not been studied
before. (2) Moreover, we show that sentiment bias is not identical

to existing biases in RS such as popularity bias. We discuss the

possible underlying factors that cause the degraded performance.

(3) Finally, we present a general de-biasing framework to mitigate

sentiment bias in RS. Extensive experiments verify its effectiveness

for de-biasing in various RS models. We hope that this work can

help strengthen the study of biases and de-biasing in RS.

2 RELATEDWORK
2.1 Biases in Recommender Systems
In the following, we illustrate several biases in the literature which

exist in RS and may affect recommendation quality [9]:

Selection bias indicates that the observed ratings are not a rep-

resentative sample of all ratings. Marlin et al. [30] conduct a user

study and find that: (1) users tend to rate items that they love more

often than other items; and (2) the sample of random ratings has

markedly different properties than ratings of user-selected items,

i.e., missing not at random [38].

Conformity bias appears as users rate similarly due to various

factors (e.g., social influence [29]) but doing so does not conform

with their own preferences. Krishnan et al. [22] observe the confor-

mity bias by allowing users to rate twice: before and after seeing

average ratings, and they find that the two rating distributions are

different. Similar observations (i.e., discrepancy between individual

and public opinions) are also mentioned in the literature [28, 44].

Position bias denotes that users tend to interact with items in

higher position of the recommendation list even if they are not

relevant. Collins et al. [11] observe the strong relationship between

the rank of items shown to the user and whether the user decided

to click them. Other works have also confirmed the existence of

position bias in RS [14, 18], though Zheng et al. [49] found that

position bias is negligible in their study.

Inductive bias, which introduces assumptions and may not be

harmful, have been added to many RS models so that better general-

ization beyond training data can be achieved [9]. For instance, one

common assumption for designing RS is that inner product [34] or

learned similarity from neural networks [17] can be used to model

user-item interactions.

Popularity bias, the most representative bias studied in the lit-

erature [9], indicates that RS prefer to recommend popular items

more frequently than their original popularity in the data [3, 21].

Popularity bias is caused by training on the long-tail data of RS,

i.e., most of the interactions are related to only a small number of

popular items [1, 2, 4, 5]. Popularity bias will make popular items

become even more popular while less popular items do not get the

deserved attention (i.e., Matthew effect) [9].

Exposure bias happens as users are only exposed to part of the

data (i.e., users are not randomly exposed to items [46]) and un-

observed interactions do not always indicate “dislike”. Exposure

bias is the result of recommendations, i.e., what RS recommend are

exposed to users [25]. Thus, one cause of exposure bias is popularity

bias: unpopular items are not recommended frequently to users but

it does not mean that they do not like them [3].

Note that sentiment bias studied in this paper is not the same as
any of the above biases. More discussions are provided in Sec. 3.3.

2.2 De-biasing Recommendations
Causal inference is commonly used to discover the actual cause of

an user-item interaction so that biases in RS models can be miti-

gated. To correct exposure bias,Wang et al. [45, 46] use causal-effect

to explain recommendations. They first use the exposure data to

estimate an exposure model offering items that the user is likely to

consider. The exposure model is then used to generate substitute

confounders for unobserved confounders. Finally, the predicted rat-

ing is conditioned on the substitute. Wei et al [47] propose to learn

the contribution of each cause (user-item matching, item popularity

and user activity) for an interaction via multi-task learning. When

predicting, the effect of item popularity is removed by counterfac-

tual inference. Bonner and Vasile [7] propose to use causal inference

as domain adaption and design a causal embedding method that

learns outcomes from biased RS to make better predictions.

In addition to causal inference, there are other works trying to

de-bias via using new model architectures. Saito [36] introduces

meta learning into de-biasing RS. He proposes to use one predic-

tor to generate pseudo-ratings and another predictor to make the

predictions. Liang et al. [24] develop a probabilistic model that sep-

arately captures whether a user has been exposed to an item and

when a user has ultimately decided to click on it.

Unlike above works which de-bias in the training phase, another

direction is to eliminate biases during the evaluation phase. Schn-

abel et al. [37] connect recommendation to causal inference and

derive unbiased estimators for various RS performance measures.

With these estimators, they propose an Empirical Risk Minimiza-

tion framework for RS under selection bias. Similarly, Steck [38]

also designs unbiased metrics for evaluating RS better.

The de-biasing framework introduced in this paper is different

compared with existing works, as it mitigates a new bias, i.e., senti-

ment bias. Our framework can be easily plugged into existing RS

models without changing model architectures, and it is orthogonal

to de-biasing methods for the evaluation phase [37, 38].

3 EMPIRICAL STUDY
In this section, we conduct an empirical study on sentiment bias.

Preliminaries. Without loss of generality, the input to RS models

is a rating matrix X ∈ R |U |×|I |
, where U and I are user universe

and item universe, respectively.We consider each ratingX𝑖,𝑝 , where
𝑖 ∈ U, 𝑝 ∈ I, is associated with a review R𝑖,𝑝 if X𝑖,𝑝 ≠ 0.

1
Each

review R𝑖,𝑝 is a short piece of comment text posted by user 𝑖 on item

𝑝 . R𝑖,𝑝 contains a sequence of tokens, i.e., R𝑖,𝑝 =

{
𝑤0, · · · ,𝑤𝐿 (R𝑖,𝑝)

}
,

where 𝐿(R𝑖,𝑝) is the length of review R𝑖,𝑝 , and every token 𝑤 be-

longs to the vocabulary W. For a missing rating X𝑖,𝑝 = 0, the

corresponding review is also missing, i.e., R𝑖,𝑝 = ∅. RS models can

perform rating prediction task or top-K recommendation task. We

1
In some E-commerce platforms such as Amazon, not all ratings are accompanied with

reviews. For simplicity, we assume that every rating is associated with a review.

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

32

Figure 1: MSE on different user/item groups.U+ (I+) column is with lighter color thanU− (I−) column, indicating that RS
performance on positive users (items) is better than on negative users (items).

start by assuming that the goal of an RS model is to predict the

missing ratings based on the available ratings (and reviews) by op-

timizing a loss function L (𝑅𝑆)
computed over non-zero ratings X

and its predictions X̂ from the RS model. If the RS model performs

top-K recommendation task, X̂ is used in ranking candidate items

for each user.

3.1 Empirical Study Protocol

User & Item Profile. Our empirical study aims at studying the dif-

ference of recommendation performance on two users/items groups:

users/items generally with more positive feedback v.s. users/items

generally with fewer positive feedback. We decide to use reviews

to segment users/items, because reviews are more expressive and

provide solid ground to analyze the sentiment of feedback than

pure ratings. Our empirical study adopts the common paradigm to

exploit reviews [27]: build user and item profiles by aggregating all

relevant reviews to obtain user/item-level information.

