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Abstract

Motivation: N4-acetylcytidine (ac4C) is the only acetylation modification that has been characterized in eukaryotic
RNA, and is correlated with various human diseases. Laboratory identification of ac4C is complicated by factors,
such as sample hydrolysis and high cost. Unfortunately, existing computational methods to identify ac4C do not
achieve satisfactory performance.

Results: We developed a novel tool, DeepAc4C, which identifies ac4C using convolutional neural networks (CNNs)
using hybrid features composed of physicochemical patterns and a distributed representation of nucleic acids. Our
results show that the proposed model achieved better and more balanced performance than existing predictors.
Furthermore, we evaluated the effect that specific features had on the model predictions and their interaction effects.
Several interesting sequence motifs specific to ac4C were identified.

Availability and implementation: The webserver is freely accessible at https://ac4c.webmalab.cn/, the source code
and datasets are accessible at Zenodo with URL https://doi.org/10.5281/zenodo.5138047 and Github with URL https://
github.com/wangchao-malab/DeepAc4C.

Contact: zouquan@nclab.net or chenlin@xmu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To date, more than 170 modified nucleosides in RNA have been
identified (Boccaletto et al., 2018). These post-transcriptional RNA
modifications affect intramolecular interactions, structure, and inter-
actions with other molecules. These subtle structural changes intro-
duce functional RNA diversity by regulating translational efficiency,
mRNA stability, and RNA-protein interactions, which are all funda-
mentally important for cell growth and development (Boccaletto
et al., 2018; Li, 2020; Thomas et al., 2019). N4-acetylcytidine
(ac4C) occurs at cytidine residues in RNA, and this nucleoside sub-
stitution has been described in all domains of life (Thomas et al.,
2018). Further, ac4C is the only acetylation modification that has
been characterized in eukaryotic RNA (Jin et al., 2020). Ac4C is cor-
related with various human diseases, including inflammation, meta-
bolic diseases, autoimmune diseases, and cancer (Jin et al., 2020).

Ac4c was initially detected in yeast and mammalian transfer
RNA (tRNA) (Staehelin et al., 1968; Zachau et al., 1966), followed
by observation in bacterial tRNA (Oashi et al., 1972) and eukaryotic
ribosomal RNA (Thomas et al., 1978). Recently, Arango et al.
(2018) revealed that mRNA acetylation, which is catalyzed by N-
acetyltransferase 10 (NAT10), is present in the human transcriptome
and is especially enriched within coding regions. Further investiga-
tion revealed that ac4C in mRNA promotes mRNA stability and
translation. The presence of ac4C in mRNA was also observed in
yeast, and the modification levels change in response to oxidative
stress (Tardu et al., 2019).

Identification of ac4C modification sites is an area of great inter-
est for biological and computational research. In early studies, ac4C
identification was performed by experimental methods including
high-performance liquid chromatography (HPLC), HPLC-mass
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spectrometry (MS), borohydride-based sequencing, and antibody-
based methods (refer to Jin et al., 2020 for more details). Among
these methods, anti-ac4c antibody (acetylated RNA immunoprecipi-
tation or acRIP)-based high-throughput sequencing, acRIP-seq,
revealed the first transcriptome-wide profile of ac4C locations in
human mRNA (Arango et al., 2018). However, these experimental
approaches have several shortcomings, such as sample hydrolysis,
large reagent requirements, poor sensitivity, and high cost (Jin et al.,
2020). Consequently, there is an urgent need to develop computa-
tional approaches for ac4C identification.

In the last few years, two bioinformatic tools were developed for
identifying ac4C sites in mRNA. The first predictor, PACES, was
proposed by Zhao et al. (2019), in which position-specific dinucleo-
tide sequence profiles and K-nucleotide frequencies were used as fea-
tures to train a random forest (RF) model. More recently, Alam
et al. (2020) developed a new predictor called XG-ac4C, which was
trained on six feature types (nucleotide chemical properties, nucleo-
tide density, Kmer, one-hot encoding, electron–ion interaction pseu-
dopotentials, and electron–ion interaction pseudopotentials of
trinucleotides) using eXtreme Gradient Boosting (XGboost) classi-
fiers. XG-ac4C successfully improved the predictive performance
and the area under the precision-recall curve (PRC) by 9.6% com-
pared to PACES in independent tests (Alam et al., 2020). However,
the prediction performances of the two predictors are still not ideal.
A more accurate computational method for ac4C modification site
identification is desperately needed.

