
Attacking Recommender Systems with Augmented User Profiles

Chen Lin∗
Xiamen University
chenlin@xmu.edu.cn

Si Chen
Xiamen University

sichen@stu.xmu.edu.cn

Hui Li†
Xiamen University
hui@xmu.edu.cn

Yanghua Xiao
Fudan University

shawyh@fudan.edu.cn

Lianyun Li
Xiamen University

lilianyun@stu.xmu.edu.cn

Qian Yang
Xiamen University

yangqian@stu.xmu.edu.cn

ABSTRACT
Recommendation Systems (RS) have become an essential part of
many online services. Due to its pivotal role in guiding customers
towards purchasing, there is a natural motivation for unscrupulous
parties to spoof RS for profits. In this paper, we study the shilling
attack: a subsistent and profitable attack where an adversarial party
injects a number of user profiles to promote or demote a target item.
Conventional shilling attack models are based on simple heuristics
that can be easily detected, or directly adopt adversarial attack
methods without a special design for RS. Moreover, the study on the
attack impact on deep learning based RS is missing in the literature,
making the effects of shilling attack against real RS doubtful. We
present a novel Augmented Shilling Attack framework (AUSH)
and implement it with the idea of Generative Adversarial Network.
AUSH is capable of tailoring attacks against RS according to budget
and complex attack goals, such as targeting a specific user group.We
experimentally show that the attack impact of AUSH is noticeable
on a wide range of RS including both classic and modern deep
learning based RS, while it is virtually undetectable by the state-of-
the-art attack detection model.
ACM Reference Format:
Chen Lin, Si Chen, Hui Li, Yanghua Xiao, Lianyun Li, and Qian Yang. 2020.
Attacking Recommender Systems with Augmented User Profiles. In Proceed-
ings of the 29th ACM International Conference on Information and Knowledge
Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3340531.3411884

1 INTRODUCTION
The history of Recommender Systems (RS) can be traced back
to the beginning of e-commerce [1]. The ability of RS to assist
users in finding the desirable targets makes it an important tool for
alleviating information overload problem. As a result, RS has been
prevalently deployed in industries (e.g., Amazon, Facebook and
∗Chen Lin is supported by the National Natural Science Foundation of China
(no.61972328).
†Hui Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411884

Netflix [1]). Not only is RS beneficial to customers, but also RS helps
retail companies and producers promote their products and increase
sales. Consequently, there is a strong intention for unscrupulous
parties to attack RS in order to maximize their malicious objectives.

Due to RS’s pivotal role in e-commerce, much effort has been
devoted to studying how to spoof RS in order to give insights into
the defense against malicious attacks. Various attacks, such as unor-
ganized malicious attack (i.e., several attackers individually attack
RS without an organizer) [2] and sybil attack (i.e., illegally infer
a user’s preference) [3], have been studied. This paper focuses on
a subsistent and profitable attack, i.e., shilling attack, where an
adversarial party produces a number of user profiles using some
strategies to promote or demote an item [4] in order to have their
own products recommended more often than those of their com-
petitors. Shilling attack is also called data poisoning [5] or profile
injection attack [6] in the literature. Researchers have successfully
performed shilling attacks against real-world RS such as YouTube,
Google Search, Amazon and Yelp in experiments [7, 8]. Large com-
panies like Sony, Amazon and eBay have reported that they suffered
from such attacks in practice [9].

Shilling attack is the specific application of adversarial attack [10,
11] in the domain of recommender systems. Adversarial attack uses
crafted adversarial examples to mislead machine learning models. A
tremendous amount of work in adversarial attack is against image
classification [12], or text classification [13]. However, they cannot
be directly employed in shilling attack at full power, due to the
following challenges:
(1) Data correlation in RS: RS relies on capturing the correla-

tions between users and items for recommendations and such
relations enhance the robustness of RS. The recommendation
targeting at a specific user is typically made based on the infor-
mation from multiple user-item pairs (i.e., collaborative filter-
ing [1]) instead of a single data sample. Therefore, manipulating
the recommendation for one user requires to inject many re-
lated user-item pairs, which may affect the recommendation
results for other non-targeting users in RS and make the at-
tack easy to be detected. This is different compared to attacking
many other learning tasks where manipulating one data sample
may achieve the desirable attack goal and adversarial attacks
can be directly deployed (e.g., one-pixel attack [12]).

(2) No prior knowledge of RS: A prevalent strategy of adver-
sarial attack is to utilize the information of gradient decent in
machine learning models to search undetectable perturbations
and then combine perturbations with normal representation
vectors to affect the learning system [10]. As a comparison,

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

855

https://doi.org/10.1145/3340531.3411884
https://doi.org/10.1145/3340531.3411884
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3340531.3411884&domain=pdf&date_stamp=2020-10-19

in shilling attack, though the data (e.g., rating matrix) of RS
is generally available to all users (i.e., a user can see all other
users’ ratings) and thus exposed to attackers [4, 9, 14], the
recommendation model is typically a black box. Thus, it is re-
quired that the attack must be effective against a wide range of
recommendation models.

(3) The balance of different complex attack goals: Instead of
only promoting or demoting an item to the general audience,
there are usually multiple goals that the attacker desires to
achieve. However, incorporating multiple attack goals together
may degrade the attack performance of individual attack goal
or make the attack detectable. Consequently, special designs
are required to balance and achieve multiple attack goals simul-
taneously, while keeping the attack undetectable.

Due to the aforementioned challenges, only a few recentworks [15,
16] consider directly adopting the idea of adversarial attacks for
shilling attack, and they do not show satisfactory attack effects
on a wide range of RS as illustrated later in our experiments. In
addition to these methods, most existing shilling attack methods
create injection profiles based on some global statistics, e.g., aver-
age rating value [4, 9] and rating variance [14] for each item. For
instance, average attack assigns the highest rating to the target item
to be promoted and an average rating to a set of randomly sampled
items [9]. Although all these existing methods, including both ad-
versarial based and simple heuristic based approaches, were proved
to be effective in some cases, they still suffer from the following
limitations:
(1) Easy to detect: Generated user profiles lack personalization

(i.e., different user behavior pattern), thus the injected profiles
can be easily detected, even by some simple heuristics (more
details described in Sec. 5.4).

(2) Narrow range of target models: Depending on how the sta-
tistics are computed, conventional shilling attacks are shown
to be effective only on certain traditional collaborative filtering
(CF) approaches. For example, average, bandwagon and ran-
dom attacks are more effective against user-based KNN, but do
not work well against item-based KNN [17]. Moreover, their
influence on deep learning based RS, which has attracted con-
siderable interest and been deployed in real applications [18],
has not been studied. In fact, as global statistics can not capture
high-level associations among items or users, the actual effect
of the existing attack approaches on modern RS is doubtable
(more details described in Sec. 5.2).

(3) Inflexibility: It is difficult to tailor the attack for specific goals
which attackers desire to achieve after the attack, e.g., to exert
adverse effects on items from the competitors.

To address the above problems, a natural intuition to enhance
the attack is to “augment" the templates, which are selected from
existing real user profiles and are used to generate injected profiles.
This way, the injected fake user profiles are diversified and it be-
comes difficult to distinguish them from real users. Based on this
intuition, we present a novel Augmented Shilling Attack (AUSH)
and implement it with the idea of Generative Adversarial Network
(GAN) [19]. Specifically, the generator acts like an “attacker” and
generates fake user profiles by augmenting the “template” of exist-
ing real user profiles. The deep neural network based generator can

capture complex user-item associations better than existing attack
methods using simple heuristics. Thus, it works well on modern
RS which commonly deploys deep neural networks. Moreover, the
generator is able to achieve secondary attack goals by incorporat-
ing a shilling loss. On the other hand, the discriminator module
performs like a “defender”. It distinguishes fake user profiles from
real user profiles and provides guidance to train the generator to
generate undetectable fake user profiles. Each of the generator and
the discriminator strikes to enhance itself to beat the other one
at every round of the minimax competition. It is worthy noting
that, as we have explained, deploying the idea of adversarial at-
tack in shilling attack is not a trivial task, and directly applying
the adversarial attack method (i.e., using a general GAN) in shilling
attacks without our designs to tailor it for the attack will not provide
satisfactory results as shown in our experiments.