Definition 1 (User Profile and Item Profile). A user profile
up𝑖 is a piece of text that concatenates all reviews written by user
𝑖 , i.e., up𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (R𝑖,𝑝 ,∀𝑝 ∈ I). An item profile ip𝑝 is a piece
of text that concatenates all reviews written on item 𝑝 , i.e., ip𝑝 =

𝑐𝑜𝑛𝑐𝑎𝑡 (R𝑖,𝑝 ,∀𝑖 ∈ U).

User/Item Grouping. We perform unsupervised sentiment analy-

sis on user and item profiles. We experiment with two sentiment

analysis tools: TextBlob (lexicon-based analysis)
2
and VADER (lexi-

con and rule-based analysis)
3
. These tools return a sentiment po-

larity value for each user/item profile, which is used to rank the

user/item profiles so that more positive profiles are ranked higher

than negative profiles. Then, we extract two groups of users: the

top 10% users are denoted as positive users U+
, and the bottom

2
https://textblob.readthedocs.io

3
https://github.com/cjhutto/vaderSentiment

Table 1: Statistics of the data.
Dataset #Users #Items #Reviews Sparsity (%)

Amazon Gourmet Food 14,683 8,715 151,253 99.8818

Amazon Kindle Store 68,225 61,936 982,618 99.9767

Amazon Video Games 826,769 50,212 1,324,753 99.9968

Amazon Electronics 192,405 63,003 1,689,188 99.9861

Yelp 1,070,074 36,490 3,766,145 99.9904

10% users are denoted as negative users U−
. Similarly, we have

positive items I+
and negative items I−

. Next, we train RS models

on the training set, and make predictions on the test set. Finally, we

report recommendation qualities on positive users, negative users,

positive items, and negative items, respectively.

Datasets. We use five public datasets with different degrees of

sparsity, including four Amazon product rating 5-core datasets [31]

(i.e., each training user/item has at least five ratings), and Yelp
4

dataset. We apply 5-core pre-processing on Yelp to make sure each

user/item has sufficient feedback. We use the default training/test

split. Tab. 1 lists the statistics of the five datasets.

RS Models. We investigate two representative non-review-based

RS models MF [20] and NeuMF [17], and several review-based

RS models including DeepCoNN [50], MPCN [40], NARRE [8],

DAML [26] and D_ATTN [19]. We use public code
5
[35], with

the default parameter settings, in the empirical study.

3.2 Existence of Sentiment Bias in RS
Fig. 1 depicts the recommendation performance evaluated by MSE

(the definition of MSE will be given later in Eq. 1). We can see that

RS models almost always perform better on positive users and items

(with smaller MSE) than on negative users and items (with larger

MSE). The performance gap is significant and universal across differ-
ent RS models and datasets, regardless of the nature of RS models (i.e.,
shallow or deep, review-based or non-review-based), the sparsity of

4
https://www.yelp.com/dataset

5
https://github.com/noveens/reviews4rec

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

33

datasets and the sentiment analysis tools adopted. Though we only re-
port the results for top and bottom 10% users/items ranked by their

sentiment polarity values, we have observed similar, significant

divergence of performance, between positive and negative groups

with smaller and larger coverage percentage, e.g., from top/bottom

1% to 20%. Thus, the empirical results demonstrate the existence of

sentiment bias in RS:

Definition 2 (sentiment bias). Sentiment bias is defined as
the divergence between recommendation performance on positive
users/items and negative users/items. Specifically, the user sentiment
bias and the item sentiment bias for an RS model can be defined as
𝐵𝑈 (𝑅𝑆) = 𝐸 (𝑅𝑆,U−,I)−𝐸 (𝑅𝑆,U+,I), and𝐵𝐼 (𝑅𝑆) = 𝐸 (𝑅𝑆,U,I−)−
𝐸 (𝑅𝑆,U,I+), respectively. 𝐸 is the evaluation metric, e.g., MSE.

Sentiment bias is harmful. An RS model with severe sentiment

bias makes low-quality recommendations to critical users (i.e., users

tend to give fewer positive comments) and unfair recommendations

for niche items (i.e., items that receive positive comments from a

small population). Critical users are valuable resources to RS. When

critical users provide informative reviews explaining their dissatis-

faction, they contribute to the community and help RS attract more

users. However, sentiment bias hurts their user experiences as they

will frequently receive unsatisfying recommendations, which will

drive them away. Furthermore, it is unfair to niche items, because

they might receive fewer recommendations, which lowers their

exposure to users.

To study the impacts of sentiment bias on recommendation qual-

ities, we first investigate the performance of RS models in terms of

two common evaluation metrics, i.e., Mean Square Error (MSE) for
the rating prediction task and NDCG@K for the top-K recommen-

dation task [6]:

𝑀𝑆𝐸 =

∑
X𝑖,𝑝≠0

(X̂𝑖,𝑝 − X𝑖,𝑝)
2

𝑁
, 𝑁𝐷𝐶𝐺@𝐾 =

1

𝑍𝐾

𝐾∑︁
𝑗=1

2
𝑟𝑒𝑙 𝑗 − 1

log
2
(1 + 𝑗) (1)

where 𝑖 ∈ U, 𝑝 ∈ I, 𝑁 is the total number of data instance, and

𝑍𝐾 is a normalizer which ensures that perfect ranking has a value

of 1. 𝑟𝑒𝑙 𝑗 is the relevance of item at position 𝑗 , i.e., the ground-

truth rating value. Lower MSE or higher NDCG@K suggests better

recommendations. MSE and NDCG@K evaluate an RS model from

the perspective of accuracy.

When the recommendation lists for different users are very sim-

ilar (i.e., they are highly overlapping), the system actually fails to

provide personalized recommendations, leading to unsatisfying user

experiences [6]. Therefore, in addition to accuracy metrics MSE

and NDCG@K, we also include Diversity@K in our empirical study.

Diversity@K is defined as the number of unique items in all top-K

recommendation lists that the RS model offers to all users. Higher

Diversity@K indicates better recommendations.

In Fig. 2, we plot the correlations between item bias (i.e., BI in

Def. 2) and user bias (i.e., BU in Def. 2), item bias and MSE, item bias

and NDCG@5, and item bias and Diversity@5. Note that each point

in Fig. 2 indicates an RSmodel on one dataset. As shown in Fig. 2, BU,

MSE and NDCG@5 can fit a linear model with BI well. Diversity@5

can fit a logarithmic function with BI. We can see that BU and

BI are highly positively correlated. On the other hand, less biased

models (i.e., with lower BI) generally deliver recommendations with

higher qualities, i.e., with lower MSE, higher NDCG@5 and higher

Figure 2: Correlations of BI v.s. BU/MSE/NDCG@5/Diversit-
y@5 for all RS models and datasets.

Figure 3: Distributions of #reviews for positive and negative
users/items.