The purpose of this study is to establish an advanced prediction
model, DeepAc4C, to further improve the performance of ac4C site
identification in human mRNA. To uncover sequence patterns in
multiple views, we combined the physicochemical features with dis-
tributed nucleic acid representative information. Then, one-
dimensional convolutional neural networks (CNNs) were applied to
integrate information of the features and to perform classification.
We demonstrate that training of one-dimensional CNNs with hybrid
features that fuse physicochemical patterns and semantic informa-
tion can cause them to outperform the existing ac4C site predictors.

2 Materials and methods

Figure 1 illustrates the workflow of constructing the DeepAc4C
model, which involves three main steps: (i) sequence preprocessing,
(ii) sequence encoding and feature dimensionality reduction, and (iii)
feature combination, neural model training, and evaluation. More
details regarding each step are described below.

2.1 Data collection and preprocessing
In this study, we aimed to identify ac4c sites in human mRNA. The
datasets were obtained from PACES (http://www.rnanut.net/paces/)
(Zhao et al., 2019). These datasets were also used in the construc-
tion of XG-ac4C (Alam et al., 2020). The datasets were constructed
using 2134 genes with positive and negative ac4C sites that were ex-
perimentally validated by high-throughput acRIP-seq (Arango et al.,
2018). The training dataset was composed of 1160 positive samples
and 10 855 negative samples. The independent testing dataset was
composed of 469 positive samples and 4343 negative samples.
Because redundant sequences in the training dataset may lack sample
representativeness, PACES and XG-ac4C predictions might be over-
fitted. In our work, CD-HIT software (Fu et al., 2012) was used to
eliminate sample redundancy with a threshold of 0.4. Finally, we
obtained 1148 positive samples and 5439 negative samples for the
training dataset, and 467 positive samples, and 2151 negative sam-
ples for the independent test dataset (Fig. 1A).

PACES and XG-ac4C were evaluated on redundancy and ser-
iously imbalanced data (the ratio of positive and negative samples is
about 1:9) based on only two metrics, namely operating characteris-
tic curve (ROC) and PRC. To provide a comprehensive evaluation
of the predictive ability in model training, evaluation, and testing,
10 balanced datasets were generated for both training and testing
(Fig. 1A). Thus, each training and a testing subset was composed of
1148 and 467 positive samples, respectively, and an equal number
of negative samples were randomly chosen from the corresponding
negative dataset. The ten balanced training datasets were hereafter
referred to as TD1, TD2, . . .. . . TD10.

2.2 Physicochemical feature extraction
Extracting strong discriminative features is crucial for building a reli-
able and superior model. In this study, six physicochemical feature
encoding strategies were employed to formulate the DNA fragments
(Fig. 1B). These features are Kmer, the composition of k-spaced nu-
cleic acid pairs (CKSNAP), series correlation pseudo dinucleotide
composition (SCPseDNC), series correlation pseudo trinucleotide
composition (SCPseTNC), pseudo k-tupler composition (PseKNC),
and electron–ion interaction pseudopotentials of trinucleotides
(PseEIIP) (Chen et al., 2020). The above six feature encoding algo-
rithms are described in detail in the Supplementary Methods. A brief
introduction of these descriptors is as follows:

Kmer is the most direct approach to represent the DNA sequen-
ces, which are defined as the occurrence frequencies of k-neighbor-
ing nucleic acids (Liu et al., 2015, 2019). CKSNAP calculates the
frequency of nucleic acid pairs separated by an arbitrary number (k)
of nucleic acids (Chen et al., 2020). PseEIIP computes the energy of
delocalized electrons of trinucleotides based on the normalized trinu-
cleotide frequency and the electron energy of the four nucleotides
(A: 0.1260, C: 0.1340, G: 0.0806, and T: 0.1335) (Nair and
Sreenadhan, 2006). The remaining three encodings were used to
mine sequence order information and effects (Liu et al., 2015).
PseKNC characterizes the contiguous local sequence-order informa-
tion and the global sequence-order information of a sequence based
on the trinucleotide occurrence frequency and six physicochemical
indices (rise, roll, shift, slide, tilt, and twist) (Guo et al., 2014).
SCPseDNC and SCPseTNC are similar to PseKNC. SCPseDNC con-
siders the series correlations of dinucleotide physicochemical proper-
ties, SCPseTNC considers the series correlations of trinucleotide
physicochemical properties (Chen et al., 2014).