Our contributions can be summarized by three merits of AUSH.
We show that AUSH resembles to the traditional segment attack and
bandwagon attack [4], yet more powerful, undetectable and flexible
than conventional shilling attack methods:
(1) AUSH is powerful on a wide range of recommendation mod-

els including both traditional CF methods and modern deep
learning based approaches, while the prior knowledge of AUSH
does not exceed what the conventional shilling attack approaches
require to know.

(2) Furthermore, AUSH is virtually undetectable by the state-of-
the-art attack detection method as shown in our experiments.

(3) Finally, AUSH contains more than a general GAN as it includes
a reconstruction loss and a shilling loss which tailor AUSH
for attacking RS and endows the AUSH with the ability of
achieving secondary attack goals (e.g., promote items for a
group of users who have shown preferences over a predefined
set of competitors, or target on long-tail items).

We conduct comprehensive experiments to verify the above merits
of AUSH and its attack power against both classic and modern
deep learning based recommendation algorithms. Note that attack-
ing modern deep neural network recommendation algorithms has
rarely been studied in the literature.

The rest of the paper is organized as follows: Sec. 2 illustrate
the related work. Sec. 3 demonstrates the design of AUSH and
Sec 4 gives one possible implementation of AUSH. In Sec. 5, we
compare AUSH with other state-of-the-art shilling attacks methods
and verify its effectiveness. Sec. 6 concludes our work.

2 RELATEDWORK
2.1 Recommender Systems (RS)
Traditional RS typically relies on collaborative filtering methods
(CF), especially matrix factorization (MF) methods [20]. MF models
user preferences and item properties by factorizing the user-item in-
teraction matrix into two low-dimensional latent matrices. Recently,
numerous deep learning techniques (e.g., MLP [21], CNNs [22],
RNNs [23], GNNs [24], Autoencoder [25], and the Attention Mech-
anism [26]) have been introduced into RS. Compared to traditional
RS, deep learning based RS is able to model the nonlinearity of data
correlations and learn the underlying complex feature representa-
tions [18]. Consequently, deep learning based RS has outperformed
traditional RS in general.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

856

2.2 Adversarial Attacks
Machine learning has played a vital role in a broad spectrum of ap-
plications and helped solve many difficult problems for us. However,
security of machine learning systems are vulnerable to crafted ad-
versarial examples [10], which may be imperceptible to the human
eye, but can lead the model to misclassify the output. Adversaries
may leverage such vulnerabilities to compromise a learning sys-
tem where they have high incentives and such attacks are called
as adversarial attacks. Adversarial attack has show its ability to
manipulate the outputs of many text and image based learning
systems [10, 11, 27, 28].

Adversarial examples in conventional machine learning mod-
els have been discussed since decades ago [11]. Dalvi et al. [29]
find manipulating input data may affect the prediction results of
classification algorithms. Biggio et al. [30] design a gradient-based
approach to generate adversarial examples against SVM. Barreno
et al. [31, 32] formally investigate the security of conventional ma-
chine learning methods under adversarial attacks. Roli et al. [33]
discuss several defense strategies against adversarial attacks to
improve the security of machine learning algorithms. In addition
to conventional machine learning, recent studies have reported
that deep learning techniques are also vulnerable to adversarial
attacks [10, 11].

Though we have witness a great success of adversarial attacks
against many learning systems, existing adversarial attacks cannot
be directly adopted for the shilling attack task as explained in Sec. 1.

2.3 Generative Adversarial Network
Generative Adversarial Network (GAN) [19] has recently attracted
great attention for its potential to learn real data distribution and
generate text [34], images [35], recommendations [36] and many
other types of data [37]. GAN performs adversarial learning be-
tween the generator and the discriminator. The generator and the
discriminator can be implemented with any form of differentiable
system that maps data from one space to the other. The generator
tries to capture the real data distribution and generates real-like
data, while the discriminator is responsible for discriminating the
data generated by the generator and the real data. GAN plays a
minimax game and the optimization terminates at a saddle point
that is a minimum with respect to the generator and a maximum
with respect to the discriminator (i.e., Nash equilibrium).

As GAN overcomes the limitations of previous generative mod-
els [37], it has been successfully applied in many applications and
there is a surge of works studying how to improve GAN [37]. Follow-
up works include DCGAN [38] which adopts the CNN architecture
in GAN andWasserstein GAN [39]which leverages EarthMover dis-
tance. There also exists a direction of GAN research which utilizes
GAN to generate adversarial examples. For instance, [40] propose
to search the representation space of input data instead of input
data itself under the setting of GAN in order to generate more nat-
ural adversarial examples. [41] design AdvGAN which can attack
black-box models by training a distilled model.

2.4 Shilling Attacks against RS
O’Mahony et al. [42, 43] firstly study the robustness of user-based
CFmethod for rating prediction by injecting some faked users. They
also provide a theoretical analysis of the attack by viewing injected

ratings as noises. Burke et al. [6], Lam and Riedl [9], Mobasher
et al. [17], Burke et al. [44] further study the influence of some low-
knowledge attack approaches to promote an item (e.g., random,
average, bandwagon attack and segment attack) and to demote an
item (e.g., love/hate attack and reverse bandwagon attack) on CF
methods for both rating prediction and top-K recommendation.
They observe that CF methods are vulnerable to such attacks. As-
suming more knowledge and cost, Wilson and Seminario [45], Sem-
inario and Wilson [46] design the power user/item attack models
which leverage most influential users/items to shill RS, Fang et al.
[47] study how to shill a graph based CF models, and Li et al. [5]
present near-optimal data poisoning attacks for factorization-based
CF. Xing et al. [7], Yang et al. [8] conduct experiments on attacking
real-world RS (e.g., YouTube, Google Search, Amazon and Yelp) and
show that manipulating RS is possible in practice.

Inspired by the success of GAN, a few works turn to leverage
GAN for shilling attack task [15, 16]. However, directly adopting
existing GANmethods for generating adversarial examples, without
special designs (like AUSH) to tailor them for RS, will not provide
satisfactory results in shilling attacks as shown in our experiments.
Christakopoulou and Banerjee [15, 16] employ DCGAN [38] to
generate faked user profiles used in shilling attacks. They formulate
this procedure as a repeated general-sum game between RS and
adversarial fake user generator. Compared to their work, AUSH is
more specially tailored for RS instead of directly using adversarial
attacks (i.e., the general GAN) against machine learning models.
We consider more realistic factors (e.g., users in the segment, attack
cost and undetectability) when attacking RS, which descend from
previous study on attacking traditional CF models.

Note that the study on the impact of shilling attacks against
deep learning based RS is limited, although there is a tremendous
amount of work on attack and defense of traditional RS. Therefore,
we also include an analysis of attacking deep learning based RS in
the Sec. 5 of this paper.

3 AUGMENTED SHILLING ATTACK
In this section, we introduce our proposed attack framework: Aug-
mented Shilling Attack (AUSH).