Diversity@5. Based on these observations, we can conclude that

eliminating BI may lead to reduced BU and higher recommendation
qualities, which motivates us to design a de-biasing framework

in Sec. 4 to lower item sentiment bias, improve recommendation

qualities, and raise user satisfaction.

3.3 Comparisons with Other Biases
We have verified the existence of sentiment bias in Sec. 3.2: numer-

ous review-based RS models and representative non-review-based

RS models are biased towards positive users and items, i.e., recom-

mendations are more accurate on positive users and items. In this

subsection, we show that sentiment bias is a new type of bias in RS.
We choose popularity bias to illustrate the uniqueness of sentiment

bias, because popularity bias is one of the most important bias, and

it has been shown to cause other biases in RS such as exposure bias

and so on [9].

We count the number of reviews (i.e., popularity) for each posi-

tive and negative user/item. As shown in Fig. 3, in two out of five

datasets, positive items receive fewer reviews than negative items.

Note that popularity bias means RS models are in favor of popular

items. Therefore, item sentiment bias, where RS models show de-

graded performance on negative items (which are sometimes more

popular items), is not the same as popularity bias.

Fig. 3 also excludes data imbalance as a reason for performance

degradation. It is well regarded that, imbalanced training data, either

by popularity bias, selection bias or exposure bias, causes poor

performance on long-tail or cold-start users/items [10]. Fig. 3 shows

that positive and negative items have balanced user feedback data.

In addition, positive users, in general, have written fewer reviews

than negative users. Consequently, it is clear that poor performance

on negative users, is not due to the lack of sufficient training data.

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

34

Next, we discuss two other possible factors that may incur sen-

timent bias so that we can focus on the exact cause (i.e., the in-

adequacy of RS models themselves) when designing de-biasing

methods in the next section.

Length of Reviews. In many natural language processing tasks

such as text classification, it is more challenging for models to

analyze shorter documents. However, according to Fig. 4 which

reports distributions of review lengths of different groups, reviews

for negative users/items are generally longer. Thus, sentiment bias

is not the result of shorter text.

Figure 4: Distributions of review lengths for positive and
negative users/items.

Published Time of Reviews.We also demonstrate when the re-

views of positive and negative users/items are posted. As illustrated

in Fig. 5, reviews for negative users/items are in general published

earlier (i.e., with smaller UNIX timestamps). This is contrary to

existing findings [13], which claims that, later feedback is more

negative because consumers have difficulties to diagnose previous

reviews and thus make more purchase mistakes. The observation

also suggests that sentiment bias can not be reduced by mitigating

social influence bias [22]. RS models are incompetent on negative

users, who purchase items early and are less likely to be influenced

by late consumers.

Figure 5: Distributions of review timestamps for positive and
negative users/items.

4 ELIMINATING SENTIMENT BIAS
In Sec. 3, we have demonstrated the existence of sentiment bias

which hurts the performance of RS and is most likely to be caused

by the inadequacy of RS models. In this section, we introduce our

de-biasing framework with three strategies manifesting in different

regularizers to help existing RS models mitigate sentiment bias

without modifications of model architectures.

This is a

review on an

item

review

review

review

Item

This is a

review on an

item

review

review

review

Item

review
revie

w

Review

from a

user

User

review
revie

w

Review

from a

user

User
User

Feature

Extractor
Scorer

Positive

Negative

L(RS)

 L(bias)

 L
(emb)

 L(ent)

Pretrained

Classifier

Item

Feature

Extractor

Figure 6: Overview of the proposed de-biasing framework.

4.1 Base RS Model
We first formulate the architecture of existing RS models. Most, if

not all, RSmodels consist of two coremodules: feature extractors and
a scorer. The feature extractors and scorer are trained viaminimizing

a recommendation loss function L (𝑅𝑆)
.

Feature extractors transform the input (e.g. the rating matrix

and/or reviews) to low dimensional numerical vectors (i.e., embed-

dings), which represent features of users, items and/or reviews. For

simplicity, we assume that all embeddings are with the same size

𝑑 . We use u𝑖 ∈ R𝑑 to denote the embedding for user 𝑖 , v𝑝 ∈ R𝑑 to

denote embedding for item 𝑝 , r𝑖,𝑝 ∈ R𝑑 to denote the embedding

for the review written by user 𝑖 on item 𝑝 .

The scorer converts the output of feature extractors, i.e., embed-

dings, to a numerical score. The score is provided to users as the

predicted rating in the rating prediction task, or it is used in ranking

the items recommended to users in the top-K recommendation task.

4.2 Overview of De-biasing Framework
Our goal is to design a general framework that can be applied to

most RS models to eliminate sentiment bias without changing their

structures. The overall framework is depicted in Fig. 6.

Motivated by our observations in Sec. 3.2 (i.e., reduced item

sentiment bias possibly leads to reduced user sentiment bias and

improved recommendation qualities), we first classify the items.

We employ a pre-trained classifier (e.g., VADER) on item profiles

illustrated in Sec. 3.1 to extract positive items I (+)
and negative

items I (−)
. Note that I (+)

and I (−)
are not necessarily identical

to I+
and I−

, which are used in measuring item sentiment bias, as

defined in Def. 2. Then, we adopt a new overall loss function in the

optimization of RS models as shown in Eq. 2, which includes the

original recommendation loss function L (𝑅𝑆)
and three additional

regularization terms:

L = L (𝑅𝑆) + _1L (𝑏𝑖𝑎𝑠) + _2L (𝑒𝑛𝑡) + _3L (𝑒𝑚𝑏) , (2)

where regularizers are combined with coefficients _1, _2, and _3.

Our framework is general. It can be easily injected into any RS

model while keeping the original loss L (𝑅𝑆)
. It does not require

any change of the original RS models. The item sentiment bias is

reduced via the three additional regularizations L (𝑏𝑖𝑎𝑠)
, L (𝑒𝑛𝑡)

and L (𝑒𝑚𝑏)
. The regularizations are computed over embeddings

that can be directly extracted from the original RS models.

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

35

4.3 L (𝑏𝑖𝑎𝑠) : Regularization with Item Bias
A straightforward way for de-biasing sentiment bias, without mod-

ifying the RS model, is to directly regularize sentiment bias in the

loss function. However, doing so will not conform to our expecta-

tions. Assuming that we directly integrate the item sentiment bias

as a regularization term, as shown in the first line of Eq. 3, where we

use I (+)
and I (−)

in computing item sentiment bias, and I (𝑟𝑒𝑠𝑡)

represents the rest items (if any) that are labeled as neither positive

nor negative items. Since both the original recommendation loss

L (𝑅𝑆)
and the item sentiment bias term BI (𝑅𝑆) are summing up

the differences between predictions and ground-truth values, the

error terms of positive items in L (𝑅𝑆)
and BI (𝑅𝑆) will be canceled

off, as shown in the second and third lines of Eq. 3:

L = L (𝑅𝑆) + 𝐵𝐼 (𝑅𝑆)

≈ 𝐸 (𝑅𝑆,U,I (+)) + 𝐸 (𝑅𝑆,U,I (−)) + 𝐸 (𝑅𝑆,U,I (𝑟𝑒𝑠𝑡))

+ 𝐸 (𝑅𝑆,U,I (−)) − 𝐸 (𝑅𝑆,U,I (+))

= 2 × 𝐸 (𝑅𝑆,U,I (−)) + 𝐸 (𝑅𝑆,U,I (𝑟𝑒𝑠𝑡)) .