2.3 Distributed representation of nucleic acids
Recently, a word embedding algorithm (Mikolov et al., 2013) was
proposed for efficient distributed representation of biological
sequences, including proteins (Asgari and Mofrad, 2015), DNA
(Khan, 2019), mRNA (Zou et al., 2019), non-coding RNA (Aoki
and Sakakibara, 2018; Chaabane et al., 2020), and 16S/18S rRNA
(Wang et al., 2020b ; Woloszynek et al., 2019). In this work, the nu-
cleic sequences were embedded using the word2vec framework
(Church, 2017; Mikolov et al., 2013), in which each word is charac-
terized by its context, i.e. neighboring words and similar words have

Fig. 1. The DeepAc4C workflow. (A) Data collection, sequence redundancy elimin-

ation, and dataset balancing. (B) Physicochemical feature encoding, feature opti-

mization, and distributed representation of nucleic acids. (C) Neural network

architectures of DeepAc4C. KS, kernel size; PS, pooling size; FN, filter number; FC,

fully connected layer
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close vectors. The method is briefly described as follows (Fig. 1B):
First, nucleic acid sequences of k length were regarded as a sentence.
Then, the bio-corpus was generated in an overlapping manner by
moving a window of size k along a sequence with a stride length of
1. Given this bio-corpus, the next step was to embed each word into
a fixed N-dimensional numeric vector using word2vec with a skip-
gram model, which predicts the surrounding words from the current
word. Thus, each word was presented as a numeric vector of size N,
and each sequence was represented by the average of all corpus in
the sequence, which is a vector of size N.

2.4 Feature optimization and dimension reduction
Feature dimensions of five of the six physicochemical feature
descriptors depend on the related parameters. To maximize the ef-
fectiveness of each individual descriptor, the five parameters were
optimized. The search range for each parameter is listed in
Supplementary Table S1. The support vector machine (SVM) algo-
rithm was employed for model training and evaluation based on 10-
fold cross-validation. We implemented SVM with the Python pack-
age in scikit-learn (v 0.22.1). The search range of the two critical
parameters C and c was [0.01, 0.05, 0.1, 0, 1, 5, . . ., 90, 95, 100]
and [0.0001, 0.0002, 0.0004, 0.0006, 0.0008, . . ., 2, 4, 6, 8], re-
spectively. The radial basis function (RBF) was used as the kernel
function. However, a direct combination of all six feature types may
cause high dimensionality and information redundancy, which fur-
ther influences model performance and increases computing com-
plexity and time. Thus, a two-step feature optimization method
including feature importance ranking based on F-score and a sequen-
tial forward search (SFS) based on the accuracy (ACC) was applied
to choose the optimal feature subsets (Fig. 1B). The detailed proced-
ure was previously described by Wang et al. (2020a,b).

2.5 Neural network architectures
The six optimized features and the embedded features were con-
catenated into a vector and then fed into a 1D CNN algorithm for
training and testing (Lv et al., 2020). We used tensorflow 2.4 to im-
plement the CNN model. The main architecture of the CNN model
consisted of three convolution layers, three pooling layers, and three
fully connected layers (Fig. 1C). The combined features served as the
input layer. Then, the convolution operation was used to extract po-
tential feature patterns. The kernel size (KS) was set as three and the
stride size was set as one, which means that three adjacent features
in a kernel window are used as input for a neuron and the kernel
window moves along the input vector with a step size of one. To
summarize the convolution output of three adjacent kernels, each
convolution layer is followed by a max-pooling layer, which extracts
the maximum value in the pooling window with a size of three. The
output of the last max-pooling layer was flattened and a dropout
layer was generated. Next, three fully connected layers were applied
to connect the dropout layer. A softmax function was used for bin-
ary classification in the final output later. A ReLU function was used
in all convolution layers and the first two fully connected layers.
During learning, six hyperparameters (the number of kernels for
each convolution layer, the number of units in the fully connected
layer, and the learning rates) were optimized. A Keras tuner library
was used for automatically turning the hyperparameters, as listed in
Supplementary Table S2.