3.1 Terminology
We follow the terminology used in the literature [4] and divide the
items in a fake user profile into one target item (i.e., the attacker
wants to assign it a malicious rating), a number of filler items (i.e., a
group of randomly sampled items which have been rated by the real
user and will be used to obstruct detection of the attack), a number
of selected items (i.e., a group of human-selected items for special
treatment to form the characteristics of the attack), and unrated
items (i.e., the rest of the items in the RS). Selected items are the
same across all fake user profiles, while each fake user profile has
its own filler items.

3.2 Attack Budget and Goal
Attacking RS is costly. As such, in designing a practical attack model
against RS, we have to take into account the following attack budget
and goal:
• Attack budget: we consider two factors

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

857

Figure 1: Pipeline of AUSH. We use binary ratings for illustration, though AUSH can handle a five-point scale. Red and blue
indicate a high rating and a low rating, respectively.

– Attack size is the number of fake user profiles
– Profile size is the number of non-zero ratings. The larger the
attack size / profile size is, the more effective and expensive
the attack could be.

• Attack goal: the goal an adversarial party wants to achieve
could be complex and we mainly consider the following aspects
– Attack type indicates whether it is a push attack (i.e., assign
a maximal rating on target item to promote it) or a nuke attack
(i.e., assign a minimal rating on target item to demote it). Since
the two types are similar and can be exchanged (i.e., change a
maximal rating to a minimal rating), we consider push attacks
in the sequel for simplicity.

– Target user group is the group of users that an attack aims
at.

– Ancillary effects (e.g., demoting competitors, bias the ratings
of a special user groups on selected items) are also desired in
the attack. Such intentions will manifest in choosing selected
items.

3.3 Overview of AUSH
Conventional attack models make up a fake user profile from
scratch. On the contrary, our intuition is to use an existing real user
profile as a “template” and augment it to generate the fake user
profile for shilling (AUSH). The template knowledge is accessible
in practice and do not exceed the requirements of recent sophis-
ticated attack methods [5, 47], as we will show later. The benefits
are two-fold. Firstly, the generated profile is indistinguishable as it
is built upon real user behavior patterns. Moreover, it retains the
preference diversity of the community. Unlike random or average
attack, where fake users do not show specific tastes, our strategy
can generate fake users who have a special taste on niche items.

Inspired by the success of adversarial learning in image genera-
tion [19], we employ a Generative Adversarial Network framework

for AUSH to make the attack even more undetectable. Fig. 1 gives
an overview of our pipeline, which consists of the following parts:
(1) Sampling (“template" selection) contains two steps. In the

first step, a batch of real users are chosen as “templates”. In the
second step, filler items of each “template” are sampled from
the rated items of the corresponding “template” user.

(2) Generator (“patch" generation) patches each “template" by
adding ratings on selected items to generate one fake profile.
Generator takes as input the sampled user-item rating sub-
matrix (i.e., “templates”) and captures the latent association
between items and users. To better learn behavior patterns of
the real user (i.e., the “template” user) including positive and
negative preference on selected items, AUSH attempts to re-
cover each “template” user’s observed ratings on selected items
and samples of unobserved selected items (i.e., to recover the
rating “0") via a reconstruction loss. The output of generator is a
set of fake user profiles, which contain ratings on selected items.
We can harness a shilling loss to optimize secondary attack ef-
fects, including but not limited to demoting the competitors,
targeting on special user groups, etc.

(3) Discriminator is fed with the output of the generator. It at-
tempts to accurately classify real user profiles and fake user
profiles. The adversarial loss is optimized to boost the perfor-
mance of discriminator.

The design of AUSH is general and there are various possible im-
plementations for the generator and the discriminator. We provide
one implementation in Sec. 4.

3.4 Relation to Segment/Bandwagon Attack
Segment attack injects user profiles, each of which comprises max-
imal ratings on selected items and minimal ratings on filler items.
For in-segment users (defined as users who like selected items), seg-
ment attack is one of the few attack models that work effectively
on item-based CF recommendation models. The design of segment

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

858

Algorithm 1: Training procedure for AUSH
Input: rating matrix X
Output: parameter set θ for generator G and parameter set

ϕ for discriminator D
for number of training epochs do

for k1 steps do
uniformly sample a minibatch of users U ′;
foreach u ′ ∈ U ′ do

sample F items to construct x(in)u′ ;
generate a minibatch of fake user profiles
{x(out)u′ = G(x(in)u′)|u ′ ∈ U ′};

optimize ϕ to maxH (G,D) with θ fixed;
for k2 steps do

uniformly sample a minibatch of user rating vectors
{xu };

foreach u ′ ∈ U ′ do
sample F items to construct x(in)u′ ;

generate a minibatch of fake user profiles
{x(out)u′ = G(x(in)u′)|u ′ ∈ U ′};

optimize θ to minLAU SH with ϕ fixed;

attack ensures that similarity between users in the segment and
injected profiles appears high and target item becomes more likely
to be recommended.

Another commonly adopted attack model is bandwagon attack.
In bandwagon attack, the most popular items are regarded as se-
lected items and are assigned with highest ratings. The filler items
are randomly chosen and randomly rated. It associates the target
item with popular items, so that the inserted profiles will have a
high probability of being similar to many users [44].

We see that segment attack and bandwagon attack can be ex-
pressed under our framework. If we fix ratings on the fillers and
selected items to be minimal rating and maximal rating respectively,
then AUSH is degraded to segment attack. If we sample frequently
rated items as selected items, then AUSH is degraded to bandwagon
attack. Due to the architectural resemblance, AUSH is empowered
by the capabilities of both segment attack and bandwagon attack.
Moreover, AUSH improves over bandwagon attack by allowing the
selected item to be tuned according to the rating values of fillers,
making the injected profile more natural and indistinguishable. It
also advances segment attack by revealing real patterns of filler
ratings. In addition to the aforementioned advantages, AUSH is
more flexible and able to achieve multiple goals (i.e., Attack Goal in
Sec. 3.2) in a single attack.

4 IMPLEMENTATION
We use X ∈ R |V |×|U | to denote the rating matrix in RS, where
U is the set of real users and V is the item universe. Vu = {v ∈

V : xv,u , 0} indicates the set of items that have been rated by u.
Similarly, Uv = {u ∈ U : xv,u , 0} denotes the set of users that
have rated v . Unless otherwise stated, we use lower-case letters
for indices, capital letters for scalars, boldface lower-case letters
for vectors, boldface capital letters for matrices, calligraphic letters
for sets. For instance, A, P , F , U ′ and S are attack size, profile size,
filler size, set of fake users and set of selected items, respectively.

The generator of AUSH takes X(in) ∈ R |V |×|U′ | as the input and
generates the fake user profiles X(out) ∈ R |V |×|U′ | , where each
column has exactly P non-zero entries. As depicted in Alg. 1, AUSH
comprises of the following components and steps.

4.1 Sampling
In this step, AUSH samples a sub-matrix X(in) ∈ R |V |×|U′ | (i.e.,
“templates”) fromX. Each “template” is sampled randomly from real
userswho have sufficient ratings.Mathematically,∀u ′ ∈ U ′, |Vu′ | ≥

P . In each training epoch of Alg. 1, the set U ′ is a minibatch of
users. In test time (i.e., the generated fake profiles are used for
attack), we sample exactly A fake user profiles |U ′ | = A. We adopt
different strategies as shown below to sample the filler items for
each u ′ ∈ U ′ and form x(in)u′ . For each filler item v , X(in)

v,u′ = Xv,u′ .

For other items, X(in)
v,u′ = 0.

(1) Random Sample: randomly sample items from Vu .
(2) Sample by Rating: sample items based on their ratings, i.e.,

P
(
X(in)
v,u′ , 0

)
=

r̄v∑
v̂∈Vu r̄v̂

, where r̄v is v’s average rating.