(3)

Note that the first and second lines in Eq. 3 are not completely

equivalent (thus we use “≈”). For example, most RS models adopt

the RMSE loss function or the cross entropy loss function. For such

cases,L (𝑅𝑆)
cannot be simply divided into three independent terms

𝐸 (𝑅𝑆,U,I (+)), 𝐸 (𝑅𝑆,U,I (−)) and 𝐸 (𝑅𝑆,U,I (𝑟𝑒𝑠𝑡)). The impact

of positive users on the overall loss function is not completely ig-

nored. However, their importance is still significantly downgraded.

To address the above issue, our strategy is to regularize with

partial item sentiment bias, i.e., divergence between representative

items. Intuitively, users’ intrinsic preferences are not affected by

how the reviews are expressed. Thus, for each user, in predicting

his/her favorite items, the RS model should not be biased towards

the positive item set or the negative item set. For each user, we

compute the difference between ratings on two representative items,

each from the positive and negative item sets, and use it in the first

regularizer L (𝑏𝑖𝑎𝑠)
:

L (𝑏𝑖𝑎𝑠) =
∑︁
𝑖∈U

𝑚𝑎𝑥𝑝∈I (+)
(
X̂𝑖,𝑝 −X̄𝑝

)
−𝑚𝑎𝑥𝑞∈I (−)

(
X̂𝑖,𝑞−X̄𝑞

)
, (4)

where X̂𝑖,𝑝 is the predicted rating of user 𝑖 on item 𝑝 . X̄𝑝 is the

average rating of item 𝑝 , which acts as a baseline to adjust compar-

isons among different items, so that X̂𝑖,𝑝 − X̄𝑝 correctly reflects the

user preference. Incorporating L (𝑏𝑖𝑎𝑠)
allows fair treatments on

both positive and negative items. L (𝑏𝑖𝑎𝑠)
is minimized, when each

user’s favorite items in the positive and negative item sets have

similar ratings. In other words, L (𝑏𝑖𝑎𝑠)
helps keep the RS models

from being in favor of (i.e., systematically giving higher ratings on)

a certain item group.

4.4 L (𝑒𝑛𝑡) : Regularization with Entropy
In our preliminary study, we have found that negative items and

positive items have different rating distributions. As an illustrative

example, we plot the distributions of actual ratings (integers) and

predicted ratings (real numbers) by DeepCoNN model on Amazon

Gourmet Food dataset in Fig. 7. We can see that, the actual ratings

of positive items follow a single mode distribution which can be

Figure 7: Distributions of actual ratings (integers) and pre-
dicted ratings (real numbers) on positive and negative items
by DeepCoNN on Amazon Gourmet Food.

captured well by the RS model. On the contrary, actual ratings of

negative items follow a bimodal distribution and the RS model is

incompetent to predict them.

The above observation inspires us to adopt a strategy to “force”

the predicted ratings of negative items to spread evenly in the

space so that they can fit the distribution of the actual ratings

better. Many RS models estimate the probabilities of different rating

values for the rating prediction. Thus, we introduce an entropy-

based regularizer L (𝑒𝑛𝑡)
, which increases the uncertainty of rating

prediction and thus spreads the ratings over the prediction space.

There remains one issue to define the entropy-based regularization:

the rating variable. Most RSmodels produce the output X̂𝑖,𝑝 ∈ [0, 1],
which corresponds to the probability of implicit feedback X𝑖,𝑝 ∈
{0, 1}, i.e., X̂𝑖,𝑝 = 𝑃𝑟 (X𝑖,𝑝 = 1), where 𝑃𝑟 denotes the probability.
Then, the entropy-based regularizer can be defined in the format of

−X̂𝑖,𝑝 log X̂𝑖,𝑝 − (1 − X̂𝑖,𝑝) log(1 − X̂𝑖,𝑝). However, we empirically

find that such a binarized entropy regularizer does not work well.

Therefore, we opt to present a regularization term for Likert-scale
ratings. Most productive RS, including Amazon and Yelp, require

users to provide ratings using one to five stars. Assume that S𝑖,𝑝,𝑡 =
𝑃𝑟 (X𝑖,𝑝 = 𝑡) denotes the probability that user 𝑖 gives item 𝑝 a rating

of 𝑡 , where 0 ≤ S𝑖,𝑝,𝑡 ≤ 1,

∑
𝑡 S𝑖,𝑝,𝑡 = 1, and 𝑡 ∈ {1, 2, 3, 4, 5}. The

entropy-based regularizer L (𝑒𝑛𝑡)
is given as follows:

L (𝑒𝑛𝑡) =
∑︁
𝑖∈U

∑︁
𝑝∈I (−)

5∑︁
𝑡=1

S𝑖,𝑝,𝑡 log S𝑖,𝑝,𝑡 . (5)

L (𝑒𝑛𝑡)
is aggregated over I (−)

, because we want to improve

fitting on negative items. With a minimized L (𝑒𝑛𝑡)
, the RS model

is encouraged to predict more evenly distributed ratings than be-

fore. To obtain S for a user and an item, we can simply connect a

feedforward neural network layer with softmax to the final layer

of the scorer in RS.

4.5 L (𝑒𝑚𝑏) : Regularization with Embeddings
The third strategy in our framework for eliminating sentiment bias

only applies to review-based RS models.

To increase the variability of rating predictions for negative

items, in addition to L (𝑒𝑛𝑡)
in Sec. 4.4, a possible remedy (i.e., the

third strategy) is to decrease similarities among the learned nega-
tive item embeddings by RS models via an additional regularizer. As

the core idea of most RS models encourages models to make simi-

lar predictions on similar items [6], decreasing similarities among

negative item embeddings may keep RS models from providing

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

36

Figure 8: Typical reviews for a highly controversial SSD prod-
uct in Amazon: positive reviews (five or four stars) are differ-
ent, and negative reviews (one star) are also dissimilar.

predictions that are densely packed. The similarity between two

item embeddings v𝑝 and v𝑞 for items 𝑝 and 𝑞 can be represented by

their inner product v𝑇𝑝 v𝑞 [34], i.e., lower v𝑇𝑝 v𝑞 for more dissimilar

items. Hence, the simplest way to implement the third strategy is

directly adding a regularizer in the format of v𝑇𝑝 v𝑞 to the overall

loss function. Nevertheless, we find this method does not work well

for de-biasing.