2.6 Model training and evaluation
Each training dataset was further divided into a sub-training set
(90% of the training dataset) and a validation set (10% of the train-
ing dataset). Thus, the number of samples for model training, valid-
ation, and testing were 2066, 230, and 934, respectively. The sub-
training set was used to fit the model with optimal parameters as
listed in Supplementary Table S2. The validation set was used to val-
idate the performance of the model with the most suitable parame-
ters, and the testing data was used to provide an unbiased
performance evaluation of the final model.

Five metrics (Wei et al., 2014, 2017, 2019) were used to compre-
hensively measure the performance of the ensemble model, which

are ACC, specificity (SP), sensitivity (SN), Matthews correlation co-
efficient (MCC), and AUC. Each metric was calculated as follows:

ACC ¼ TPþ TN

TPþ TNþ FPþ FN
(1)

SN ¼ TP

TPþ FN
(2)

SP ¼ TN

TNþ FP
(3)

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFPþ TPÞðFNþ TPÞðFPþ TNÞðFNþ TNÞ

p (4)

The metric AUC calculates the area under the receiver operating
characteristic curve based on the false positive rate (FPR) and the
true positive rate (TPR) under various thresholds. The TPR and the
FPR were calculated as follows:

TPR ¼ TP

TPþ FN
(5)

FPR ¼ FP

TNþ FP
(6)

where TP ¼ true positive, FP ¼ false positive, TN ¼ true negative,
and FN ¼ false negative. SN and SP were employed to evaluate the
model performance with respect to the positive and negative sam-
ples, respectively. The remaining three metrics are global prediction
performance indicators.

3 Results

3.1 Descriptor parameter optimization and feature

selection
The feature vector dimensions of five of the six physicochemical
descriptors are determined by the algorithm parameters. To make
each of the descriptors as informative as possible, these parameters
were optimized before they were used for feature selection. The par-
ameter search range and the accuracy are listed in Supplementary
Table S1. To reduce computing complexity and enhance model per-
formance, F-scores and SFS were used for feature selection. The par-
ameter optimization and feature selection were processed on TD1.
Then, we applied the optimal parameters to the other nine datasets
for computational convenience. The feature selection results are
illustrated in Figure 2 (A–F). The dimensions for the six encodings
were reduced, especially for features with higher dimensionality,
such as Kmer (Fig. 2B), PseKNC (Fig. 2D), and SCPseTNC (Fig. 2F),
because high dimensional features tend to increase information re-
dundancy. Further, the performance of the models trained using the
optimal features was improved in terms of the AUC metric (Fig. 2A–
F), suggesting that the feature selection step is beneficial for feature
representation.

Fig. 2. (A–F) ROC curves of six feature descriptors with different algorithm parame-

ters. OriFea, original features; OptFea, optimal features. (G) The heatmap shows the

accuracy values of the model constructed with different k (length of k-mer) and w

(window size) values
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3.2 Distributed representation of nucleic acids
All training nucleic acids were divided into a k-mer corpus, and each
k-mer was embedded into a 100-dimensional vector using word2vec
with a skip-gram model. In this process, the length of the sliding
window (length k of the nucleic acid sequence k-mer) and the num-
ber of surrounding words (window size w from word2vec) were two
critical parameters that needed to be optimized. To determine the
optimal k and w values, we varied these two parameters to generate
63 models. The k value was varied from 2 to 10 and the w value was
varied from 1 to 7. The ACC values for all possible combinations
are depicted in Figure 2 (G). We observed that the ACC values grad-
ually increased when the k value increased from 2 to 4. Then, the
ACC values gradually decreased when k from 5 to 10. The w value
was inversely correlated with the ACC. Taken together, the heatmap
region with the maximum ACC value is based on a k-mer length of
4 and a window size of 1, which were used for the final skip-gram
model.