(3) Sample by Popularity: items are sampled based on their pop-
ularity, i.e., P

(
X(in)
v,u′ , 0

)
=

|Uv |∑
v̂∈Vu |Uv̂ |

.

(4) Sample by Similarity: sample items based on their similarity
to the selected items, i.e., P

(
X(in)
v,u′ , 0

)
=

|Uv
⋂

US |∑
v̂∈V |Uv̂

⋂
US |

.

4.2 Generator
The generator aims to “patch” the “templates” with ratings on
selected items in order to form the fake user profiles for attack.

We employ a reconstruction loss (i.e., MSE loss), shown in Eq. 1,
to optimize the generator parameters. We will slightly abuse the
notation, and define S+u′ = Vu′

⋂
S as the set of observed ratings

of the “template” user for user u ′ on selected items, and S−
u′ =

(V −Vu′)
⋂

S as random samples from the set of selected items
that the “template” user has not rated in the original data. And Tu′

indicates S+u′

⋃
S−
u′ .

LRecon = Eu′∼U′

∑
j ∈Tu′

(
X(out)
j,u′ −Xj,u′

)2
, X(out) = G

(
X(in)), (1)

where G(·) indicates the generator which will be defined in Eq. 2.
The reconstruction loss helps to produce ratings on the selected

items that are consistent with the real user’s preference. Note that
we use minibatch for training as shown in Alg. 1. Thus we sample
m (the percentage) of unobserved selected items for all the users in
a minibatch when constructing reconstructed items for these users,
instead of independently sampling unobserved selected items for
each user.

There is a variety of model structures for optimizing the recon-
struction loss, we empirically find that towered multilayer percep-
tron (MLP) combined with the MSE loss on selected items works
best. Let N be the number of hidden layers, the generator G is a
mapping function that operates in a towered manner:

G(x) = fout

(
fN

(
· · · f2

(
f1(x)

)
· · ·

))
. (2)

In Eq 2, fl (·) with l = 1, 2, · · · ,N denotes the mapping function
for the l-th hidden layer. fl (x) = σ (Wlx+bl), whereWl and bl are

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

859

learnable weight matrix and bias vector for layer l . The activation
function σ for each layer is sigmoid. We set the size of layers (i.e.,
dimensionality of x) as one third of the previous layers. The output
layer fout (·) is similar to fl (·) and its size is the number of selected
items.

AUSH can be extended to achieve secondary attack goals by
incorporating a shilling loss. In this work, we consider enhancing
the attack effect on in-segment users [9]. That is, we increase the
impact of the attack on users who like the selected items before
the attack. Such an effect is desirable when an adversarial party
(i.e., the attacker) is competing with the selected items (from its
competitor). The shilling loss we adopt is shown as follows:

LShill = Eu′∼U′

∑
j ∈S

(
Q − X(out)

j,u′

)2
, (3)

where Q is the maximal possible rating in the system. The shilling
loss produces fake user profiles that are more likely to associate
with in-segment users. Thus in-segment users, after our attack,
prefer to purchase the target item rather than the selected items
(from the competitor). Through optimizing shilling loss, AUSH is
able to achieve the ancillary effects.

4.3 Discriminator
The discriminator D attempts to correctly distinguish fake user
profiles from real user profiles, and encourages the generator to
produce realistic user profiles. We use MLP D(x) = σ (Wx + b) as
our discriminator, where D(·) estimates probabilities of its inputs
been real user profiles, W and b are weight matrix and bias vector.

Inspired by the idea of GAN [19], we aim to unify the different
goals of generator and discriminator by letting them play aminimax
game via optimizing the following adversarial loss:

min
θ

max
ϕ

H (G,D) = Eu∼U [logD(xu)]+Ez∼pθ [log
(
1−D(z)

)
], (4)

where θ and ϕ are model parameters of G and D, respectively. xu
is a real user profile. z is a fake user profile from the generator
distribution pθ .

4.4 Learning
Finally, the complete objective considers adversarial loss, recon-
struction loss and shilling loss, and leads to the following formula-
tion:

LAU SH = min
θ

max
ϕ

(
H (G,D) + LShill + LRecon

)
. (5)

As shown in Alg. 1, in each round of the optimization, each of
the “attacker” (i.e., generator) and “defender” (i.e., discriminator)
endeavors to improve itself to defeat the other part. The generator
attempts to generate “perfect” fake user profiles that are difficult
to detect, while the discriminator tries to accurately identify fake
profiles. During this procedure, the generator learns to produce fake
profiles similar to real profiles via optimizing the reconstruction
loss. At the same time, optimizing the shilling loss endows the fake
profiles with the capability to exert ancillary influence (e.g., demote
competitors or bias in-segment users).

Table 1: Statistics of data
Data #Users #Items #Ratings Sparsity

ML-100K 943 1,682 100,000 93.70%
FilmTrust 780 721 28,799 94.88%
Automotive 2,928 1,835 20,473 99.62%

Data Attack Size Filler Size #Selected Items Profile Size
ML-100K 50 90 3 94
FilmTrust 50 35 2 38
Automotive 50 4 1 6

5 EXPERIMENT
In this section, we conduct experiments in order to answer the
following research questions:
• RQ1: Does AUSH have better attack performance on both tra-
ditional and deep learning based RS, than other shilling attack
methods?

• RQ2: If adversarial attack methods are directly used (i.e., using
a general GAN) for shilling attack, what are the attack impacts?

• RQ3: Is AUSH able to achieve secondary attack goals at the
same time?

• RQ4: How much does each component in AUSH contribute to
the attack effects?

• RQ5: Is it more difficult for attack detector to recognize the
attack launched by AUSH, compared to shilling attackmethods?
In the following, we first demonstrate our experiment setup in

Sec. 5.1. Then, the attack effect of AUSH is verified on three well-
known recommendation benchmarks and is compared with both
heuristic based and general GAN based attack models in Sec. 5.2
(RQ1, RQ2, RQ3). After that, we investigate the role of each compo-
nent in AUSH on the attack impact (RQ4). Finally, we show that
AUSH can not be detected by supervised and unsupervised attack
detection methods in Sec. 5.4 and it generates indistinguishable
profiles in terms of similarity measurements (RQ5).

5.1 Experimental Setup
We use three benchmark data sets for RS in our experiments: ML-
100K1, FilmTrust2 and Amazon Automotive3. Most of the previous
work [14] only uses ML-100K as the single data set. We use its
default training/test split. In addition, we use FilmTrust and Au-
tomotive, which are larger and sparser, to testify the competence
of AUSH in different settings. We randomly split them by 9:1 for
training and testing, respectively. To exclude cold-start users (as
they are too vulnerable), we filter users with less than 15 ratings
and items without ratings.

We inject 50 user profiles (i.e., roughly 5% of the population
which can manifest the differences among attack models [6]) in
each attack. The number of fillers in each injected user profile
equals to the average number of ratings per user in the data set. For
each target item in ML-100K, we select a small number of items
that are most frequently rated under the same tag/category of the
target item as the selected items. For each target item in FilmTrust
and Automotive which do not have information of tag/category,
we sample items from global popular items as the selected items.
Tab. 1 illustrates the statistics of the data.

1https://grouplens.org/datasets/movielens/100k/
2https://www.librec.net/datasets/filmtrust.zip
3http://jmcauley.ucsd.edu/data/amazon/

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

860

https://grouplens.org/datasets/movielens/100k/
https://www.librec.net/datasets/filmtrust.zip
http://jmcauley.ucsd.edu/data/amazon/

We use TensorFlow for the implementation. The generator of
AUSH has 5 hidden layers (i.e., N = 5) with 400, 133, 44, 14 and
4 neurons for each layer. We use random sampling as the default
strategy for sampling filler items in AUSH as it requires the least
effort. The output layer size is the number of selected items. We
use Adam [48] for optimization with an initial learning rate of 0.01.
The maximal number of adversarial iterations is set to be 150.