Recall that we have discovered the difference of review lengths

between positive and negative items in Sec. 3.3. It is reasonable

to suspect that current review-based RS models have difficulties

learning review embeddings well, which indirectly incurs the low-

quality item embeddings and poor recommendation performance

on negative items. After we investigate the five datasets, we find that

reviews for a highly appreciated item are all alike, while reviews for

a highly controversial item, which usually belongs to the negative

items I (−)
, are positive or negative in their own ways. We illustrate

this phenomenon in Fig. 8 with typical reviews for a real SSD

product in Amazon
6
that is highly controversial.

A possible direction to address the above problem is to design

new feature extractors to enhance the representation learning for

reviews of negative items so that negative item embeddings can

also get improved (i.e., more dissimilar). Since our goal is to de-bias

without changing the RS model, an alternative is to design a regular-
izer targeting at review embeddings of negative items and manifesting
the relation between review embeddings and item embeddings.

Inspired by the success of Translation-based Knowledge Graph

Completion [43], we can interpret the review embedding r as the
“translation” from user embedding u to item embedding v [12]:

v𝑝 ≈ r𝑖,𝑝 + u𝑖 , (6)

where r𝑖,𝑝 is the embedding of review written by user 𝑖 on item 𝑝 .

Note that “≈” describes the low-error “translation” among different

feature spaces. Similar ideas of “translation” have also been adopted

in previous works [12, 15, 16, 23, 33, 48] to provide better recom-

mendations. In our framework, we adopt the following “translation”

adapted from Eq. 6 to interpret the similarity between negative

items 𝑝 and 𝑞 as well as the relation between their item embeddings

and review embeddings:

v𝑇𝑝 v𝑞 ≈ r𝑇𝑖,𝑝r𝑗,𝑞 + u𝑇𝑖 u𝑗 . (7)

We expect a small value of v𝑇𝑝 v𝑞 for two negative items 𝑝 and 𝑞

(i.e., the intuition for the third strategy: make negative items more

6
https://www.amazon.com/dp/B084RCMLXL

dissimilar). Based on the adapted “translation”, we propose the third

regularizer in our framework:

L (𝑒𝑚𝑏) =
∑︁

𝑝,𝑞∈I−

∑︁
𝑖, 𝑗 ∈U

𝑔 (X𝑖,𝑝)=𝑔 (X𝑗,𝑞)

(
r𝑇𝑖,𝑝r𝑗,𝑞 + u𝑇𝑖 u𝑗

)
2

, (8)

where 𝑔(·) is a grouping function that returns 1 if the input variable

is smaller than 3, and returns 0 otherwise. L (𝑒𝑚𝑏)
affects nega-

tive items only. Without L (𝑒𝑚𝑏)
, if two reviews from different

users on the negative items are associated with similar ratings (i.e.,

𝑔(X𝑖,𝑝) = 𝑔(X𝑗,𝑞)), the RS model will attempt to infer similar re-

view embeddings. The reason is that L (𝑅𝑆)
fits ratings by review

embeddings. Hence, similar review embeddings may cause simi-

lar negative item embeddings according to Eq. 7 and result in the

“crowded" predictions. As a comparison, using L (𝑒𝑚𝑏)
will lower

r𝑇
𝑖,𝑝
r𝑗,𝑞 + u𝑇

𝑖
u𝑗 , leading to smaller v𝑇𝑝 v𝑞 (i.e., dissimilar negative

item embeddings) and eventually more scattered predictions.

Note that embeddings used in Eq. 8 can be easily extracted. All RS

models produce item embeddings and user embeddings. For review

embeddings, we notice that there are two main paradigms [27]:

review-level modeling and document-level modeling. Some models

(e.g., MPCN) perform review-level modeling and directly produce

the review embedding for each review. Document-level review-

based models (e.g., DeepCoNN, NARRE, DAML and D_ATTN), do

not extract individual review embeddings. However, review-based

RS models generally consider word tokens as numerical word em-

beddings, which are updated in the optimization. Thus, we use the

average of word embeddings for a review as its review embedding

for document-level review-based models.

5 EXPERIMENTS ON DE-BIASING
In this section, we conduct experiments on de-biasing to answer

the following research questions:

RQ1: Does the proposed framework eliminate sentiment bias in

RS models?

RQ2: What are the impacts of the proposed framework on rec-

ommendations qualities?

RQ3: How does each regularizer in our framework contribute

to de-biasing?

We use the same datasets and RS models as described in Sec. 3.1.

In the experiments, we first separately train each RS model without

de-biasing on the training set of each dataset. Then, as described

in Sec. 4.2, we use VADER to extract positive and negative items.

VADER assigns a compound score within the range of [−1, 1] to
each of the sentence in the item profile. If the compound score

is larger than zero, then the sentence is positive. If the ratio of

positive sentences in an item profile is larger than 50%, we put the

corresponding item in the positive item set. Otherwise, we add it to

the negative item set. Finally, we incorporate the three de-biasing

regularizations proposed in Sec. 4, re-train the RS models from

scratch, and report the results.

5.1 Effects on Sentiment Bias (RQ1)
When measuring sentiment bias, we use the top and bottom 10%

items as positive and negative items, and the details are described

in Sec. 3.1. Tabs. 2, 3, 4, 5 and 6 report the user bias (BU) and the

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

37

Table 2: User bias, item bias, and overall recommendation
performance of different RS models with and without de-
biasing on Amazon Gourmet Food.

Methods BU BI MSE NDCG@5 Diversity@5
DeepCoNN 1.2958 0.8749 0.9942 0.8905 5

w/.De-bias 1.2699 0.7856 0.9829 0.8904 10
D_ATTN 1.3244 0.9047 1.0060 0.8173 5

w/.De-bias 1.2622 0.8224 0.9982 0.8892 7
MPCN 1.6758 1.3502 1.1966 0.8109 173

w/.De-bias 1.4547 1.0461 1.1297 0.8343 948
NARRE 1.2759 0.8067 0.9669 0.8921 5

w/.De-bias 1.2344 0.7655 0.9652 0.8943 16
DAML 1.2999 0.8279 0.9672 0.8911 5

w/.De-bias 1.2403 0.7927 0.9671 0.8945 13
MF 1.2681 0.8282 0.9728 0.8882 8

w/.De-bias 1.2472 0.7885 0.9698 0.8889 7

NeuMF 1.2668 0.8079 0.9693 0.8887 5

w/.De-bias 1.2259 0.7675 0.9687 0.8898 7

Table 3: User bias, item bias, and overall recommendation
performance of different RS models with and without de-
biasing strategies on Amazon Kindle Store.