3.3 DeepAc4C neural model
In DeepAc4C, we combined the sequence physicochemical features
(232D) and the embedded semantic features (100D) as inputs for the
neural network. The combined 332D features were processed using
the architecture of our deep learning model (Fig. 1C). The CNN
model was fitted on the training dataset using an early stopping
strategy that was based on the validation loss to avoid overfitting.
Then, the model was validated. Test data were used to test the model
that showed the best performance with the validation data. Table 1
shows the ACC values for the training and validation sets and the
ACC, MCC, and AUC values for the testing set. For the 10 balanced
training datasets, the maximum ACC was achieved on TD5 (0.8490)
and the minimum ACC was obtained on TD6 (0.7996). The varian-
ces of independent test values are relatively small, which suggests the
models were stable. For the sake of convenience and comparison,
the average values were used to measure the model performance.
DeepAc4C achieved an average training ACC of 0.8242, an average
validation ACC of 0.8139, and an average ACC of 0.7919, MCC of
0.5857, and AUC of 0.8649 using independent test data.

As described above, each training subset represents only part of
the information from the complete training dataset. Therefore, an
ensemble model (soft voting, threshold ¼ 0.5) was built to integrate
all individual neural models. The integrated model was evaluated
using the independent test data. The ensemble model achieved better
performance than the individual models (Table 1), indicating that
the ensemble strategy improves model performance.

To further evaluate the effectiveness of the neural network archi-
tecture, we compared DeepAc4c with nine popular conventional ma-
chine learning algorithms, including the adaboost classifier (ADAB),
bagging (BAG), decision tree (DT), k-nearest neighbor (KNN), light
gradient boosting machine (LGB), logistic regression (LR), naive
bayesian (NB), random forest (RF), and support vector machine

(SVM) algorithms. For a fair comparison, the model was trained
using the balanced training dataset and evaluated using the inde-
pendent test dataset. Figure 3 (A) shows the average values of five
metrics (refer to Supplementary Table S3 for more details).
DeepAc4c achieved the best scores for all the five metrics, indicating
that the proposed model is significantly superior for ac4C identifica-
tion compared to traditional classifiers.

3.4 Feature contribution and dependency analysis
SHapley Additive exPlanation (SHAP) values (Lundberg et al.,
2017) were used to explain the prediction model. SHAP utilizes a
game theory approach that assigns payouts to players based on their
contribution to the total payout (Shapley, 1953). The SHAP method
has several advantages, such as model agnosticity, local accuracy,
missingness, and consistency (Moncada-Torres et al., 2021). First, a
SHAP summary plot was used to calculate the top 20 most import-
ant features. As depicted in Figure 4 (A), nine features were gener-
ated by the six physicochemical descriptors. The remaining 11
features are embedded features, which imply that both feature types
are crucial for model construction. Sequence motif/patterns that are
strongly related to ac4C recognition are composed of guanosine
nucleotides (G), such as GG.gap2 (CKSNAP), GG.gap1 (CKSNAP),
GG (Kmer), and GGG (Kmer). Moreover, thymine nucleotides (T)
in T (Kmer) and cytosine nucleotides (C) in TC.gap1 (CKSNAP) are
important for ac4C identification. As the function of cytidine acetyl-
ation has yet to be fully elucidated, the biological function of the
above sequence patterns still lacks a rational explanation. Of note,
the ‘CXX’ motif was enriched within the ac4C peaks detected by the
acRIP-seq method (Arango et al., 2018), and the recently ac4C-seq
method (Sas-Chen et al., 2020) (a chemical genomic method for
identification of ac4C site at single-nucleotide resolution) showed
that 98% novel detected ac4C sites occurred at a ‘CCG’ motif. We
speculated that the differences were due to sequence context length,
where motif enrich performed on the 10–20 nt around the ac4C cen-
ter, while SHAPE values were calculated based on the whole 415 nt
sequence. These further indicated that implicit features in ac4C con-
text can be extracted by DeepAc4C.