5.2 Attack Performance (RQ1, RQ2, RQ3)
To answer RQ1, we investigate the attack performance of AUSH
and compare it with other baselines on several classic and deep
learning based RS models including NMF [49], NNMF [50] and
AutoEncoder [25] in our experiments. Note that AUSH is designed
for attacking rating based RS and we need to estimate the exact
values of ratings in the experiment. Thus we exclude methods such
as NCF [21] which is designed for implicit feedback. We compare
AUSH with several shilling attack models:
(1) Random attack assigns a rating r ∼ N(µ,σ) to a filler, where

µ and σ are the mean and the variance of all ratings in the
system, respectively.

(2) Average attack assigns a rating r ∼ N(µ,σ) to a filler, where
µ and σ are the mean and the variance of ratings on this filler
in the system, respectively.

(3) Segment attack assigns maximal ratings to the selected items
and minimal ratings to the filler items.

(4) Bandwagon attack uses the most popular items as the se-
lected items and assigns maximal ratings to them, while fillers
are assigned ratings in the same manner as random attack.

(5) DCGAN is an adversarial network [38] adopted in a recent
shilling attack method [15, 16], where the generator takes the
input noise and output fake user profiles through convolutional
units. We use the default settings in [16].

(6) WGAN is similar to DCGAN, but we replace the GAN used
in the shilling attack with Wasserstein GAN [39] which has a
good empirical performance [51].

In all methods, the highest rating is assigned to the target item.
We train each RS and AUSH until convergence. The required in-
formation (e.g., mean and variance) is obtained from the training
set. Note the prior knowledge of AUSH does not exceed what the
baselines require to know. Then we inject user profiles generated
by the attack models to the training set and train the RS again on
the polluted data. We evaluate the attack performance on the test
set using prediction shift (PS) and Hit Ratios atK (HR@K). PS is the
difference of ratings that the RS makes before and after the attack.
HR@K is the hit ratio of target items in the top-K recommendations
after the attack. As we are performing a push attack, the PS and
HR@K need to be positive to indicate an effective attack. The larger
their values are, the more effective the attack is. In the evaluation,
we use K = 10 for HR@K .

Overall Performance (RQ1). We randomly select five items as
random targets. As indicated in the literature [9], unpopular items
(i.e., long-tail items) are likely to be the targets of an attack. There-
fore, we additionally sample five target items with the number of
ratings no more than a threshold as random long-tail targets. The
threshold number of ratings is one in ML-100K, two in FilmTrust,

and three in Automotive. We report the average attack performance
on the three data sets for random targets and random long-tail tar-
gets, when the complete loss LAU SH (i.e., Eq. 5) is used in AUSH,
in Tabs. 2, 3, 4 and 5 for attacking NMF, NNMF, U-AutoEncoder and
I-AutoEncoder, respectively. We highlight the best performance
in each category. AUSH will also be highlighted if it achieves the
second best performance.

From experimental results, we can see that AUSH generally
achieves attractive attack performance against all recommendation
models on target items. It generates the largest PS and HR@10 in
most categories including both random targets and random long-
tail targets, showing that AUSH is a practical method for attackers
who want to promote their products. Conventional attack models do
not show a robust attack performance like AUSH, even though they
may exceed AUSH in a few cases.

Comparisons between AUSH and General GANs (RQ2). We
can observe from Tabs. 2, 3, 4 and 5 that directly adopting the idea
of adversarial attacks (i.e., using general GANs) does not give a satis-
factory performance. Particularly, both DCGAN which is adopted in
the recent shilling attack [15, 16] andWGAN [39] which aims at sta-
bilizing GAN training do not show better performance than simple
heuristic based attack approaches like Average attack and Random
attack. In some cases, attacks launched by DCGAN and WGAN
even give opposite effects (i.e., negative PS and HR@K). It validates
our assumption that a tailored GAN framework is necessary for
shilling attack.

Secondary Attack Goals (RQ3). As explained in Sec. 4.2, incor-
porating a shilling loss helps AUSH to achieve secondary attack
goal, i.e., increasing the impact of the attack on users who like
the selected items before the attack. We call such users in-segment
users [9] and they are target population to certain attackers. We de-
fine in-segment users as users who have assigned high ratings (i.e.,
4- or 5-stars) on all selected item in our experiments. In Tabs. 2, 3, 4
and 5, we already report the attack results for in-segment users
and all users, and list random targets and random long-tail targets
separately. In Tab. 6, we further show the attack performance on
I-AutoEncoder in different settings and the results are reported by
averaging attack impacts on random targets and random long-tail
targets. Note that AUSHrand in Tab. 6 indicates the complete loss
(i.e., Eq. 5) and the default random sampling are used, i.e., it is equiv-
alent to AUSH in Tabs. 2, 3, 4 and 5. For example, AUSHrand has
a PS of 1.6623 for in-segment users in Tab. 6 which is the average
of AUSH’s attack performances for in-segment users on random
targets and random long-tail targets of ML-100K (i.e., 1.3746 and
1.9499) in Tab. 5. Due to space limit, we only report attack results in
ML-100K in Tab. 6, but we observe similar results in other settings.

We can observe that AUSH (in Tabs. 2, 3, 4 and 5) and AUSHrand
(in Tab. 6) enhance the power of segment attack – a much more
significant attack impact on in-segment users than on all users,
while other baselines are not that flexible and they are unable to
achieve such a secondary attack goal. This property of AUSH is
desirable if the attacker wants to demote the items from competitors.
Note AUSHrand uses the complete loss. For a further study on
impacts of the different loss components, please refer to the next
section.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

861

Table 2: Attack performance against NMF. Best results are marked in bold, and AUSH results are also marked in bold if they
are the second best in each category.

Metric In-segment Users All Users
Prediction Shift HR@10 Prediction Shift HR@10

Data Set ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive
Model Random Targets
AUSH 1.8857 0.8937 0.2778 0.2538 0.2822 0.0539 1.7503 0.9650 0.2585 0.1849 0.2821 0.0541
Segment 1.0157 0.6832 0.2313 0.0372 0.3214 0.1545 0.7061 0.4504 0.2649 0.0380 0.1978 0.1132
Average 1.8478 0.8721 0.1972 0.2147 0.2208 0.0239 1.7754 0.9522 0.2100 0.1787 0.2241 0.0241
Random 1.7220 0.8667 0.2332 0.1253 0.2708 0.0380 1.6285 0.9570 0.2391 0.0995 0.3140 0.0406

Bandwagon 1.7199 0.8184 0.2380 0.1791 0.2380 0.0294 1.6194 0.8508 0.2327 0.1257 0.2048 0.0300
DCGAN -0.0112 0.1082 0.1002 0.0000 0.0833 0.0086 -0.0096 0.1005 0.1065 0.0000 0.0751 0.0046
WGAN 0.0774 0.1966 0.0473 0.0000 0.0469 0.0040 0.0723 0.1923 0.0396 0.0000 0.0374 0.0055

Random Long-tail Targets
AUSH 2.9387 1.4263 0.2575 0.6007 0.1571 0.0055 2.8949 1.4758 0.2456 0.5057 0.1961 0.0091
Segment 2.7918 0.9993 0.1719 0.5175 0.2197 0.0669 2.5726 0.7095 0.2961 0.3450 0.1265 0.0541
Average 2.9427 1.4084 0.2508 0.5044 0.0941 0.0066 2.9038 1.4723 0.2544 0.4420 0.1247 0.0041
Random 2.8994 1.4084 0.2618 0.6661 0.1568 0.0050 2.8401 1.4718 0.2724 0.5276 0.2159 0.0091

Bandwagon 2.8752 1.3426 0.1385 0.6232 0.1412 0.0000 2.8100 1.3561 0.1628 0.4900 0.1501 0.0011
DCGAN -0.1479 0.1753 -0.0731 0.0000 0.0008 0.0000 -0.1374 0.1836 -0.0383 0.0000 0.0088 0.0002
WGAN 1.2299 0.4455 -0.0509 0.0000 0.0332 0.0000 1.2473 0.4071 -0.0416 0.0000 0.0298 0.0016

Table 3: Attack performance against NNMF. Best results are marked in bold, and AUSH results are also marked in bold if they
are the second best in each category.