Methods BU BI MSE NDCG@5 Diversity@5
DeepCoNN 1.0811 0.7665 0.6962 0.8863 17

w/.De-bias 0.9870 0.6901 0.6532 0.8923 30
D_ATTN 1.0723 0.7633 0.6960 0.8900 5

w/.De-bias 0.9482 0.6785 0.6546 0.8927 10
MPCN 1.7521 1.0606 0.9077 0.8531 5

w/.De-bias 1.3143 0.9370 0.7941 0.8531 939
NARRE 1.0024 0.7044 0.6612 0.8929 5

w/.De-bias 0.9247 0.6469 0.6244 0.8979 13
DAML 1.2250 0.8485 0.7213 0.8872 5

w/.De-bias 1.0237 0.7468 0.6461 0.8949 7
MF 1.1546 0.8446 0.7074 0.8852 5

w/.De-bias 1.1164 0.8098 0.6769 0.8919 13
NeuMF 1.2605 0.8891 0.7130 0.8865 7

w/.De-bias 1.1842 0.8479 0.6859 0.8902 21

Table 4: User bias, item bias, and overall recommendation
performance of different RS models with and without de-
biasing strategies on Amazon Video Games.

Methods BU BI MSE NDCG@5 Diversity@5
DeepCoNN 2.4418 2.5994 1.6701 0.7857 50

w/.De-bias 2.1032 1.6850 1.5140 0.8621 118
D_ATTN 2.3413 2.0832 1.5500 0.8534 6

w/.De-bias 1.1893 1.8587 1.5027 0.8590 10
MPCN 2.5574 2.8042 1.6608 0.7924 728

w/.De-bias 2.3943 2.6592 1.6466 0.7932 910
NARRE 2.2774 2.1054 1.5260 0.8686 5

w/.De-bias 1.9752 1.4594 1.4388 0.8705 13
DAML 2.6363 1.9346 1.4302 0.8546 5

w/.De-bias 2.0396 1.6465 1.3977 0.8605 28
MF 2.5329 1.7625 1.3963 0.8629 5

w/.De-bias 2.2652 1.5989 1.3844 0.8631 11
NeuMF 2.3867 1.7048 1.3781 0.8655 8

w/.De-bias 2.2633 1.6505 1.3713 0.8685 7

item bias (BI) of the seven RS models with/without de-biasing on

the five datasets. Performance after de-biasing is shown in bold if

it is better than results without de-biasing. For review-based RS, all

three regularizers are used. For non-review-based RS, only L (𝑏𝑖𝑎𝑠)

and L (𝑒𝑛𝑡)
are used. The coefficients are tuned to achieve the best

results using grid search. After tuning, _1 = 0.25, _2 = 0.05 and

_3 = 0.05. We also report the impacts of coefficients in Sec. 5.3.

Table 5: User bias, item bias, and overall recommendation
performance of different RS models with and without de-
biasing strategies on Amazon Electronics.

Methods BU BI MSE NDCG@5 Diversity@5
DeepCoNN 1.5338 1.2952 1.2912 0.8836 26

w/.De-bias 1.4029 1.1806 1.2579 0.8939 25

D_ATTN 1.4579 1.2635 1.2906 0.8867 5

w/.De-bias 1.4210 1.2281 1.2834 0.8917 6
MPCN 1.9555 1.5603 1.4075 0.8426 835

w/.De-bias 1.7611 1.4899 1.3750 0.8439 965
NARRE 1.4132 1.1890 1.2588 0.8944 6

w/.De-bias 1.3522 1.1352 1.2394 0.8980 23
DAML 1.7306 1.4007 1.3240 0.8890 5

w/.De-bias 1.4927 1.2227 1.2527 0.8950 7
MF 1.7254 1.3997 1.3215 0.8881 6

w/.De-bias 1.5508 1.2443 1.2893 0.8886 6

NeuMF 1.6880 1.3744 1.3187 0.8859 6

w/.De-bias 1.1842 1.2812 1.2871 0.8898 8

Table 6: User bias, item bias, and overall recommendation
performance of different RS models with and without de-
biasing strategies on Yelp.

Methods BU BI MSE NDCG@5 Diversity@5
DeepCoNN 1.9377 1.5571 1.5740 0.8790 7

w/.De-bias 1.8886 1.3805 1.5290 0.8262 8
D_ATTN 2.1309 1.6794 1.5990 0.8112 5

w/.De-bias 2.1053 1.4936 1.5764 0.8170 7
MPCN 3.1545 2.7100 1.6718 0.7388 422

w/.De-bias 3.0293 2.5072 1.6844 0.7415 823
NARRE 2.1043 1.2952 1.5119 0.8272 11

w/.De-bias 1.7749 1.0028 1.4535 0.8336 8

DAML 3.7942 2.1677 1.5250 0.8138 5

w/.De-bias 3.4675 1.7165 1.4660 0.8186 41
MF 3.5910 1.9455 1.5207 0.8107 7

w/.De-bias 3.5607 1.7825 1.4928 0.8150 6

NeuMF 3.6603 2.0143 1.5167 0.8097 8

w/.De-bias 3.6113 1.8427 1.4920 0.8147 5

From the results, we can clearly observe that our de-biasing

framework is able to consistently eliminate sentiment bias for all

RSmodels on different datasets. Both BU and BI are reduced after de-

biasing, showing the effectiveness of our framework in de-biasing

RSmodels. On the other hand, the consistent de-biasing results have

proved that our framework is general and can be easily injected

into a wide range of RS models regardless of their detailed designs

(e.g., shallow or deep, review-based or non-review-based).

5.2 Impacts on Recommendation Quality (RQ2)
In the empirical study (Sec. 3.2), we have observed that sentiment

bias is positively correlated with several common recommendation

metrics, includingMSE, NDCG@KandDiversity@K. An interesting

question is whether recommendation qualities can be enhanced

after using our de-biasing framework.

Tabs. 2, 3, 4, 5 and 6 also report the results of MSE, NDCG@5

and Diversity@5 of each RS model with/without de-biasing on

different datasets. Performance after de-biasing is shown in bold

if it is better than the results without de-biasing. We can see that,

the proposed framework can universally improve recommenda-

tion accuracy, i.e., smaller MSE and higher NDCG@5 are obtained.

Furthermore, Diversity@5 is improved most of the time. The re-

sults have demonstrated that eliminating sentiment bias using the

proposed framework will eventually lead to the improvements of

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

38

10.80.60.40.20
1.12

1.14

1.16

1.18

1.2

M
S

E

L
(bias)

L
(ent)

L
(emb)

10.80.60.40.20
1

1.1

1.2

1.3

1.4

B
I

L
(bias)

L
(ent)

L
(emb)

Overall performance Item bias

Figure 9: Changes of MSE and item bias with respect to the
coefficients on MPCN and Amazon Gourmet Food.

both the recommendation accuracy (MSE and NDCG@K) and the

personalization of RS (Diversity@K).