We also analyzed how the values of the top 20 most important
features affect the model prediction. Figure 4 (B) shows the corre-
sponding summary plots that illustrate how high and low feature
values were related to model output. Each point represents an in-
stance of the dataset (i.e. a sequence sample). The SHAP value on
the x-axis corresponds to the impact that each instance had on the
model prediction for that specific sample. High GG.gap2 (CKSNAP)
values were associated with positive impacts on ac4C identification,
while low values indicated negative impacts. Similar trends are
observed in the other 11 of the top 20 features. Other trends are pre-
sented by the other eight features, i.e. high values of T (Kmer) de-
crease the model behavior, while low T (Kmer) values enhance
model performance.

The SHAP dependence plots were used to further explain how a
single feature affects the model output. The dependence plots of the
top 20 features are shown in Figure 4 (C–J) and Supplementary
Figure S1. These plots reveal a few interesting observations. First,
the SHAP values of the top four features (Fig. 4C–F), GG.gap2
(CKSNAAP), GGG (PseEIIP), GG (Kmer), and GGG (Kmer), have a
larger range than others, which suggests why these features domi-
nated the behavior of the model. The small range observed for
EmbedFea35 and EmbedFea89 explains why these features are less

Table 1. Performance of ten models trained on balanced datasets

Model Training ACC Validation ACC Test ACC Test MCCTest AUC

TD1 0.8093 0.8043 0.7934 0.5871 0.8620

TD2 0.8195 0.8000 0.7943 0.5921 0.8660

TD3 0.8209 0.8043 0.7874 0.5777 0.8641

TD4 0.8490 0.8348 0.7969 0.5945 0.8658

TD5 0.8403 0.8043 0.7950 0.5902 0.8646

TD6 0.7996 0.7913 0.7938 0.5897 0.8645

TD7 0.8209 0.8609 0.7911 0.5836 0.8671

TD8 0.8475 0.8043 0.7978 0.5959 0.8657

TD9 0.8078 0.8130 0.7846 0.5703 0.8615

TD10 0.8277 0.8217 0.7850 0.5725 0.8680

Averagea 0.8242 0.8139 0.7919 0.5857 0.8649

Ensembleb — — 0.7979 0.5965 0.8734

aAverage: metrics average value for TD1 to TD10.
bEnsemble: metrics value for the model ensemble.

Fig. 3. Performance comparison of DeepAc4C and nine conventional machine learn-

ing methods (A) and predictors PACES and XG-ac4C (B)
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important than others. Changes in their values have less influence on
the corresponding SHAP values (Supplementary Fig. S1K and L).
Second, the feature dependence plots can identify important feature
turning points. For example, the proposed model using 0.3 as a
GG.gap2 (CKSNAP) turning point showed that feature values >0.3
contribute to model prediction (Fig. 4C). Figure 4 (G) shows that
GGG (SCPseDNC) has two-segmented points, where feature value
¼ 0.2 is a point that changes the SHAP values from negative to posi-
tive, while 0.4 pushes the SHAP values to a higher range. These
results indicate that the model can capture non-linear relations exist-
ing in the data.

Lastly, the SHAP dependence plots also provide meaningful
insights into interaction effects across features. For example,
Figure 4 (C) shows that low GG.gap2 values (range 0.1 to �0.3)
with low GGG (PseEIIP) values (0.1–0.2) have an adverse impact on
model behavior, while moderate GG.gap2 value (0.2–0.6) and high
GGG values (PseEIIP) are favorable for ac4C identification. Similar
feature interaction patterns were observed in two other feature pairs
(Fig. 4F and G). In contrast, Figure 5 (H) and (J) shows that low
EmbedFea63 with high GG (SCPseDNC) values contribute to accur-
ate model prediction, while high EmbedFea63 values have the op-
posite effect. More feature interaction patterns can be seen in
Figure 4 (C–J) and Supplementary Figure S1.

3.5 Comparison with existing predictors
PACES and XG-ac4C are two bioinformatics tools for identifying
ac4c sites in mRNA. Here, we compared DeepAc4C with XG-ac4C
(Alam et al., 2020) and PACES (Zhao et al., 2019). The test dataset
used for PACES and XG-ac4C is redundant and seriously imbal-
anced. Further, only two metrics (AUC and PRC) are used for per-
formance evaluation. To provide a comprehensive evaluation of the
predictive ability of our model, the balanced and homology-reduced
(CD-HIT threshold of 0.4) test datasets were used for model testing
and comparison.