Metric In-segment Users All Users
Prediction Shift HR@10 Prediction Shift HR@10

Data Set ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive
Model Random Targets
AUSH 1.2225 0.9092 0.2507 0.1170 0.3027 0.0242 1.4009 1.1156 0.3017 0.1704 0.3614 0.0254
Segment 0.0500 0.4423 0.1745 0.0156 0.1330 0.0213 -0.4469 0.4486 0.1701 0.0069 0.1240 0.0242
Average 0.8749 0.7795 0.3016 0.0665 0.2220 0.0279 1.1468 0.9129 0.3491 0.1112 0.2340 0.0392
Random 0.5837 0.7634 0.2815 0.0431 0.1568 0.0399 0.8732 0.9334 0.3005 0.0411 0.2083 0.0426

Bandwagon 0.6517 0.7333 0.2716 0.0388 0.1945 0.0223 0.5153 0.8634 0.3157 0.0309 0.2168 0.0260
DCGAN -0.0611 -0.2444 0.0468 0.0012 0.0010 0.0000 0.0885 -0.1889 0.0274 0.0013 0.0034 0.0010
WGAN -0.0543 0.0786 0.0093 0.0000 0.0600 0.0100 -0.0649 0.1085 -0.0041 0.0007 0.0457 0.0037

Random Long-tail Targets
AUSH 1.5956 0.9002 0.8406 0.2654 0.2957 0.0257 1.7413 1.1241 0.8343 0.3420 0.3799 0.0206
Segment -0.4232 0.3003 0.5454 0.0011 0.1360 0.0116 -0.8599 0.3996 0.5150 0.0011 0.1242 0.0162
Average 1.4323 0.7883 0.8203 0.1503 0.1532 0.0188 1.5251 0.9430 0.7721 0.2236 0.1841 0.0158
Random 1.3755 0.8430 0.8023 0.1432 0.2011 0.0307 1.4984 1.0222 0.7878 0.2255 0.2648 0.0402

Bandwagon 1.3315 0.6977 0.5278 0.1296 0.1143 0.0102 1.4923 0.8026 0.5131 0.1877 0.1306 0.0056
DCGAN 0.1487 -0.4251 0.1673 0.0000 0.0010 0.0000 0.2164 -0.3518 0.1438 0.0000 0.0008 0.0028
WGAN 0.0555 0.1383 0.2385 0.0000 0.0021 0.0000 0.0266 0.2591 0.1144 0.0000 0.0033 0.0081

5.3 Impacts of Sampling Strategies and Each
Loss (RQ4)

To answer RQ4, we remove or change some components of AUSH
and investigate the performance changes.

Impacts of Sampling Strategies.We report the impacts of differ-
ent sampling strategies in Tab. 6. AUSHrand , AUSHratinд , AUSHpop
and AUSHsim indicate random sample, sample by rating, sample
by popularity and sample by similarity, respectively. All the four
variations of AUSH adopt the complete loss (i.e., Eq. 5). We can
observe that sample by rating is the best strategy for AUSH. The
reason may be that it is easy to bias people with items having high
ratings, as customers tend to trust such “power” items [46]. Nev-
ertheless, all the variations have more significant attack impacts
than other baselines.

Impacts of Each Loss. To study the contributions of each loss
term, in Tab. 6, we also report the results of AUSHadv , AUSHr ec
and AUSHr ec+shill , which denote using adversarial loss only, us-
ing reconstruction loss only, and using reconstruction and shilling
losses, respectively. In these three methods, random sampling is em-
ployed. An ordinary neural network (i.e., AUSHr ec) is outperformed
by the complete AUSH (i.e., AUSHrand , AUSHratinд , AUSHpop

	0

	0.2

	0.4

	0.6

	0.8

	1
Precision

	0

	0.2

	0.4

	0.6

	0.8

	1
Recall

Average
Bandwagon

Random
Segment

DCGAN
WGAN

AUSHrec
AUSH

Figure 2: Attack detection of injected profiles on ML-100K.
Lower value suggests a better attack model.

and AUSHsim), showing the effectiveness of our design of tailoring
GAN for use in shilling attacks. AUSHadv has the worst attack
performance compared to other variations of AUSH, showing that
the reconstruction loss also contributes to the attack.

5.4 Attack Detection (RQ5)
We apply a state-of-the-art unsupervised attack detector [52] on
the injected user profiles generated by different attack models and
report the precision and recall on 10 random selected target items.
Fig. 2 depicts the detection results on ML-100K. We can observe
that the detector performs the worst in terms of precision and recall

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

862

Table 4: Attack performance against U-AutoEncoder. Best results are marked in bold, and AUSH results are also marked in
bold if they are the second best in each category.

In-segment Users All UsersMetric Prediction Shift HR@10 Prediction Shift HR@10
Data Set ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive
Model Random Targets
AUSH 1.7661 1.3406 0.2206 0.2465 0.5596 0.0168 1.6184 1.1550 0.0382 0.2006 0.3549 0.0050
Segment 0.4721 1.0875 0.4700 0.0036 0.5371 0.7789 0.3098 0.8886 0.0121 0.0050 0.3719 0.2166
Average 0.9297 0.9024 0.1311 0.0144 0.1490 0.0000 1.0187 0.9731 0.1514 0.0231 0.1481 0.0000
Random 0.4624 0.7527 0.1262 0.0027 0.0807 0.0000 0.6284 0.8271 0.1200 0.0059 0.1023 0.0000

Bandwagon 0.5501 0.6026 0.0896 0.0012 0.0316 0.0000 0.6311 0.6382 0.0686 0.0062 0.0335 0.0000
DCGAN -1.064 0.0076 -0.2258 0.0000 0.0000 0.0000 -0.2215 -0.0326 -0.2415 0.0000 0.0000 0.0000
WGAN 1.3940 0.0923 0.1813 0.0000 0.0000 0.1583 1.2985 0.1095 0.1630 0.0212 0.0000 0.0928

Random Long-tail Targets
AUSH 3.2274 1.7384 0.3898 0.6657 0.6896 0.0000 2.9440 1.5602 -0.0424 0.4894 0.5149 0.0000
Segment 3.3397 1.4665 0.2109 0.6364 0.5570 0.3733 3.0081 1.2709 -0.4654 0.5423 0.4175 0.0098
Average 3.1671 1.2961 0.2915 0.3897 0.0425 0.0000 3.0299 1.3290 0.2930 0.4439 0.0851 0.0000
Random 2.5778 1.0348 0.0466 0.1508 0.0259 0.0000 2.5229 1.1324 0.0275 0.1575 0.0815 0.0000

Bandwagon 2.5466 0.8524 0.1227 0.1581 0.0073 0.0000 2.4444 0.9117 0.0509 0.1242 0.0198 0.0000
DCGAN -0.3896 0.3782 -0.0539 0.0000 0.0000 0.0000 -0.3813 0.4132 0.0496 0.0000 0.0000 0.0000
WGAN 1.3940 0.0923 0.1813 0.0000 0.0000 0.1583 1.2985 0.1095 0.1630 0.0212 0.0000 0.0928

Table 5: Attack performance against I-AutoEncoder. Best results aremarked in bold, and AUSH results are alsomarked in bold
if they are the second best in each category.