5.3 Contribution of Each Regularizer (RQ3)
We further analyze the role of each regularizer in our framework,

by showing the impacts of coefficients _1, _2 and _3. Fig. 9 provides

the changes of MSE and item bias (i.e., BI) on MPCN over Amazon

Gourmet Food dataset using different coefficients. For better visual-

izations, we do not change the coefficients simultaneously. Instead,

we change one coefficient at a time and fix the other two coefficients

as 0. From Fig. 9, we can observe that changes of each coefficient

noticeably affect MSE and BI, showing that all regularizers play

pivotal roles in our de-biasing framework. Specifically, when only

using L (𝑏𝑖𝑎𝑠)
, lowest MSE and BI are both obtained at _1 = 0.1;

when using only L (𝑒𝑛𝑡)
, lowest MSE and BI can be achieved when

setting _2 to 1.0 and 0.6, respectively; when using only L (𝑒𝑚𝑏)
,

_3 = 0.2 is the best value. It is worth pointing out that the result of

grid search when using all three regularizers is _1 = 0.25, _2 = 0.05,

_3 = 0.05, as mentioned in Sec. 5.1.

5.4 Visualization
In this subsection, we visualize the impacts of de-biasing via a case

study: de-bias DeepCoNN on Amazon Gourmet Food dataset.

We first provide the improvement of recommendation accuracy

on different user and item groups. We rank users and items in

the test set, by the sentiment polarity values of their profiles, as

described in Sec. 3.1. We divide users/items into 10 groups by their

sentiment polarity values, and each group contains 10% of the

users/items denoted as 𝑃𝑛 and 𝑁𝑛 where 𝑛 = {1, · · · , 5}. Note that
𝑃1 is the positive user/item group (i.e., U+

and I+
), and 𝑁1 is

the negative user/item group (i.e.,U−
and I−

), which are used in

computing sentiment bias of Def. 2. Fig. 10 depicts MSE for different

user/item groupswith/without de-biasing,We can observe thatMSE

has been improved for all user/item groups after de-biasing.

We then demonstrate the distributions of ratings on negative

items. As shown in Fig. 11, after de-biasing, predicted ratings on

negative items spread more evenly across the rating space. It con-

firms to our expectations in Sec. 4.4: predicted ratings on negative

items will become evenly distributed after de-biasing.

Finally, we analyze how negative item embeddings change after

de-biasing. We use t-SNE [41] to project negative item embeddings

to a two-dimensional space. As shown in Fig. 12, negative item

embeddings in the original DeepCoNN are crowded together and

do not show enough diversity along the projected y-axis. After

applying de-biasing, negative item embeddings are scattered over

Figure 10: MSE for different user/item groups for DeepCoNN
on Amazon Gourmet Food before/after de-biasing.

Figure 11: Distributions of actual ratings (integers) and pre-
dicted ratings (real numbers) on negative items byDeepCoNN
on Amazon Gourmet Food before/after de-biasing.

Figure 12: Projection of negative item embeddings in Deep-
CoNN on Amazon Gourmet Food before/after de-biasing.

the entire space. Considering the changes of both negative item em-

beddings (Fig. 12) and predicted ratings on negative items (Fig. 11),

we can conclude that the de-biasing framework fulfills our design

goal in Sec. 4.5, i.e., enforce smaller similarities among negative

items so that predicted ratings of negative items will spread over

different values instead of crowding around 3 or 4 stars in Fig. 7.

6 CONCLUSION
In this paper, we have revealed the unexplored sentiment bias in RS

models and proposed an effective de-biasing framework. Our empir-

ical study has demonstrated the existence and impacts of sentiment

bias in RS, and our experiments have verified the effectiveness of

our de-biasing framework. For future study, we intend to further

investigate sentiment bias based on other types of user-item inter-

actions (e.g., images posted by users to demonstrate the quality of

an item), and study the possibility of multimodal de-biasing for RS.

ACKNOWLEDGMENTS
Chen Lin is supported by the Natural Science Foundation of China

(No. 61972328) and Joint Innovation Research Program of Fujian

Province China (No. 2020R0130). Hui Li is supported by the Natural

Science Foundation of China (No. 62002303) and Natural Science

Foundation of Fujian Province China (No. 2020J05001).

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

39

REFERENCES
[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling

Popularity Bias in Learning-to-Rank Recommendation. In RecSys. 42–46.
[2] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2019. Managing

Popularity Bias in Recommender Systems with Personalized Re-Ranking. In

FLAIRS Conference. 413–418.
[3] Himan Abdollahpouri and Masoud Mansoury. 2020. Multi-sided Exposure Bias

in Recommendation. In IRS2020@KDD.
[4] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.

2019. The Unfairness of Popularity Bias in Recommendation. In RMSE@RecSys,
Vol. 2440.

[5] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.

2020. The Connection Between Popularity Bias, Calibration, and Fairness in

Recommendation. In RecSys. 726–731.
[6] Charu C. Aggarwal. 2016. Recommender Systems - The Textbook. Springer.
[7] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation.

In RecSys. 104–112.
[8] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural Attentional

Rating Regression with Review-level Explanations. InWWW. 1583–1592.

[9] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.

2020. Bias and Debias in Recommender System: A Survey and Future Directions.

arXiv Preprint (2020). https://arxiv.org/abs/2010.03240

[10] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

Hongbo Deng. 2020. ESAM: Discriminative Domain Adaptation with Non-

Displayed Items to Improve Long-Tail Performance. In SIGIR. 579–588.
[11] Andrew Collins, Dominika Tkaczyk, Akiko Aizawa, and Jöran Beel. 2018. A

Study of Position Bias in Digital Library Recommender Systems. arXiv Preprint
(2018). https://arxiv.org/abs/1802.06565

[12] Alberto García-Durán, Roberto Gonzalez, Daniel Oñoro-Rubio, Mathias Niepert,

and Hui Li. 2020. TransRev: Modeling Reviews as Translations from Users to

Items. In ECIR, Vol. 12035. 234–248.
[13] David Godes and Jose C. Silva. 2012. Sequential and Temporal Dynamics of

Online Opinion. Marketing Science 31, 3 (2012), 448–473.
[14] Huifeng Guo, Jinkai Yu, Qing Liu, Ruiming Tang, and Yuzhou Zhang. 2019. PAL: a

position-bias aware learning framework for CTR prediction in live recommender

systems. In RecSys. 452–456.
[15] Ruining He, Wang-Cheng Kang, and Julian J. McAuley. 2017. Translation-based

Recommendation. In RecSys. 161–169.
[16] Ruining He, Wang-Cheng Kang, and Julian J. McAuley. 2018. Translation-based

Recommendation: A Scalable Method for Modeling Sequential Behavior. In IJCAI.
5264–5268.

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. InWWW. 173–182.