Figure 3 (B) provides details of the comparative analysis results.
DeepAc4C exhibited the best performances, followed by XG-ac4C,
while PACES ranked last. DeepAc4C outperformed XG-ac4C in the
ACC, SN, and MCC metrics, with improvements of 3.47, 23.98,
and 3.19%, respectively. For SP, the XG-ac4C returned higher val-
ues than our model. However, it is worth noting that the DeepAc4C
achieved more balanced performance with jSN-SPj ¼ 4.88%, while

XG-ac4C returned jSN-SPj ¼ 36.15%. As indicated in Equations (2)
and (3), SN and SP describe the true positive rate and true negative
rate, respectively. These two metrics measure a predictor from two
different angles and actually constrain with each other (Chou, 1993;
Liu et al., 2018). It is important to guarantee a balance between SN
and SP for an accurate model. DeepAc4C achieved an SN of
82.22% and SP of 77.34%, while XG-ac4C resulted in an SN of
58.24% and SP of 94.39%, suggesting the XG-ac4C tends to predict
a query sequence as non-Ac4c sites. PACES resulted from a more ser-
ious biased result with jSN-SPj ¼ 91.59%, indicating this predictor
can hardly predict the true positive samples.

Recently, Sas-Chen et al. (2020) reported quantitative,
nucleotide-resolution profiling of ac4C in archaea Thermococcus
kodakarensis, where 119 ac4C sites were identified from mRNA,
and 97 of them were successfully extracted from the reference gen-
ome ASM996v1 (Supplementary Text S1). The 97 sequences were
further used for the model’s performance comparison to check their
cross-species prediction ability. The results are listed in
Supplementary Table S4. DeepAc4C achieved the best performance
and predicted 29 out of 97 positive samples, XG-ac4C achieved the
second-best performance and correctly predicted 21 positive sam-
ples, and none positive samples were correctly predicted by PACES.
It should be noted that such testing is not very appropriate because
the sequence patterns between our training datasets and the 97 posi-
tive samples are different. The training datasets containing consecu-
tive ‘CXX’ motif, while such patterns were absent from the 97
positive samples. Therefore, the above three models achieved rela-
tively low accuracy on the 97 positive samples. In conclusion, these
results demonstrate that DeepAc4C is significantly better than the
existing prediction algorithms for Ac4C identification.

It should be noted that the datasets used for model training and
testing are generated by the immunoprecipitation-based approach,
where the possibility of antibody promiscuity cannot be ruled out.
Furthermore, sequences without consecutive ‘CXX’ motifs were ab-
sent from the current training datasets. Consequently, the prediction
performances of the above three models are partly biased to specific
sequence patterns. Therefore, making full use of the novel high base-
resolution data (Sas-Chen et al., 2020) will conductive to control the
false discovery rate.

4 Conclusion

In this study, a deep learning predictor called DeepAc4C was devel-
oped to accurately identify ac4C modifications in human mRNA.
The hybrid features composed of physicochemical patterns and se-
mantic information were used for sequence pattern representation.
As a result, our model outperforms the existing predictors for ac4C
site prediction and achieves a more balanced performance.
Furthermore, we used SHAP values to investigate the impact of spe-
cific features on the model predictions and their interaction effects.
For convenience, a user-friendly web server that implements
DeepAc4C has been made available to the public. We expect that
DeepAc4C will be a useful tool that can be complementary to
hands-on experiments for the computational identification of ac4C
sites. Together, these approaches will facilitate our functional under-
standing of ac4C in RNA.
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Fig. 4. Feature contribution and dependency analysis. (A) The 20 most important

features. (B) Summary plot for SHAP values. For each feature, one point corre-

sponds to a single sample. The SHAP value along the x-axis represents the impact

that feature had on the model’s output for that specific sample. Features in the

higher position in the plot mean the more important it is for the model. (C–J) The

SHAP dependence plots. These plots show the effect that a single feature has on the

model’s predictions and the interaction effects across features. Each point corre-

sponds to an individual sample, the value along the x-axis corresponds to the feature

value, the color represents the value of the interacting feature
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