In-segment Users All UsersMetric Prediction Shift HR@10 Prediction Shift HR@10
Data Set ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive ML-100K FilmTrust Automotive
Model Random Targets
AUSH 1.3746 1.4280 0.9913 0.1488 0.9155 0.9141 1.2180 1.3059 0.8870 0.0990 0.8333 0.8965
Segment 0.5137 1.2035 0.4927 0.0086 0.6423 0.7266 0.3232 0.8689 1.6986 0.0274 0.4371 0.9777
Average 1.0117 1.4203 0.5394 0.0487 0.9187 0.6490 1.1044 1.3589 0.5470 0.1025 0.8520 0.6500
Random 0.6304 1.2210 0.5492 0.0585 0.8307 0.6732 0.7634 1.1630 0.5391 0.0918 0.7477 0.6483

Bandwagon 0.5978 1.2788 0.9718 0.0287 0.8299 0.8608 0.5960 1.2297 1.8099 0.0430 0.7825 0.9309
DCGAN 0.0243 -0.0633 0.0046 0.0000 0.0010 0.0050 0.0213 -0.0600 0.0054 0.0000 0.0010 0.0054
WGAN 0.1131 -0.1228 0.0412 0.0000 0.0000 0.0050 0.1045 -0.1142 0.0465 0.0002 0.0008 0.0047

Random Long-tail Targets
AUSH 1.9499 1.7052 0.9820 0.2974 0.9239 0.8821 1.7822 1.6019 0.8150 0.2369 0.8396 0.8623
Segment 0.5188 1.4510 0.3969 0.0072 0.5835 0.5938 0.3249 1.1385 1.5154 0.0344 0.4165 0.9629
Average 1.3898 1.6790 0.4245 0.1019 0.9041 0.3726 1.3793 1.6318 0.4478 0.1104 0.8483 0.3846
Random 0.9227 1.4590 0.46697 0.0401 0.7768 0.4368 1.0349 1.4076 0.4740 0.0900 0.6910 0.4477

Bandwagon 0.6220 1.5672 0.2814 0.0091 0.8390 0.4267 0.7456 1.5190 0.6489 0.0346 0.7728 0.6593
DCGAN 0.0241 0.0119 0.0056 0.0000 0.0000 0.0000 0.0348 0.0114 -0.0029 0.000 0.0005 0.0086
WGAN 0.1096 0.0718 -0.0428 0.0000 0.0000 0.0000 0.1374 0.0728 -0.0364 0.0006 0.0003 0.0018

Table 6: Attack performance on I-AutoEncoder using differ-
ent sampling strategies and losses in ML-100K. Best results
are marked in bold.

Attack Method In-segment Users All Users
Prediction Shift HR@10 Prediction Shift HR@10

AUSHrand 1.6623 0.2231 1.5001 0.1679
AUSHratinд 1.7310 0.2735 1.5695 0.2243
AUSHpop 1.7252 0.2699 1.5620 0.2212
AUSHsim 1.6752 0.2300 1.5383 0.1992
AUSHadv 1.2960 0.0640 1.3162 0.0881
AUSHr ec 1.4980 0.1450 1.4411 0.1441
AUSHr ec+shill 1.6569 0.2349 1.5033 0.1849
Segment 0.5163 0.0079 0.3241 0.0309
Average 1.2008 0.0753 1.2419 0.1065
Random 0.7766 0.0493 0.8992 0.0909
Bandwagon 0.6099 0.0189 0.6708 0.0388
DCGAN 0.0242 0.0000 0.0281 0.0000
WGAN 0.1114 0.0000 0.1210 0.0004

Table 7: Two distance measures between injected user pro-
files and real user profiles in ML-100K.

Measure AUSH Average Bandwagon Random Segment DCGAN WGAN
TVD 0.01210 0.05450 0.05762 0.05704 0.08010 0.11302 0.11598
JS 0.00215 0.01162 0.01398 0.01353 0.03461 0.04363 0.04601

against AUSH and AUSHr ec , i.e., it fails to distinguish the injected
user profiles generated by these two approaches. On the contrary,

most of the injected user profiles from conventional attack models
can be easily detected. Compared to AUSH, the detection perfor-
mance of an ordinary neural network such as AUSHr ec is unstable
over the 10 target items. In the worst case, the injections generated
by AUSHr ec will be more likely to be detected compared to those
produced by AUSH. This observation further verifies the ability
of our special designed AUSH to generate virtually undetectable
injections in shilling attack.

Additionally, we run a set of similarity tests to further demon-
strate the undetectability of AUSH. We generate as many fake
user profiles as the population of real users, i.e., 943 fake users
for ML-100K. We compute the distribution p(v) ∈ R6 for each
item v , where pi is the percentage of real ratings on v with value
i, i = {0, 1, 2, 3, 4, 5}. We also compute the distribution q(v) in the
injected user profiles. Following Christakopoulou and Banerjee
[15, 16], we compute two distance measures, i.e., Total Variation
Distance and Jensen-Shannon divergence:

TVD =
∑
v∈V

|p(v) − q(v) |
/
|V |

JS =
∑
v∈V

(
KL

(
p(v)

m(v)
)
+ KL

(
q(v)

m(v)
)) /

|V |

where m(v) =
(
p(v) + q(v)

)
/2 and KL(·) represents the Kullback-

Leibler divergence, between fake profiles and real profiles. As shown

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

863

in Tab. 7, the fake profiles generated by AUSH have the smallest
TVD and JS. Since TVD and JS measure the difference of over-
all rating distributions, we can see that AUSH can preserve the
distribution patterns and diversity of the original rating space.

6 CONCLUSION
In this paper, we present a novel shilling attack framework AUSH.
We design aminimax game to let each of the attack profile generator
and fake profile discriminator iteratively strikes to improve itself
and beat the other one. We additionally employ a reconstruction
loss and a shilling loss to help generate “perfect” fake profiles and
achieve secondary attack goals. The experimental results show
the superiority of AUSH. In the future, we plan to design more
sophisticated mechanisms for learning selected items instead of
selection by human. This way, the ultimate goal of the attack can
not be easily inferred from the selected items and AUSH can become
even more undetectable.

REFERENCES
[1] Charu C. Aggarwal. Recommender Systems - The Textbook. Springer, 2016.
[2] Ming Pang, Wei Gao, Min Tao, and Zhi-Hua Zhou. Unorganized malicious attacks

detection. In NeurIPS, pages 6976–6985, 2018.
[3] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Edward W. Felten, and

Vitaly Shmatikov. “you might also like:” privacy risks of collaborative filtering.
In IEEE Symposium on Security and Privacy, pages 231–246, 2011.

[4] Ihsan Gunes, Cihan Kaleli, Alper Bilge, and Huseyin Polat. Shilling attacks
against recommender systems: a comprehensive survey. Artif. Intell. Rev., 42(4):
767–799, 2014.

[5] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning
attacks on factorization-based collaborative filtering. In NIPS, pages 1885–1893,
2016.

[6] RobinD. Burke, BamshadMobasher, Runa Bhaumik, and ChadWilliams. Segment-
based injection attacks against collaborative filtering recommender systems. In
ICDM, pages 577–580, 2005.