[18] Katja Hofmann, Anne Schuth, Alejandro Bellogín, and Maarten de Rijke. 2014. Ef-

fects of Position Bias on Click-Based Recommender Evaluation. In ECIR, Vol. 8416.
624–630.

[19] Dongmin Hyun, Chanyoung Park, Min-Chul Yang, Ilhyeon Song, Jung-Tae Lee,

and Hwanjo Yu. 2018. Review Sentiment-Guided Scalable Deep Recommender

System. In SIGIR. 965–968.
[20] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37.
[21] Dominik Kowald, Markus Schedl, and Elisabeth Lex. 2020. The Unfairness of

Popularity Bias in Music Recommendation: A Reproducibility Study. In ECIR,
Vol. 12036. 35–42.

[22] Sanjay Krishnan, Jay Patel, Michael J. Franklin, and Ken Goldberg. 2014. A

methodology for learning, analyzing, and mitigating social influence bias in

recommender systems. In RecSys. 137–144.
[23] Hui Li, Ye Liu, Nikos Mamoulis, and David S. Rosenblum. 2020. Translation-Based

Sequential Recommendation for Complex Users on Sparse Data. IEEE Trans.
Knowl. Data Eng. 32, 8 (2020), 1639–1651.

[24] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. 2016. Mod-

eling User Exposure in Recommendation. InWWW. 951–961.

[25] Dugang Liu, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Weike Pan, and

Zhong Ming. 2020. A General Knowledge Distillation Framework for Counter-

factual Recommendation via Uniform Data. In SIGIR. 831–840.
[26] Donghua Liu, Jing Li, Bo Du, Jun Chang, and Rong Gao. 2019. DAML: Dual Atten-

tion Mutual Learning between Ratings and Reviews for Item Recommendation.

In KDD. 344–352.
[27] Hongtao Liu, Wenjun Wang, Hongyan Xu, Qiyao Peng, and Pengfei Jiao. 2020.

Neural Unified Review Recommendation with Cross Attention. In SIGIR. 1789–
1792.

[28] Yiming Liu, Xuezhi Cao, and Yong Yu. 2016. Are You Influenced by Others When

Rating?: Improve Rating Prediction by Conformity Modeling. In RecSys. 269–272.
[29] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. 2011.

Recommender systems with social regularization. InWSDM. 287–296.

[30] Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, and Malcolm Slaney. 2007.

Collaborative Filtering and the Missing at Random Assumption. In UAI. 267–275.
[31] Julian J. McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring Networks of

Substitutable and Complementary Products. In KDD. 785–794.
[32] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram

Galstyan. 2019. A Survey on Bias and Fairness in Machine Learning. arXiv
Preprint (2019). https://arxiv.org/abs/1908.09635

[33] Rajiv Pasricha and Julian J. McAuley. 2018. Translation-based factorization

machines for sequential recommendation. In RecSys. 63–71.
[34] Steffen Rendle, Walid Krichene, Li Zhang, and John R. Anderson. 2020. Neural

Collaborative Filtering vs. Matrix Factorization Revisited. In RecSys. 240–248.
[35] Noveen Sachdeva and Julian J. McAuley. 2020. How Useful are Reviews for

Recommendation? A Critical Review and Potential Improvements. In SIGIR.
1845–1848.

[36] Yuta Saito. 2020. Asymmetric Tri-training for Debiasing Missing-Not-At-Random

Explicit Feedback. In SIGIR. 309–318.
[37] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations as Treatments: Debiasing Learning

and Evaluation. In ICML, Vol. 48. 1670–1679.
[38] Harald Steck. 2010. Training and testing of recommender systems on data missing

not at random. In KDD. 713–722.
[39] Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao,

Diba Mirza, Elizabeth M. Belding, Kai-Wei Chang, and William Yang Wang. 2019.

Mitigating Gender Bias in Natural Language Processing: Literature Review. In

ACL. 1630–1640.
[40] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention

Networks for Recommendation. In KDD. 2309–2318.
[41] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using

t-SNE. J. Mach. Learn. Res. 9 (2008), 2579–2605.
[42] Mei Wang and Weihong Deng. 2020. Mitigating Bias in Face Recognition Using

Skewness-Aware Reinforcement Learning. In CVPR. 9319–9328.
[43] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph

Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data
Eng. 29, 12 (2017), 2724–2743.

[44] Ting Wang and Dashun Wang. 2014. Why Amazon’s Ratings Might Mislead You:

The Story of Herding Effects. Big Data 2, 4 (2014), 196–204.
[45] Yixin Wang, Dawen Liang, Laurent Charlin, and David M. Blei. 2018. The De-

confounded Recommender: A Causal Inference Approach to Recommendation.

arXiv Preprint (2018). https://arxiv.org/abs/1808.06581

[46] Yixin Wang, Dawen Liang, Laurent Charlin, and David M. Blei. 2020. Causal

Inference for Recommender Systems. In RecSys. 426–431.
[47] Tianxin Wei, Fuli Feng, Jiawei Chen, Chufeng Shi, Ziwei Wu, Jinfeng Yi, and

Xiangnan He. 2020. Model-Agnostic Counterfactual Reasoning for Eliminating

Popularity Bias in Recommender System. arXiv Preprint (2020). https://arxiv.

org/abs/2010.15363

[48] Yin Zhang, Yun He, Jianling Wang, and James Caverlee. 2020. Adaptive Hierar-

chical Translation-based Sequential Recommendation. InWWW. 2984–2990.

[49] Hua Zheng, Dong Wang, Qi Zhang, Hang Li, and Tinghao Yang. 2010. Do

clicks measure recommendation relevancy?: an empirical user study. In RecSys.
249–252.

[50] Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint Deep Modeling of Users

and Items Using Reviews for Recommendation. InWSDM. 425–434.

Session 1A: Bias and counterfactual learning 1 SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

40

https://arxiv.org/abs/2010.03240
https://arxiv.org/abs/1802.06565
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1808.06581
https://arxiv.org/abs/2010.15363
https://arxiv.org/abs/2010.15363

	Abstract
	1 Introduction
	2 Related Work
	2.1 Biases in Recommender Systems
	2.2 De-biasing Recommendations

	3 Empirical Study
	3.1 Empirical Study Protocol
	3.2 Existence of Sentiment Bias in RS
	3.3 Comparisons with Other Biases

	4 Eliminating Sentiment Bias
	4.1 Base RS Model
	4.2 Overview of De-biasing Framework
	4.3 L(bias): Regularization with Item Bias
	4.4 L(ent): Regularization with Entropy
	4.5 L(emb): Regularization with Embeddings

	5 Experiments on De-biasing
	5.1 Effects on Sentiment Bias (RQ1)
	5.2 Impacts on Recommendation Quality (RQ2)
	5.3 Contribution of Each Regularizer (RQ3)
	5.4 Visualization

	6 Conclusion
	References