[7] Xinyu Xing, Wei Meng, Dan Doozan, Alex C. Snoeren, Nick Feamster, andWenke
Lee. Take this personally: Pollution attacks on personalized services. In USENIX
Security Symposium, pages 671–686, 2013.

[8] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake co-visitation injection
attacks to recommender systems. In NDSS, 2017.

[9] Shyong K. Lam and John Riedl. Shilling recommender systems for fun and profit.
In WWW, pages 393–402, 2004.

[10] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and
Debdeep Mukhopadhyay. Adversarial attacks and defences: A survey. arXiv
Preprint, 2018. URL https://arxiv.org/abs/1810.00069.

[11] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks
and defenses for deep learning. IEEE Trans. Neural Networks Learn. Syst., 30(9):
2805–2824, 2019.

[12] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack
for fooling deep neural networks. IEEE Trans. Evolutionary Computation, 23(5):
828–841, 2019.

[13] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivas-
tava, and Kai-Wei Chang. Generating natural language adversarial examples. In
EMNLP, pages 2890–2896, 2018.

[14] Jeff J. Sandvig, Bamshad Mobasher, and Robin D. Burke. A survey of collaborative
recommendation and the robustness of model-based algorithms. IEEE Data Eng.
Bull., 31(2):3–13, 2008.

[15] Konstantina Christakopoulou and Arindam Banerjee. Adversarial recommen-
dation: Attack of the learned fake users. arXiv Preprint, 2018. URL https:
//arxiv.org/abs/1809.08336.

[16] Konstantina Christakopoulou and Arindam Banerjee. Adversarial attacks on an
oblivious recommender. In RecSys, pages 322–330, 2019.

[17] Bamshad Mobasher, Robin D. Burke, Runa Bhaumik, and Chad Williams. Toward
trustworthy recommender systems: An analysis of attack models and algorithm
robustness. ACM Trans. Internet Techn., 7(4):23, 2007.

[18] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender
system: A survey and new perspectives. ACM Comput. Surv., 52(1):5:1–5:38, 2019.

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adver-
sarial nets. In NIPS, pages 2672–2680, 2014.

[20] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. FEXIPRO: fast and
exact inner product retrieval in recommender systems. In SIGMOD Conference,

pages 835–850, 2017.
[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. Neural collaborative filtering. InWWW, pages 173–182, 2017.
[22] Trinh Xuan Tuan and Tu Minh Phuong. 3d convolutional networks for session-

based recommendation with content features. In RecSys, pages 138–146, 2017.
[23] Peijie Sun, Le Wu, and Meng Wang. Attentive recurrent social recommendation.

In SIGIR, pages 185–194, 2018.
[24] Shaohua Fan, Junxiong Zhu, Xiaotian Han, Chuan Shi, Linmei Hu, Biyu Ma, and

Yongliang Li. Metapath-guided heterogeneous graph neural network for intent
recommendation. In KDD, pages 2478–2486, 2019.

[25] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec:
Autoencoders meet collaborative filtering. In WWW (Companion Volume), pages
111–112, 2015.

[26] Hui Li, Yanlin Wang, Ziyu Lyu, and Jieming Shi. Multi-task learning for recom-
mendation over heterogeneous information network. IEEE Trans. Knowl. Data
Eng., 2020.

[27] Wenqi Wang, Lina Wang, Run Wang, Zhibo Wang, and Aoshuang Ye. Towards
a robust deep neural network in texts: A survey. arXiv Preprint, 2019. URL
https://arxiv.org/abs/1902.07285.

[28] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial
attacks on deep-learning models in natural language processing: A survey. ACM
Trans. Intell. Syst. Technol., 11(3), 2020.

[29] Nilesh N. Dalvi, Pedro M. Domingos, Mausam, Sumit K. Sanghai, and Deepak
Verma. Adversarial classification. In KDD, pages 99–108, 2004.

[30] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine
learning at test time. In ECML/PKDD (3), volume 8190, pages 387–402, 2013.

[31] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar.
Can machine learning be secure? In AsiaCCS, pages 16–25, 2006.

[32] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The security
of machine learning. Mach. Learn., 81(2):121–148, 2010.

[33] Fabio Roli, Battista Biggio, and Giorgio Fumera. Pattern recognition systems
under attack. In CIARP (1), volume 8258, pages 1–8, 2013.

[34] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In AAAI, pages 2852–2858, 2017.

[35] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In NIPS,
pages 469–477, 2016.

[36] ChengWang,Mathias Niepert, andHui Li. Recsys-dan: Discriminative adversarial
networks for cross-domain recommender systems. IEEE Trans. Neural Netw.
Learning Syst., 2019.

[37] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. How generative
adversarial networks and their variants work: An overview. ACM Comput. Surv.,
52(1):10:1–10:43, 2019.

[38] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In ICLR, 2016.

[39] Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv
Preprint, 2017. URL https://arxiv.org/abs/1701.07875.

[40] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial
examples. In ICLR, 2018.

[41] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song.
Generating adversarial examples with adversarial networks. In IJCAI, pages
3905–3911, 2018.

[42] Michael P. O’Mahony, Neil J. Hurley, and Guenole C. M. Silvestre. Recommender
systems: Attack types and strategies. In AAAI, pages 334–339, 2005.

[43] Michael P. O’Mahony, Neil J. Hurley, Nicholas Kushmerick, and Guenole C. M.
Silvestre. Collaborative recommendation: A robustness analysis. ACM Trans.
Internet Techn., 4(4):344–377, 2004.

[44] Robin Burke, BamshadMobasher, and Runa Bhaumik. Limited knowledge shilling
attacks in collaborative filtering systems. In ITWP@IJCAI, 2005.

[45] David C. Wilson and Carlos E. Seminario. When power users attack: assessing
impacts in collaborative recommender systems. In RecSys, pages 427–430, 2013.

[46] Carlos E. Seminario and David C. Wilson. Attacking item-based recommender
systems with power items. In RecSys, pages 57–64, 2014.

[47] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, and Jia Liu. Poisoning
attacks to graph-based recommender systems. In ACSAC, pages 381–392, 2018.

[48] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

[49] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix
factorization. In NIPS, pages 556–562, 2000.

[50] Gintare Karolina Dziugaite and Daniel M. Roy. Neural network matrix factoriza-
tion, 2015. URL https://arxiv.org/abs/1511.06443.

[51] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. Improved training of wasserstein gans. In NIPS, pages
5767–5777, 2017.

[52] Yongfeng Zhang, Yunzhi Tan, Min Zhang, Yiqun Liu, Tat-Seng Chua, and Shaop-
ing Ma. Catch the black sheep: Unified framework for shilling attack detection
based on fraudulent action propagation. In IJCAI, pages 2408–2414, 2015.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

864

https://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1809.08336
https://arxiv.org/abs/1809.08336
https://arxiv.org/abs/1902.07285
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1511.06443

	Abstract
	1 Introduction
	2 Related Work
	2.1 Recommender Systems (RS)
	2.2 Adversarial Attacks
	2.3 Generative Adversarial Network
	2.4 Shilling Attacks against RS

	3 Augmented Shilling Attack
	3.1 Terminology
	3.2 Attack Budget and Goal
	3.3 Overview of AUSH
	3.4 Relation to Segment/Bandwagon Attack

	4 Implementation
	4.1 Sampling
	4.2 Generator
	4.3 Discriminator
	4.4 Learning

	5 Experiment
	5.1 Experimental Setup
	5.2 Attack Performance (RQ1, RQ2, RQ3)
	5.3 Impacts of Sampling Strategies and Each Loss (RQ4)
	5.4 Attack Detection (RQ5)

	6 Conclusion
	References

